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Abstract: Road rutting caused by vehicle loading in the wheel path is a major form of asphalt
pavement distress. Hydroplaning and loss of skid resistance are directly related to high road rutting
severity. Periodical measurements of rut depth are crucial to maintenance and rehabilitation planning.
In this study, we explored the feasibility of using point clouds gathered by Mobile LiDAR systems
to measure the rut depth. These point clouds that are collected along roads are usually used for
other purposes, namely asset inventory or topographic survey. Taking advantage of available clouds
to identify rutting severity in critical pavement areas can result in considerable economic and time
saving and thus, added value, when compared with specific expensive rut measuring systems. Four
different strategies of cloud points aggregation are presented to create the cross-section of points.
Such strategies were established to improve the precision of individual sensor measurements. Despite
the 5 mm precision of the used system, it was possible to estimate rut depth values that were slightly
inferior. The rut depth values obtained from each cross-section strategy were compared with the
manual field measured values. The cross-sections based on averaged cloud points sensor profile
aggregation was revealed to be the most suitable strategy to measure rut depth. Despite the fact
that the study was specifically conducted to measure rut depth, the evaluation results show that the
methodology can also be useful for other mobile LiDAR point clouds cross-sections applications.
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1. Introduction

Rutting is a longitudinal, permanent pavement deformation along roads created by repetitive
vehicle loading in the wheel path. Water accumulation on ruts reduces skid resistance and increases
the danger of hydroplaning [1–4]. Usually, three levels of severity are used for rut classification (low,
medium, and high), however, there is no consensus regarding the rut severity classification thresholds
among countries and agencies [2,3,5]. Regardless of the classification values that are used, there is
a wide-ranging consensus of the direct correlation between rut depth severity and increased traffic
accidents. Therefore, periodical measurement of road rut depth values is essential for road maintenance
intervention plans, avoiding road safety degradation and saving money [1–5].

The manual method to measure the rut depth is performed by placing a straight edge across a
rut and measuring the distance between the straight edge and the rut bottom [4]. Along with being a
slow procedure, this task usually requires safety measures, which implies use disruptions or even road
use interruption.

One of the procedures specifically used to perform the rut depth measurement includes a vehicle
with a discrete number of laser beams installed on a bar perpendicular to the direction of the road.
By comparing the different distances to the ground, the rut depth measurement can be performed by a
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minimum of three laser beams—one in each wheel path and another in the car’s center. However, since
the system vehicle does not have the means to ensure that the wheels are always in the rut’s deepest
point, the number of laser beams is directly correlated with the precision of the rut depth measurement.
The lower the number of laser beams, the lower the chances of the rut’s deepest point being detected
and measured and, consequently, the rut depth can be underestimated. Initially having three laser
beams, this number has increased, for example, Serigos et al. [6] mention a 37-laser beams system.

Another rut depth measurement specific technique includes the use of continuous 3D laser
systems. Such systems allow the measurement of thousands of points in each profile, increasing the rut
depth precision. However, these systems are developed specifically for pavement distress assessment
and, consequentially, they are very expensive [7]. Figure 1 shows schematic representations of manual
discrete laser profilers and continuous laser systems methodologies.
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range terrestrial photogrammetry principles are used to measure the rut depth in forest areas. Using 
cameras suspended by manually carried poles, the rut depth measurement is performed over the 
three-dimensional created point cloud. 

More recently, Unmanned Aerial Vehicles (UAV) have been found to be an economic method to 
efficiently take high resolution photos along large road areas. Marra et al. [11] show how the rut 

Figure 1. Schematic transversal road profile and rut depth measurement techniques. (a) Manual
method using a straight edge across the rut. (b) Discrete laser beam profiler installed in a front car
transversal bar. (c) Continuous laser system installed in the car’s back.

Several studies regarding discrete and continuous laser systems comparison and precision
evaluation have been published [6,8]. Besides the three methodologies illustrated in Figure 1, other
approaches to measure the rut depth using geoinformation have been presented. In [9–11], close
range terrestrial photogrammetry principles are used to measure the rut depth in forest areas. Using
cameras suspended by manually carried poles, the rut depth measurement is performed over the
three-dimensional created point cloud.
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More recently, Unmanned Aerial Vehicles (UAV) have been found to be an economic method to
efficiently take high resolution photos along large road areas. Marra et al. [11] show how the rut depth
in a forest path is measured from the automatically created point cloud [11]. Several authors have used
UAV to assess pavement distress through image processing, however they did not include rut depth
measurements [12–14]. Existing grass, logging residues, and water along ruts are referred to as the
main factors that compromise the precision of the photogrammetric methods.

Still, in forest paths, a methodology to measure the rut depth using a 2D laser is presented in [15].
The respective obtained results suggest that a LiDAR sensor mounted on a forest vehicle can be a
viable method for rut depth data as part of normal forestry operations. It should be noted that all these
studies were conducted on unpaved forest roads where the precision requirements are smaller due to
the terrain nature and the fact that the ruts are much deeper than in paved roads.

In [16–18], recent reviews of pavement distress detection and measurements, including rutting,
are presented.

Few studies have contributed to rut depth measurement by using LiDAR point cloud data.
Li et al. [19] introduce a real-time 3D scanning specific system for pavement distortion inspections. The
system uses a simple yet robust structured light method for 3D profile generation. The authors conclude
that rutting can be reliably detected from 3D transverse profiles and the real-time measurements and
3D visualization of these distortions can be an output for a pavement management system.

Li et al. [20] demonstrate the application of random forest classification to identify pavement
distress based on the use of UAV LiDAR point cloud data. The data quality used does not allow
the identification of slight pavement distresses, therefore, a classification method mainly for severe
pavement distresses was established. Due to the similarity between subsidence, rutting, and cracks,
they are all regarded as the same type of distress in the classification, which prevents any type of
distinction between the pavement pathologies. Even so, a satisfactory classification with an accuracy
of 92.3% was achieved.

Mobile LiDAR Systems (MLS) have emerged in recent years as a new source of precise and very
detailed georeferenced information. The gathered point clouds with a few thousand of points per
square meter represent the road pavement and surrounding area with high spatial resolution. These
point clouds become very popular for the collection of accurate objects geometry and their related
attributes. Many country’s road agencies are using MLS point clouds to extract road assets’ geometry,
attributes, and condition. These systems reveal to be much faster and cheaper than the traditional
survey methods [21]. Another MLS advantage is the extraction of many asset types from the same point
cloud, gathered with just one road passage and without any road traffic disruptions. Several studies
support the general idea of MLS point clouds as a solution for road inventory [22–24]. Che et al. [25]
present a complete and recent state of the art review regarding the object’s extraction methods from
MLS point clouds.

Given the MLS efficiency, it is expected that the object types and extraction methodologies from
the gathered point clouds will continue to increase [26]. This will result in a large amount of existing
point clouds covering the entire road pavement.

Using this available data, an efficient methodology to identify road areas with high rut depth
values can clearly be of added value, speeding up the process of problematic areas detection, without
the need of specific laser systems for pavement distress detection. Apart from reducing the cost of the
process, it can anticipate road interventions and diminish traffic accidents.

At first glance, the rut depth measurement can easily be performed through cross-sections along
the MLS point cloud. However, different strategies for grouping the point clouds to get the profile
points can lead to very different results. Also, the lower accuracy of the commercial MLS systems
when compared with the specific laser systems can compromise the rut depth measurement quality.

In this work, a comparative study of different strategies to group the cloud points in order to
create the cross-sections is presented. By comparing different strategies, it is intended that the precision
improvement regarding the individual system sensor measurement can be evaluated. On the one hand,
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statically, by increasing the number of cloud points used for each cross-section point computation.
On the other hand, taking advantage of the system operating principles knowledge, grouping the cloud
points by individual laser rotation. Thus, Section 2 includes an MLS working principles description,
followed by each proposed strategy description. Finally, Sections 3 and 4 presents the discussion of the
results, main conclusions, and future work.

2. Materials and Methods

Since rutting has a longitudinal development, the most obvious way to measure the rut depth is
through the creation of road transversal cross-sections. However, to evaluate the potential precision
improvement of the sensor’s individual measurement, four strategies to aggregate the cloud points for
creating those cross-sections were set out. The proposed strategies will be described in this section and
justification of choices will be included in the discussion of the results. Since some defined strategies
are related to the way the data are gathered, a resumed description of the MLS working principles
are presented.

2.1. MLS Working Principles

An MLS consists of a set of devices and sensors, installed in a moving platform. These systems
allow gathering georeferenced points reflected on the surface of the surrounding objects.

The data registered by MLS sensors is classified in two types:

• Trajectory—includes data collected by the system sensors to compute the most accurate trajectory.
Namely, Global Navigation Satellite System (GNSS) antennas, Inertial Measurement Unit (IMU),
and high-resolution Distance Measuring Instrument (DMI).

• Laser—a set of distances and angles to compute the points coordinates in space regarding the
laser sensor position.

By merging these two data types, georeferenced point clouds representing all objects at a sensor
range are created.

To ensure a full surrounding coverage, two types of movement are applied to the laser pulse
direction. The first is a rotational movement 360 degrees around the sensor axis, creating a single
profile. The second is the vehicle movement, which allows consecutive profiles and the point cloud
effect. Figure 2 illustrates the MLS point cloud gathering process.
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vehicle movement.

Along this work, two profile types are recurrently mentioned, the original sensor cloud points
profiles described in Figure 2, and the road transversal profiles used for measuring the rut depth.
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The term profile will always be used when referring to the first type and the term cross-section when
referring to the second type.

In order to increase the surrounding objects area coverage, the platform laser sensor installation
is typically performed in a way that the profiles direction performs a 45 degree angle regarding the
system trajectory direction, as shown in Figure 2.

2.2. Cross-Section Points Creation Strategies

An MLS point cloud dataset gathered along a highway was used to compare the cross-sections
points creation strategies. The used system was a Trimble MX8 with the sensor RIEGL VQ-250
configuration. In Table 1, the main sensor characteristics are presented.

Table 1. Riegl VQ-250 sensor main characteristics.

Characteristics Values

Accuracy 1 10 mm
Precision 2 5 mm

Maximum measurement rate 300,000 points/second
Number of sensor profiles Up to 200 profiles/second

1 Accuracy is the degree of conformity of a measured quantity to its actual (true) value. One sigma at a 50 m range
under test conditions. 2 Precision or repeatability is the degree to which further measurements show the same result.
One sigma at a 50 m range under test conditions.

The point clouds were obtained to perform the highway asset inventory. The strategy goal was to
evaluate the use of those point clouds to additionally measure the rut depth. The data was already
processed using the IMU and GNSS data and subsequent integration of distances and angles were
collected by the laser sensor. The obtained georeferenced point cloud was exported to LAS format,
version 1.2.

In Figure 3, a sample point cloud gathered along a highway is presented. To describe each
proposed strategy, the red line drawn transversal to the road will be used. An image of the yellow area
will be enlarged. Thus, the continuous cloud effect will be lost, and the original cloud points profiles
will be exposed (Figures 4, 6, 8 and 10). The distance between those profiles depends on the vehicle
velocity and on the sensor rotation frequency, while each profile point density depends on the sensor
measurement rate frequency and on the distance between the reflection point and the sensor.

Along the gathering process, both maximum system frequencies were used and the vehicle
velocity was always kept below 50 km/h, which, considering the system rotation frequency, guarantees
a maximum distance between consecutive profiles of less than 7 cm.
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2.2.1. Cross-Section Line Projected Points

The first proposed approach to create the cross-section points is probably the most intuitive. That
is, project in the cross-section line segment all cloud points below a perpendicular predefined distance
of that line. Figure 4 shows the zoomed yellow area indicated in Figure 3 with the red cross-section
line. A lower point cloud density can be observed along the sensor profiles on the left side since the
vehicle trajectory is closer to the right side.
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In Figure 4, P1 and P2 are the two end points of the cross-section line, P is a random cloud point
and Q is the P projection in the cross-section line. The two-dimensional Euclidian distance between P
and Q are represented by D, and L is the maximum threshold distance value below which the cloud
points are considered.

The point Q XY-coordinates can then be computed by
Qx = X1 +

|
−−→
P1Q |

|
−−→
P1P2 |

.(X2 −X1)

Qy = Y1 +
|
−−→
P1Q |

|
−−→
P1P2 |

.(Y2 −Y1)

. (1)

After Q coordinates determination, the distance D can be calculated by applying the Euclidian
distance formula to the P and Q points coordinates.

The cross-section points XY coordinates are calculated using (1), and the Z-coordinate from the
original cloud point are kept, i.e., each cloud point under distance L is projected in the cross-section plan.

Only the cloud points with D distance less than L and of which their projection is over the profile
line segment are considered. The required restrictions that apply to the point clouds are presented in
Equation (2). 

D ≤ L
X1 ≤ Qx ≤ X2

Y1 ≤ Qy ≤ Y2

(2)

In Figure 5, profile views of three projected points’ cross-section using L = 0.025, 0.05, and 0.1 m
are presented. Obviously, more cloud points will be considered for each cross-section when the L
value increases.
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2.2.2. Averaged Grouped Cloud Points

In the second proposed strategy, a specific number of cross-section points are predefined.
The Z-coordinate of each of those points results from the average cloud points Z-coordinate within a
defined distance R. An example of nine cross-section points is presented in Figure 6.
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Figure 6. Second strategy schematic top view. The cloud points’ Z-coordinates at distance R are
averaged and assigned to the Z-coordinate of the centered cross-section point. The M value represents
the distance between the cross-section points (M is a predefined value).

M is the distance between two sequential cross-section points. To establish each cross-section
point, the azimuth of P2 from P1 is used,

A(P1, P2) = Atan(
X2−X1
Y2−Y1

). (3)
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The XY-coordinates of each point can then be calculated by{
Xi = X1 + M.Sin(A)

Yi = Y1 + M.Cos(A)
. (4)

In Figure 7, the profile views of the same cross-section, using different values of R, are presented.
In all samples, 50 cross-section points were used, being M = W/50, where W is the cross-section
line length.
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2.2.3. Original System Profile

The third proposed strategy uses one single original system sensor profile. The closest point of
the cross-section center line is determined and the original sensor profile that contains the point is
used. Figure 8 shows, in blue, the used original sensor profile.
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Since the sensor is installed at about 45 degrees regarding the vehicle direction, the original sensor
profiles are not parallel to the cross-section line. Since drastic longitudinal variations in rut depth
values are not expected, the rut depth value obtained in the sensor direction should be very similar to
the one obtained along the cross-section line. Besides, this strategy allows one to evaluate the point
clouds behavior along a single sensor profile.

As a way to identify the cloud points of the original profile sensor, the variable GPS epoch stored
for each cloud point was used. Based on the MLS working principles, the points are time sequentially
obtained along the original profiles. The time interval between consecutive points are defined by the
sensor shooting frequency, and the time interval that it takes to complete a 360 degrees sensor profile
depends on the sensor rotation frequency. After the cross-section center line nearest to the point cloud
being identified, sequential cloud points belonging to its sensor profile can be identified, applying the
following restrictions:  Di ≤

√
(Ei)2

−

(
|P1P2|

2

)2

|Tc− Ti| ≤ ∆, where ∆ < f
(5)

where Di and Ei are, respectively, the perpendicular distance and the Euclidian distance of each cloud
point to the profile line center. Tc represents the GPS epoch of the C cloud point (nearest to the profile
line center) and Ti represents the GPS epoch of each cloud point. The D time threshold value depends
on the rotation sensor frequency. In summary, the first restriction ensures that the projected cloud
points lie in the cross-section line and the second ensures that only the points belonging to the same
original profile sensor are considered.

Since the original sensor profile is not coincident with the profile line, a projection of the cloud
points, as described in Section 2.2.1, was performed. Figure 9 shows the resulting single sensor profile
after the cross-section points had been projected. It should be noted that the line projection application
deforms the rut shape (the points distance is shortened). However, the rut depth value will be the same.
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2.2.4. Time Grouped Cloud Points

The last strategy to be tested combines the point average coordinates and the cloud points GPS epoch.
For each sensor profile crossing the cross-section line, the cloud points Z-coordinate that lies within a
defined distance are averaged. Figure 10 illustrates the resulting points obtained from this method.
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Each point represented along the profile line in Figure 10 results from the averaged cloud point
coordinates of the individual original sensor profiles. To identify those points, similar restrictions of
Sections 2.2.1 and 2.2.3 are used, as {

Di ≤ L
|Tj− Ti| ≤ ∆,

(6)

where Tj represents the first point of each sensor profile. Since the points are ordered in the cloud by
GPS epoch, the first cloud point of which distance Di is less than L is considered as the first profile
point. Then, all subsequent cloud points are considered as part of that profile until the GPS epoch
difference, regarding that first point, is lower than ∆ (sensor rotation frequency). The first point that
does not satisfy the second restriction is used as a new first sensor profile point and the cycle restarts.

In this strategy, besides Z-coordinates, the XY-coordinates of the profile points are also averaged,
and the resulting point is very close to the profile line since the sensor profile cloud points tend to be
symmetric to that line. However, to help the display and comparison and to eliminate the points of
which their projection is outside the profile line, the averaged points are projected in the cross-section
line, following the description of Section 2.2.1. Figure 11 shows the profile view of the resulting points
using different L values.
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3. Results and Discussion

To evaluate the proposed strategies’ results, a set of 10 manual field measurements were made.
The measurements were performed along a highway right lane, using a straight edge across a rut, like
described in Section 1. Only the right lane was considered, since, due to the heavy truck traffic, deeper
ruts were expected.

In Table 2, the left and right wheel rut depth values, which were manually obtained in the right
lane, are listed. The values were measured with 100 m intervals, with the highway kilometric point
(PK) used as a reference.

Table 2. Rut depth manual field measurement values.

PK Right Depth Rut Value (mm) Left Depth Rut Value (mm)

52 + 800 12 9
52 + 900 13 11
53 + 000 13 10
53 + 100 10 8
53 + 200 11 10
53 + 300 15 12
53 + 400 11 9
53 + 500 14 11
53 + 600 14 10
53 + 700 8 7

The first step to compare the proposed strategies with the manual measured values was the
materialization of the cross-section lines in the same locations where manual measurements were
performed. Perpendicular lines to the highway direction, with the lane width, were designed.
The hectometers vertical signs that exist along the highway allow one to ensure that the cross-section
lines are in the exact place where the manual measurements were made. Figure 12 shows the sample
profile lines’ locations along the highway.
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An important aspect that affects the rut depth value is the measurement method used. Different
measurement methods based on the same cross-section of data may lead to rut depth estimation that
are not always consistent. A comprehensive study of the method influence in the measured rut depth
value is presented in [27]. In Figure 13, three distinct illustration methods to measure the rut depth
are presented.

In this work, all rut measurements were performed manually over the created cross-sections.
For each cross-section, an auxiliary line was manually drawn between the two higher points of each
individual wheel rut side, as is illustrated by the middle green line method in Figure 13. That method
was chosen because that was the straight edge position used in the field manual measurements.

Different parameters values were evaluated for each strategy, and successively increased values
were tested. The ones that reached the best results were used. For strategy one, the value L = 30
mm has been used. For strategy two, 50 points were used, as presented in Figure 7 with R = 30 mm.
Strategy three had no parameters, and only the nearest middle cross-section sensor profile point clouds
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were used. For strategy four, the value L = 30 mm was also used. In strategies three and four, GPS
epoch values of each cloud point were obtained from the LAS file. The LAS are in version 1.2, to which
the standard format is described in [28].ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 12 of 16 
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These parameters were set based on the uses of MLS rotation and measurement frequency. A lower
rotation frequency will increase the distance between the consecutive scan profiles and, for example, in
strategy four, less cross-section points would be obtained. This can, however, be compensated with a
lower vehicle velocity. A lower measurement rate will decrease the point density and a higher value of
L can be more suitable.

In Table 3, the left and right wheel rut depth measured values for each proposed strategy are
listed, rounded to the nearest integer millimeter value.

Table 3. Left and right wheel rut depth measured values for each proposed strategy.

Strategy 1 Strategy 2 Strategy 3 Strategy 4

PK Left
(mm)

Right
(mm)

Left
(mm)

Right
(mm)

Left
(mm)

Right
(mm)

Left
(mm)

Right
(mm)

52 + 800 5 3 7 5 4 4 8 6
52 + 900 5 2 7 4 5 4 9 8
53 + 000 4 4 8 4 4 3 11 7
53 + 100 4 3 6 3 5 3 8 6
53 + 200 3 3 6 4 4 2 8 8
53 + 300 6 5 8 4 5 3 13 9
53 + 400 3 3 6 5 4 2 7 7
53 + 500 4 4 7 3 5 3 11 7
53 + 600 4 3 6 4 5 2 10 8
53 + 700 3 3 4 6 4 3 7 5

It should be noted that although the used system has 5 mm precision (Table 1), it was possible to
estimate lower values over the created cross-sections. Despite the low significance of these values,
for a matter of comparison, it was decided that they would be included in Table 3.

Based on the obtained values, it is possible to represent the longitudinal evolution of rut depth
values along the highway. Figures 14–16 represent, respectively, the left, right, and maximum rut depth
values of the field measurements and each strategy’s obtained results.

Table 4 presents the strategy’s list, ordered by Root Mean Square (RMS) of the maximum rut
depth differences to the field measurements.
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Table 4. Ordered Root Mean Square (RMS) values of the maximum rut depth differences between each
strategy and the field manual measurements.

Strategy RMS Value

4 3.2
2 5.6
3 7.9
1 8.3

The first proposed strategy is probably the most instinctive solution to create a plane cross-section
using cloud points. By projecting in the cross-section line, the profile cloud points, under a defined
perpendicular distance, is obtained. However, since in the MLS data case, each profile’s absolute
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position is calculated using the auxiliary sensors’ trajectory (GNSS, IMU, DMI etc.), this strategy mixes
the points from different sensor profiles (Figure 4). Despite the typical trajectory smoothing processes,
the absolute error value of each profile is different. Consequently, the mixed cloud points from different
sensor profiles increases the inconsistency between the cross-section consecutive points. Further,
that inconsistency is proportional to L distance value (Figure 5). To smoothen the cross-section, the
second proposed strategy uses a limited number of cross-section points, with the Z-coordinate cloud
points averaged within a defined distance L. The point’s number of predefined cross-section influences
the measured rut depth, since less points decreases the chance of the higher depth being measured.
On the other hand, an increase in the number of points requires a higher L distance. Otherwise, some
cross-section points use only few or no cloud points to Z-coordinate average. Higher L values smooth
the cross-section and underestimate the rut depth values (Figure 7 (R = 60 mm)). Strategy three intends
to verify the single profile sensor internal consistency. The obtained results show that even the points
from a single sensor profile present inconsistency (Figure 9). Those inconsistencies result from sensor
precision limitation (Table 1) and asphalt rugosity. Based on that, strategy four averages the individual
sensor profile point cloud coordinates. The resulting points are then projected in the cross-section line.

Strategies two and three present as very inconsistent over the consecutive Z-coordinate
cross-section points, which makes it very difficult to measure the rut depth over the resulting
cross-sections independently of the parameters’ values used. Strategy two results in less cross-section
points, facilitating rut depth measurements. However, the exclusively spatial criteria smooth the
cross-section, underestimating the rut depth value. The fourth proposed strategy takes advantage of
the MLS gathering information, averaging the cloud points by individual sensor profile. This strategy
clearly presents the closest result of the manual field reference measurements (Table 4).

Additionally, concerning the similar results between the field manual measurements and strategy
four, this strategy presents a consistent proportionality, demonstrated in Figure 14, Figure 15, and
Figure 16. It shows that the point clouds gathered by MLS systems can be used to identify road rut
depth in critical areas. Those critical areas can afterwards be tested using specific and more precise
systems. This methodology avoids the need for a full road verification by those expensive systems,
allowing a more frequent rut depth monitorization. Without the need of special requirements, any
available road MLS point cloud can be used to evaluate rut depth. This capability conjugated with
rational procedures for rut depth intervention [3] can improve road agencies’ intervention plans.
Apart from lower costs, by anticipating the identification of rutting severity areas, this allows better
intervention planning, increasing road security.

In futures works, the terrain ruggedness index developed by Riley et al. [29] can be an added
value to detect the rut depth measurement. By creating a grid based on the cloud points elevation
values and comparing the amount of elevation difference between adjacent cells, the roughness values
can be mapped [30]. Using the correlation between higher roughness and deeper rut values, these
maps can be a huge asset for efficient rut severity areas identification.

It should be noted that the measured rut depth values in this work are very small according to
any severity classification thresholds values [2,3,5]. In future work, deeper rut depth values should be
tested. Also, more exhaustive reference field measurement datasets should be used to confirm the
presented results.

4. Conclusions

This work presents an evaluation study between different strategies to aggregate the point clouds
in a way to create cross-sections. The cross-sections are used to measure the rut depth values. The best
RMS results were obtained by the strategy that takes advantage of the cloud point disaggregation in
the original sensor profiles. By using the GPS epoch stored for each cloud point, the individual profile
cloud points coordinates are averaged.

Based on the obtained results, the MLS point clouds can be an efficient and reliable source for
anticipating critical road rutting areas identification. This study was specifically focused on the
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measurement of rut depth. However, it is believed that the evaluation results are useful for other
mobile LiDAR point clouds cross-sections applications, namely topographic cross-sections for digital
terrain models creation.
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