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Abstract: Image retrieval applying deep convolutional features has achieved the most advanced
performance in most standard benchmark tests. In image retrieval, deep metric learning (DML) plays
a key role and aims to capture semantic similarity information carried by data points. However, two
factors may impede the accuracy of image retrieval. First, when learning the similarity of negative
examples, current methods separate negative pairs into equal distance in the embedding space. Thus,
the intraclass data distribution might be missed. Second, given a query, either a fraction of data points,
or all of them, are incorporated to build up the similarity structure, which makes it rather complex to
calculate similarity or to choose example pairs. In this study, in order to achieve more accurate image
retrieval, we proposed a method based on learning to rank and multiple loss (LRML). To address the
first problem, through learning the ranking sequence, we separate the negative pairs from the query
image into different distance. To tackle the second problem, we used a positive example in the gallery
and negative sets from the bottom five ranked by similarity, thereby enhancing training efficiency.
Our significant experimental results demonstrate that the proposed method achieves state-of-the-art
performance on three widely used benchmarks.

Keywords: multiple loss function; computer vision; deep image retrieval; learning to rank;
deep learning

1. Introduction

The goal of instance-image retrieval is to quickly and automatically search images that are same
or similar, with the query image from a large but unordered database, and return the results to users,
according to related ranking. Convolutional Neural Network (CNN), as a tool for deep learning [1],
has made great breakthroughs in terms of computer vision. As a category of CNN model, a pre-trained
CNN model is one pass where the success lies in feature extraction and encoding steps. ResNet
and GoogleNet in pre-trained networks have won the challenges of ImageNet Large Scale Visual
Recognition (ILSVRC) in 2014 and 2015. Though the pre-trained CNN model has achieved remarkable
retrieval performance, the fine-tuning of current CNN models on the specified training sets still needs
to improve. When using a fine-tuned CNN model, image-level descriptors are typically generated
end-to-end, and the network will produce a final visual representation without the need for additional
explicit encoding or merging steps. Fine-tuning the CNN model includes fine-tuning for datasets
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and network-oriented fine-tuning. The datasets used to fine-tune the network are crucial for learning
high-resolution CNN features. This is because ImageNet merely provides class labels for images,
which can be classified by pre-trained CNN models. However, it is difficult to distinguish images of
the same classification. So, it is necessary to train task-oriented datasets by fine-tuning the CNN model.
The fine-tuned structures of CNN model fall into two main categories: classification-based networks
and verification-based networks. Classification-based networks are trained to classify landmarks into
predefined categories. A verification-based fine-tuning network applies a Siamese network combined
with a pairwise loss function or a triple loss function, which can significantly improve the adaptability
of the network [2], but the training data needs to be further annotated. The first fine-tuning method
requires much manual work to collect images and mark them as specific architectural categories, which
improves the accuracy of retrieval. However, its formula is closer to the image classification rather
than the expected attributes of instance retrieval. Another method uses a geotagged image database to
perform training by separating matching and non-matching pairs, and directly optimizes the similarity
metric to be applied in the final task [3]. In this process, metric learning plays a key role.

Within the frameworks of metric learning, loss functions form the key component and current
works have proposed various loss functions in which contrastive loss masters the interactional
relationships among pairwise data points, with similarity and dissimilarity as a case in point [4]. Triplet
losses have also been intensively studied [5,6], with an anchor point, a similar (positive) data point
and dissimilar (negative) data point constituting a triplet. Triplet losses aim to learn a distance metric,
where the anchor point closes to the similar data point, rather than the dissimilar ones through a margin.
The model of triplet loss training has significant randomness when selecting samples, and it takes a
long time, which leads to relatively large intra-class spacing, and it also has weak generalization ability
from training to testing. Therefore, the quadruplet network [7], the triplet loss with batch hard mining
(TriHard loss) [8] and the mining network of marginal sample [9] came into existence. However, these
conjoined networks usually rely on a simple network structure. The network architecture involves the
collection and aggregation of regions. Its accuracy and robustness of image retrieval is low, and more
importantly, the existing metric learning network is characterized by shortening the distance between
the query image and positive samples, meanwhile widening the distance towards negative samples.
The same value is adopted in the distance setting between the sample and the query image. However,
not all negative samples have the same dissimilarity with the query image. Thus, designing a new
CNN network and learning strategies are important for making the most of training data.

In this work, we focus on learning to rank (L2R) problems that have well-matched image
retrieval tasks. We found that deep learning methods lag behind existing techniques. This is due
to the insufficient supervised learning of particular tasks for processing instance-level images [10].
The CNN-based retrieval method usually distinguishes different semantic categories by learning
local features extracted by pre-trained network on ImageNet, ready for classification tasks. However,
the disadvantage is that the intra-class differences are relatively large. We propose a solution tailored
to such problems to retrieve the heavy training process.

Our main contributions are as follows:

1. We propose a novel multiple loss-based ranking to learn discriminative embeddings. In contrast
with current losses, we firstly incorporate learning to rank, which learns image features according
to their true ranking; besides, we propose a learning of sorted information of every sample,
in order to preserve the similarity structure inside it. This avoids the shortcomings that the
intra-class data distribution might be dropped due to separate negative pairs into equal distance
in the embedding space.

2. We use both hard non-matching examples, also referring to negative examples, and hard-matching
examples, namely positive examples prepared for the training of CNN model, and also select
samples according to their similarity between the query image and examples, so as to enhance
training efficiency.
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3. We achieve state-of-the-art performance on three benchmarks, i.e., Oxford Buildings [11], Paris [12],
and Holiday [13].

The following sections of this paper are organized as follows. Section 2 discusses related
works. Section 3 describes the algorithm framework and its details. Section 4 summarizes the main
contributions and evaluates the proposed method of learning to rank and multiple loss (LRML) by a
series of experiments. Section 5 reviews and concludes the major points.

2. Related Work

We discuss related works revolving around our main contributions, i.e., the image retrieval based
on CNN model, the fine-tuned network and the deep Metric Learning algorithm.

A. CNN-Based Image Retrieval.

More recent approaches to image retrieval replace the low-level hand-crafted features with deep
convolutional descriptors obtained from convolutional neural networks (CNNs), typically pre-trained
on large-scale datasets such as the ImageNet, forming compact image representations, so as to present a
promising direction. Early approaches to applying CNNs for image retrieval included methods that set
the fully-connected layer activations to be the global image descriptors [1,14]. Husain proposes a global
descriptor REMAP based on CNN, which learns and aggregates the hierarchical structure of deep
features from multiple CNN layers, and learns discriminative features which are mutually-supportive
and complementary at various semantic levels of visual abstraction [15]. Perronnin and Jegou et al.
aggregated deep convolutional descriptors to form image signatures using Fisher Vectors (FV) [16],
Vector of Locally Aggregated Descriptors (VLAD) [17] and alternatives [18–20]. Tolias et al. [21] have
proposed R-MAC to produce a global descriptor by aggregating the activation features of a CNN.
One step further is the weighted sum pooling of Kalantidis et al. [22], which can also be seen as a
way to perform transfer learning. Popular encodings such as BoW, BoW-CNN and Fisher vectors are
adapted in the context of CNN activations in the work of Kalantidis et al. [22], Mohedano et al. [23]
and Ong et al. [24], respectively. In image retrieval, the query expansion is used to enhance the
image retrieval efficiency [25–27]. Shen [28] proposed using a small number of training images to
learn low-dimensional subspaces, by preserving neighbor-reversibility (NR) correlation to enhance
training efficiency.

In this work, we propose that by adding large visual code books [20,29] and spatial verification [28,29],
CNN can control the image retrieval tasks by outweighing state-of-the-art methods and have achieved a
higher maturity level.

B. Finetuning for Retrieval.

In this study, we treat instance retrieval as a metric learning problem, i.e., the Euclidean distance
well captures the similarity on the basis that an image embedding is learned. Metric learning by
representative architectures employ matching and non-matching pairs to perform training and be
applicable for the task. Here, the annotations have become striking, e.g., for classification, only an object
category label is needed, while labels per image pair are needed for particular objects. There may exist
huge differences when comparing two images of the same object, e.g., images of buildings from different
viewpoints. So, it is necessary to fine-tune the CNN model, based on task-oriented datasets. Presently,
through minimizing classification errors, ImageNet datasets [30] are used by employed networks
trained for image classification. Babenko et al. [14] have further retrained such networks by using a
dataset closer to the target task. They conducted training with object classes that match particular
landmarks/buildings. They achieved significant improvement with the performance on standard
benchmark tests. Although obtaining achievements, there are still differences in terms of utilized layers
and the truly optimized ones during learning. Much manual effort is required in building up such
training datasets. Recently, geotagged datasets with time stamps have equipped weakly-supervised
finetuning with a triplet network [3]. Two images are easily classified as non-matching if they are
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taken far from each other, while the most similar images are considered as matching examples. In the
latter, the current representation of the CNN basically defines similarity. The above presents a new
approach, trying end-to-end finetuning for image retrieval especially for the task of geo-localization.
The used training images are currently more concerned with the final task. Our point of difference is
finding matching and non-matching image pairs in an automatic way. Moreover, matching examples
are derived on the basis of 3D reconstructions, allowing for more challenging examples. We also select
positive examples by using local features and geometric verification [31]. We have a fully automatic
method which starts from manually cleaned datasets of landmarks, so as to avoid exhaustive evaluation
by using landmarks of the datasets, instead of the geometry.

C. Deep Metric Learning.

The goal of deep metric learning is to learn an optimal metric to minimize the distance between
similar images. The typical architecture used for metric learning is two-branch Siamese [32,33] and
the triplet network [5,34]. These methods can complete the image retrieval by shortening the absolute
distance of the matching pair and widening the relative distance of the non-matching pair. The traditional
triplet network randomly extracts three pictures from the training data. Although this method is simple,
most of the extracted images pairs are simple and easy to distinguish. If a large number of trained image
pairs are simple, then it is not conducive to better representation of the network [31]. Based on the triplet
networks, a training-based batch hard mining-TriHard Loss comes into being. Its core idea is to select a
positive sample farthest from the query image for each training batch, and a closest negative sample and
query picture to form a triple. TriHard’s loss effect is better than the traditional triple loss function [31],
which only considers the relative distance between positive and negative samples. In comparison, Chen
introduced a quadruplet loss, which only considers the absolute distance between positive and negative
samples. The quadruplet loss has increased inter-class variations and reduced intra-class variations,
which allows the model to achieve better representations [7]. Xiao designed the margin sample mining
loss (MSML)-LSTM architecture with contrastive loss, which is a metric learning method that introduces
batch hard mining. However, Varior ignores the influence of parameters in quadruple loss and adopts a
more generalized form to represent the quadruplet loss. In summary, the TriHard loss prepares a triple
for each image in the batch, and the MSML loss only picks the hardest positive sample pair and the
hardest negative pair to carry out loss calculation, which is a hard-positive sample that is more difficult
than TriHard. It considers both the relative distance and the absolute distance, and introduces a metric
learning method of batch hard mining [22].

3. Methods

This section describes the network we have proposed and the methods of training.

3.1. Network Architecture

In this paper, we propose a network architecture based on L2R and multiple loss (LRML), which
associates image retrieval problems with L2R. The model mainly includes the following main steps:

• Step 1: Extract feature vectors. Extract the underlying features of the query image and those from
the training database. Calculate the Euclidean distance between the extracted query image and
the underlying features of all the images in the training database. The training data is divided
into positive images and negative images. The query image, positive images and negative images
are input into networks for features extraction.

• Step 2: Obtain the real sequence. Calculate the Euclidean distance between the query image and
negative images, and obtain the real ranking sequence of negative examples.

• Step 3: Acquire initial parameters. Randomly select multiple images and extract underlying
features of the query image and currently selected multiple images. Obtain the initial parameters
of the deep networks.
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• Step 4: Model training. Assign the real sequence number of the training data to the negative
examples, and combine the sequence number with its threshold value. Calculate the loss value by
using the multiple Siamese loss. Adjust the distance between the negative examples and feature
vectors of the query picture, as well as adjusting the initial parameters of the deep convolutional
network by back-propagation and sharing weights to obtain the final parameters of the deep
convolutional network.

Next, we show a detailed design and analysis of each key component in the model.

3.1.1. End-to-End Multivariate Ranking Learning Network

In this section, we will describe how our network works during the training and test phases.
Figure 1 presents a possible CNN structure for our network Figures 2 and 3. Here we take

AlexNet [35], VGG16 [36] and ResNet101 [3] as examples. We remove the last pooling layer and
all-connected layer of the network as our CNN basic structure, and then connect our GeM pooling,
Lw whitening and L2 regularization to form new network structure.
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Figure 1. Convolutional Neural Network (CNN) network structure: (a) AlexNet; (b) VGG16;
(c) ResNet101.

Training phase: As shown in Figure 2, in the training phase, the model starts with processing
multiple original images, where we represent the images as q and i, respectively. In detail, q is the
query image, and i consists of a positive image and five negative images. The goal of the training phase
is to learn effective feature representations. We input the image into the CNN network. The network
structure of CNN is shown in Figure 1. We use the CNN network, which has removed the last pooling
layer and has fully connected layers to extract relevant features. The feature is then connected to
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the GeM pooling, and the feature after GeM pooling is followed by the L2 regularization operation.
Finally, we obtain the feature vector consisting of different features. We add the previously obtained
sorting number based on image similarity to the vector, perform loss calculation, and optimize the loss
function by zooming in on the distance between the positive sample and the query image. We also sort
the negative samples according to the similarity. In the end, we obtain the parameters of the network,
and further the structure of the network.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 7 of 25 
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Test phase: Figure 3 presents the testing phase of the CNN model, we will conduct multiple
processing of the query image and images in the database. Then the images are input into the CNN
for feature extraction. The CNN at this time is the same as the CNN used in the training process.
The parameters are identical to those trained by the CNN model. The output of features from the CNN
will undergo GeM pooling operation, LwPAC operation and L2 regularization processing. We finally get
the feature vector that can represent image features. After obtaining the feature vector, we firstly calculate
the Euclidean distance of feature vectors between the query image and images in the database. We then
firstly rank the images, perform the query expansion operation and obtain the target image for retrieval.
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Ranking-Based Multiple Loss Function: As mentioned above, we define multiple loss as the
final loss function. First, we need to train a two-branch Siamese network. This network is identical,
except for the loss function. The two branches of the network not only share the same network structure,
but also network parameters. The multiple loss function based on ranking includes two parts, q as the
query image, i as input image, and Y is the label to distinguish matching or non-matching. Each query
image q corresponds to i, with Y(q,i) belong to [1]. If i is a positive image compared to q, then the value
of Y(q,i) is equal to 1; if i is a negative image compared to q, then the value of Y(q,i) is equal to 0.

X(q) represents the visual information feature extracted from a query picture q. X(i) represents
a visual feature information vector extracted from an input picture i. ‖X(q) − X(i)‖ represents the
Euclidean distance between X(q) and X(i). n is the number of negative images that do not match the
query image q, eα/n is the set threshold, α is the real ranking ordinal number of the image i. If there are
five samples, the value of α is 0, 1, 2, 3, 4, and henceforth n is equal to 5. For images that are highly
correlated with the query image and have been marked as positive images in the datasets, namely
Y(q,i) = 1, the closer Euclidean distance between these images and the query image in feature space,
then the loss function also increases.

Loss(q, i) =

 1
2‖X(q) −X(i)‖2, i f Y(q, i) = 1

1
2

(
max

{
0, e

a
n − ‖X(q) −X(i)‖

})2
, i f Y(q, i) = 0

(1)

Euclidean distance between the query image and positive images. While images with low
correlation with the query image will be marked with Y(q, i) = 0 in the training datasets, for these
images, if the Euclidean distance between these images and the query image is lower than threshold,
then the loss is calculated.

3.1.2. Whitening and Dimensionality Reduction

Current methods [37] adopt PCA, as an independent method to conduct whitening and
dimensionality reduction. In this respect, all descriptors and their covariance matrix are analyzed.
In this part, Radenović took post-processing of fine-tuned GeM vectors into consideration [27]. It is
suggested to leverage the marked and labeled data sourced from 3D models, and adopt the method of
linear discriminant projection initially proposed by Radenović [27]. This projection consists of two
parts, namely whitening and rotation. The whitening refers to the inversed square-root in terms of
intra-class covariance matrix CS

−1/2, where:

CS =
∑

Y(q,i)=1

(
X(q) −X(i)

)(
X(q) −X(i)

)T
(2)

The rotation is the PCA of the inter-class (non-matching pairs) covariance matrix in the whitened
space eig(CS

−1/2, CD, CS
−1/2), where:

CD =
∑

Y(q,i)=0

(
X(q) −X(i)

)(
X(q) −X(i)

)T
(3)

The projection P = C
−

1
2

S eig(C
−

1
2

S CDC
−

1
2

S ) is then applied as PT( f (i) − u), where µ is the GeM
pooling vector. In order to reduce the descriptor dimension to the D dimension, only the feature
vectors in accordance with the D largest eigenvalues are used.

3.2. Network Training

We used a transfer learning policy in the training process of the LRML network. It is unnecessary
to prepare any rigid format of the input data in our proposed method, e.g., triplets, n-pair triplets.
Instead, it takes random input images with multi-class samples. We conduct online iterative ranking
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and loss computation after obtaining images’ real sequence. On the same image datasets, we illustrate
the comprehensive process to train the model of LRML, and the algorithm is presented in Table 1.

Table 1. Algorithm proposed by us.

Algorithm 1 Learning to Rank and Multiple Loss

1: Parameters Setting: The number of negative sample n, the sorting number of negative sample a, learning
rate η, the initial weights w, the initial biases b.
2: Input: q (query sample), i (retrieve image), the learning rate β, the embedding.
3: Output: Updated L

(a) Using prior knowledge find the set of samples S, such that Xi is deemed similar to Xq.

(b) Pair the sample Xq with all the other training samples and label the pairs so that: Y(q,i) = 1 if Xi belongs
to S, and Y(q,i) = 0 otherwise.

Combine all the pairs to form the labeled training set.
Step 1: Feedforward all images into f to obtain the images’ embedding Xi.
Step 2: Calculate the Euclidean distance between all negative samples and the query image, online iterative
ranking, and get the images’ number of sorting(a) a repeat until convergence:

(a) For each pair (Xq, Xi) in the training set, do

i. If Y(q,i) = 1, then update w to decrease

L(w,b) =
1
2
‖X(q) −X(i)‖2

ii. If Y(q,i) = 0, then update w to increase

L(w,b) =
1
2

(
max

{
e

a
n τ− ‖X(q) −X(i)‖

})2

Step 3: Gradient computation and back-propagation to update the parameters of w, b.

w′ = w− η
∂L(w,b)

∂w
b′ = b− η

∂L(w,b)

∂b

4. Experimental Results and Analysis

In this section, we illustrate the training process and a detailed procedure of implementation.
We will discuss the implementation details of our training process, assess he different components of
our model, and compare the experimental results with the current techniques.

4.1. Data Collection

4.1.1. Acquisition of Training Datasets

We adopt the training dataset constructed by Schonberger et al. [35]. The dataset includes 7.4
million images, which are searched and downloaded by Flickr, with popular landmarks throughout
the world. The dataset uses bag-of-word model (BoW) and structure-from-motion (SfM) to reconstruct
the 3D model, and uses a method exempt from manual annotation to automatically obtain a large
dataset with a query image, a positive image, and a cluster with serial number. There is a total of 91,642
training images in the dataset, and 98 cluster images identical or nearly identical to the test dataset
can be excluded through image retrieval based on BoW. About 20,000 images are selected as query
images, 181,697 pairs of positive images, and 551 training clusters, including more than 163,000 from
original datasets, by the minimum hash and spatial verification methods mentioned in the clustering
procedure [27]. The original datasets contain all the images of the Oxford5k and Paris6k datasets.
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4.1.2. Selection of Training Datasets

In this paper, we create a tuple dataset (Xq, Xi), where q is the query image, i is a positive image
that matches the query image, and these tuples are used to make image pairs for later training.

Selection of positive images: During the training process, several sets of images are randomly
selected from positive image pairs. The annotated positive image pairs from the training dataset will
be treated as positive images inside the training sets. In [27], the acquisition of a positive sample is
through the following three methods.

CNN descriptor distance: The positive image refers to those with the lowest descriptor distance
to the query, formally:

m1(q) =
argmin
i∈M(q)

‖X(q) −X(i)‖ (4)

The GPS coordinates of the positive image are the same as the query. Consequently, the images
that are chosen will get a small loss since they already have small descriptor distance. Thus, the
drawback is that the network is not forced to dramatically change and learn by the matching examples.

Maximum inliers. The positive image is chosen by 3D information, which is independent of the
CNN descriptor. Thus, the image has the largest number of co-observed 3D points with the chosen
query. That is:

m2(q) =
argmin
i∈M(q)

|P(q)∩ P(i)
∣∣∣ (5)

The number of features with spatial verifications between the two images correspond with
this measure, which commonly applies to ranking in BoW-based retrieval. Since this measure is
not influenced by the representation of the CNN model, it requires delivering more challenging
positive examples.

Relaxed inliers. The positive image pair is randomly selected from a set of images, rather than use
a pool of images captured with similar positions of the camera. This image shares a sufficient number
of co-observed points with the query image, and does not show extreme scale changes. This positive
image is:

m3(q) = rnd
{

i ∈M(q) :
P(q)∩ P(i)

P(q)
≥ ti, scale(i, q) ≤ ts

}
(6)

In (6), the scale changes between the two images are reflected from scale (i,q). The harder
matching examples selected by this method are guaranteed to ensure the depiction of the same object.
We proposed three different methods to exhibit the queries and their corresponding positive ones.
The relaxed method is conducive to increase more diversified viewpoints.

Selection of negative images: We select negative examples from clusters that differ from the
query image. In the process of training the dataset, we use the training parameters and test methods
used by Radenović to extract the image features in the dataset. Here, we use the VGG16 as fine-tuning
network, and adopt Generalized-Mean (GeM) pooling to extract salient features, learning whitening
to reduce dimensionality and average query expansion to improve retrieval accuracy. By calculating
the Euclidean distance between the extracted query image and the feature vector of the images in
the dataset, we randomly select a number of negative examples in the training dataset as the pool of
low correlation images. In each round of training, we first select the same N image clusters with the
smallest Euclidean distance corresponding to the feature vector of the query image. As shown in the
Figure 3, q is the query image, and the clusters where A, B, C, D, and E locate are negative clusters
that observe far Euclidean distance to the query image. Suppose we choose A, B, C, D, E as negative
examples. If we want to select 5 low correlation negative examples, then we first consider image A,
and if image A is not in the query cluster q, or in the positive example clusters, then image A is used as
a low correlation image listed in the input set of query image q. Similarly, image B is also marked
with low correlation in the input set of images. For image C, although there exists large distance of
Euclidean distance between its feature vector and the feature vector of the query image, image C and
image B belong to one labeled cluster. So, image C, as a low correlation image, is not taken in the
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negative image set of the query image q. Images D, E, and F are taken as low correlation images to q.
When the number of the required image equals to N, the low correlation image is no longer selected,
so image G and other images will no longer be considered.

4.1.3. Acquisition of the Real Sequence

For each selected low correlation image, A, B, C, D, E, F for the query image Q, as shown in
Figure 4, we extract the corresponding vectors a’, b’, c’, d’, e’, f’ in a benchmark sort. We calculate
the Euclidean distance between them and the query image features, and rank them according to their
Euclidean distance to the query image feature vector, the obtained serial number is the ordinal value
of the negative correlation image in the loss function, and the obtained sequence is the real ranking
sequence of negative examples for the query image. In Figure 5, we present examples of query images
and the real ranking sequence. As seen in the figure, the leftmost column is the query image, followed
by the negative samples sorted by similarity. From left to right, the similarity decreases. In Figure 6,
we show a visual representation of the loss function calculation after the real sequence is obtained.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 12 of 25 
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4.2. Implementation Details

To train the proposed model, we use the pytorch deep learning architecture to train this multiple
loss deep network model based on L2R. In order to perform the fine-tuning of networks, we initialize
the convolutional layers of AlexNet, VGG 16 and ResNet101, all trained by Adam, and the Adam
algorithm is based on the loss function for each parameter. The first moment estimate and the second
moment estimate of the gradient are dynamically adjusted for the learning rate of each parameter.
Since the network pre-training parameters [36] are used, the learning rate equal to lr = 1 × 10−6, for the
AlexNet network is used during training. The learning rate equal to lr = 7 × 10−7 for the VGG16
and Resnet101 networks, momentum 0.9, margin τ for multiple loss 0.7 for AlexNet, 1.25 for VGG
and ResNet, justified by the increase in the dimensionality of the embedding. All of the images in
the training set have been resized to a maximum size of 362 × 362 under the premise of ensuring the
original aspect ratio. The training results take the experimental data obtained during the 30 epochs.
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The experimental environment is intel(R) i7-8700, GPU with 11GB of memory, NVIDIA(R) 2080Ti
graphics card, driver version 419**, operating system Ubuntu 18.04 LTS, pytorch version v1.0.0, CUDA
version 10.0, cudnn version 7.5.

4.3. Evaluation Metrics

To evaluate the effect of multiple loss, based on L2R in instance-level image retrieval, we test
our method on four standard datasets: the Oxford 5k building dataset [11], the Paris 6k dataset [12],
the INRIA Holidays dataset [13]. We combine these datasets with 100k distractors from Oxford 100kd
for larger scale evaluation. We crop the query images by adding the bounding box and follow the
standard evaluation protocol on the Oxford and Paris datasets. Then we feed the cropped image into
the CNN model, and the entire query image for Holiday and UKB is fed as input. To measure the
search results, we uniformly use the standards provided on the dataset website, namely calculating
mean Average Precision (mAP) of the search results. The mAP value is calculated as shown in Equation
(7):

mAP =
1∣∣QR

∣∣ ∑
q∈QR

AP(q) (7)

where AP(q) is mAP of the results of the query image compared with the benchmark annotations in
the dataset.

Single-scale evaluation. The image dimensionality input into the CNN is limited to 1024 × 1024
pixels. In the experiments, no post-processing of vectors is used, if not specifically stated.

Multi-scale evaluation. We only use multi-scale representation during test time. The input
images are re-sized into a different size, then multiple inputs are fed into the network, and finally the
global descriptors are combined from multiple scales into a single descriptor. Baseline average pooling
is compared with GeM pooling, the parameter of which equals the value that was learned in the
network of global pooling layer. In this respect, the learning whitening is through final multiple scale
image descriptors. In the experiment, we use single scale evaluation, if not specifically stated otherwise.

4.4. Contributions of Add LRML into Contrastive Loss Network

4.4.1. Margin Parameter τ Selection

We trained the model with margin parameter τ at different values to evaluate our network
performance. Choosing different margin parameter τ can find the optimal parameters suitable for
different datasets. The results are shown in Figure 7. The data shown in Figure 7A,B is trained under
AlexNet, while Figure 7C,D presents data trained by the VGG. The results show that whatever is in
Oxford5k or in Paris6k, the best results appear when τ = 1.25. Through the image we observe that in
our model, the image retrieval performance will be improved to some extent with the increase of τ,
but when the value of τ is too large, the distance between the matching pairs with high similarity will
be furthered. However, when τ is too small, some negative samples with certain similarities, such as
bad samples, will be discarded. This is because fewer samples involved will lead to poor training
results. The key to image retrieval based on L2R is to find the range of distance between all samples
and query pictures. For the remainder of this article, we use τ = 1.25 in all network and datasets.

4.4.2. Comparison of Different Loss Functions

We use the large number of training pairs generated in [27] as training data. Compared
with [3,5,38,39], we find that the contrastive loss has a more powerful convergence function than the
triplet loss. Here we compare our multi-loss based on L2R with the current contrastive loss used in [40].
In this experiment, to better observe the impact of ranking accuracy on the proposed model, we use
the cosine similarity and the Euclidean distance to measure the similarity between the query image
and the images in the training datasets, and obtain two lists with different ranking. The values in
the two lists are brought into the function to train the model. We show the results in Figure 8, where
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ED represents the similarity measured by Euclidean distance, CS represents that the measurement of
trained datasets ranking is cosine similarity, and ED refers to the experimental results of the multiple
loss based on L2R. The corresponding τ values are obtained by conducting contrastive loss. It can be
seen from the comparison that the performance of image retrieval using our multiple loss function
is significantly better than that of contrastive loss function. In addition, we also find that the results
in real sequence obtained from Euclidean distance are generally better than those ranked by cosine
similarity. This fully demonstrates that multiple loss based on L2R performs better than contrastive
loss, and plays a key role in the process of real sequencing of datasets.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 15 of 25 
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Figure 7. Performance comparison of choice of the different t selection: (A) Evaluation is performed
with AlexNet with GeM layer on Oxford5K; (B) Evaluation is performed with AlexNet with GeM
layer on Paris6k; (C) Evaluation is performed with VGG with GeM layer on Oxford5k; (D) Evaluation
is performed with VGG with GeM layer on Paris6k.The curve line presents the evolution of mAP
depending on training epochs. Epoch 0 reflects off-the-shelf network. Multiple loss is used in all
approaches unless otherwise specified.

4.5. Design Choices of LRML Network

4.5.1. Pooling Methods

We evaluate the impact of different pooling layers on our network and find the pooling method
that best fits our network model. Theoretically, when p is 2.32, the performances of GeM is the best.
Here we set the value of p to 2.32. We present the results in Table 2. By observing the data in the
table, we see that the pooling performance of GeM and the maximum pooling are always better than
the current average pooling, whether it is on Oxford5k or Paris6k. So, in the next experiment of this
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paper, we combine maximum pooling or GeM with other steps and choose the best combination by
comparing the experimental results.
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Figure 8. The comparison of performance based on methods of contrastive loss and multiple loss.
Evaluation is based on the performance with AlexNet Gem of datasets Oxford5k and uParis6k.
The curve line presents the evolution of mean Average Precision (mAP) depending on training epochs.

Table 2. The comparison of performance (mAP) of global max pooling(MAC), average pooling(SPoC)
and GeM layers fine-tuned by CNN model. Numbers in bold refers to the best performance.

Pooling Initial Learned p Oxford5k Paris6k

MAC inf - 54.54 66.06
SPoC 1 - 45.62 60.46
GeM 3 2.32 57.86 69.29

4.5.2. Learned Projections

In the experiment, we compare the previous whitening methods and the newly proposed method
of learned discriminative whitening (Lw). The results are shown in Table 3 without post-processing,
but with PCAw [40] and Lw [27]. Our experimental results prove that PCAw lowers down the
performance, while Lw generally obtains the best performance in the majority of tests and never
achieves the worst performance in comparison with others. This complies with the experimental
results found by Radenović [27].

Table 3. The comparison of performance (mAP) of post-processing of CNN vector, without post-processing,
PCA-whitening [40] (PCAw) and learned whitening (Lw). The reduction of dimensionality is not
performed. Fine-tuned AlexNet a 256D vector. Numbers in red and blue refer to the best and worst
performances, respectively.

Net Post Dim
Oxford5k Paris6k

MAC GeM MAC GeM

AlexNet
-

256
54.54 57.86 66.06 69.29

PCAw 50.92 62.19 62.89 69.85
Lw 58.00 67.04 67.74 72.4

During the finetuning process, an additional experiment is conducted to append a whitening layer
at the end of the network. By this means, whitening is learned in an end-to-end manner, combined
with convolutional filters and the same training data in batch-mode. Specifically, Lw achieves 58
on AlexNet MAC, and 67.74 mAP on both Oxford5k and Paris6k. In contrast, on the same network,
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GeM achieves 67.04 mAP on Oxford5k and 72.4 mAP on Paris6k, respectively. In view of these findings,
we combined Lw and GeM, because they are trained in a much faster and more effective manner.

4.5.3. Dimensionality of Final Image Vector and Its Impact

We compared the performance of cross-combination of Mac pooling, GeM pooling, PCA whitening
and Lw whitening in different dimensions. The performance of image retrieval in image vector from
16 to 256 is shown in Figure 9.
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Figure 9. The comparison of performance on the reduction of dimensionality by PCAw and Lw with
the fine-tuned AlexNet with global max pooling (MAC) layer and the fine-tuned AlexNet with GeM
layer on Oxford5k, Paris6k and Holiday1k datasets.

As can be seen from Figure 9, no matter what the combination, the higher the dimension, the better
the performance. In the same dimension, when using the same pooling method, the effect of Lw
whitening outweighs the others, and achieves even better results when co-functioning with GeM.
Overall, when the dimension is 256, the combination of GeM pooling and Lw whitening has the
best performance.

4.5.4. Efficiency

In order to verify the advantages of our proposed LRML algorithm model in terms of training
speed, in this part of the experiment, we compare the training time of this model with other classical
metric learning models. We run the experiment on intel(R) i7-8700, GPU with 11GB of memory,
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operating system Ubuntu 18.04 LTS. In the testing phase, we use VGG16 and ResNet101 as the basic
network and calculate training time on the datasets. Table 4 shows the training efficiency of the
five methods.

Table 4. The training efficiency of different methods.

Method
Train Time

VGG16 ResNet101

Contrastive loss 7.8 h/50 epoch 9.5 h/50 epoch
Triplet loss 8.79 h/50 epoch 10.48 h/50 epoch

Quadruplet loss 8.81 h/50 epoch 10.52 h/50 epoch
Lifted Struct 9.4 h/50 epoch 10.6 h/50 epoch

Ours 8.1 h/50 epoch 10 h/50 epoch

As can be seen from the figure, the training time with our method is shorter than those by
Triplet loss and Quadruplet loss, because we use a two-branch network, and the structure is simple.
The sample pairs in Lifted Struct are selected in mini-batches, and our method is to choose within the
entire data set, so in terms of time, our method has an advantage over Lifted Struct. Compared to
contrastive loss, we not only use the same branch structure, but also add a pair of samples based on
this sorting operations. This makes our training time slightly longer than contrastive loss, but our
outcome is much better. In general, our approach is demonstrated to be the most effective.

Query expansion is a post-processing technology that can effectively improve retrieval performance.
It works as follows: in the initial query phase, the feature vector is adopted, and the returned top k
results are obtained through the query. The current results will probably experience space verification
phase, in which we discard results that do not match the query image. The remaining results are then
summed with the original query and experience renormalization. Finally, a second query is performed
by combining the descriptors to generate a final list of retrieved images. Query expansion usually
leads to a significant increase the level of accuracy. The existing query expansion methods include the
average query expansion (AQE) and the weighted (α) query expansion αQE. We used the AlexNet and
ResNet to test on the Oxford5k, Paris6k, and Holiday datasets, and the result is shown in Figure 10.
The results on AlexNet are shown in Figure 10A–C. The test results are shown in Figure 10D–F on
ResNet. We compare the two query expansion methods, and the experimental results are consistent
with that found in [27]. The AQE performs very differently on the Oxford5k, Paris6k and Holiday
datasets. It performs more prominently on Paris6k, but unstable on the Oxford5k and Holiday datasets.
When n = 10, the accuracy rates drop sharply, while αQE is stable on three datasets. We finally set a =

5 and nQE = 50 on Oxford5k and Holiday datasets, and set a = 0 and nQE = 50 on Paris6k datasets.
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Figure 10. The evaluation of performance on α-weighted query expansion (αQE): (A) AlexNet with
GeM layer, and Lw on Oxford5k; (B) AlexNet with GeM layer, and Lw on Paris6k; (C) AlexNet with
GeM layer, and Lw on Holiday; (D) ResNet with GeM layer, and Lw on Oxford5k; (E) ResNet with GeM
layer, and Lw on Paris6k; (F) ResNet with GeM layer, and Lw on Holiday; The standard average query
expansion (AQE) is compared to our αQE for different values of α and the number of images used nQE.
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4.6. Experimental Results and Comparison

4.6.1. Comparison with the State of the Art

To comprehensively evaluate the localization performance of our trained LRML model, we have
extensively compared the results with the latest performance of compact image representation and
methods for query expansion. The results of the fine-tuning network based on the multiple loss are
summarized together with the results currently published in Table 5. When using deep networks to
compact representation, the better performance on Paris is inherited by the nature of the pre-trained
networks; the LRML model with ResNet achieves 87.9 on Oxford5k, 93.3 on Holiday and 93.8 on
Paris6k. Using the architectures of VGG and ResNet has achieved most advanced scores on both Paris
and Holiday. When using the architecture of ResNet to conduct initialization, the proposed method is
superior to the state-of-the-art in all datasets. Notably, the result of GeM+VGG16 [27] on Oxford5k is
87.9, and 83.3 on Oxford105k, better than our results, that is, 83.2 on Oxford5k and 78.6 on Oxford105k.
The reason is probably because in training datasets, the differences between the negative samples are
limited, with fewer VGG16 network layers. Thus, it is difficult to extract effective features based on
ranking sequence. However, when the framework of ResNet is adopted, with the datasets on Oxford5k
and Oxford105k, our results are 87.9 and 84.8 respectively, which still outperform those on GeM [27],
namely 87.8 and 84.6. When we use VGG19 as the experimental network, the results are better than
those on VGG16, which proves one of our hypotheses, that is, the limitation on the number of layers of
networks restricts feature extraction.

We have also evaluated how our model fares on the occasion of combining an updated query
expansion method by Radenović. This method applies in addition to the current methods and uses
information from the closest neighbors in the gallery, so as to improve the ranking results. As shown
in Table 5, our proposed method performs well and demonstrates similar improvements to those
achieved by Radenović [27]. After adding re-ranking and query expansion, the results on ResNet
still achieve the best performance. Specifically, the final LRML model with ResNet achieves 92.0 on
Oxford5k, 89.5 on Holiday and 96.7 on Paris6k. In accordance with the current results, the results
of VGG16 on Oxford5k and Oxford105k are 90.0 and 86.9, and the results of VGG19 on Oxford5k
and Oxford105k are 90.8 and 87.9, respectively, which are lower than the results of GeM+VGG [27],
with 91.9 on Oxford5k and 89.6 on Oxford105k. But the counterpart results on Paris and Holiday are
94.2 and 92.1, surpassing the other methods under the same conditions.

Table 5 also indicates that our method is robust in terms of the size of irrelevant training data.
We trained our method with different sizes of training data from the Flickr100k distractor images.
The experiment was performed on the two large-scale datasets, i.e., Oxford 105k, Paris106k and
Holiday101k. The experimental results indicate that the mAP score of our method is almost unchanged
with the training size. The results indicate that our method is robust in terms of training size when this
is learned from irrelevant data.

4.6.2. Visualization of Image Retrieval

We use the existing ResNet network and the already trained network that joins the multiple loss
function to search images on Oxford. As shown in Figure 11, the first column is the query images,
and the following two lines behind each query image introduce the Top-20 query results. The first
line includes the image retrieval result by using off-the-shelf ResNet architecture, and the second line
reflects the retrieval result of the trained network after leveraging multiple loss function. By comparing
the first three groups of queries, it can be found that some error images appear in the image search of
ResNet, which are circled in red. As observed from the two sets of queries, under the condition that
all image search results are correct, ours are uniform and highly consistent with the similarity of the
query images. In contrast, the effect of ResNet search is not that integrated. Overall, our model has
significantly improved the retrieval performance.
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Table 5. The comparison of performance (mAP) between our method and the most advanced image
retrieval method under VGG16, VGG19 and ResNet (Res) deep network. F-tuned: ‘Yes’ means
use fine-tuning network, ‘no’ means use off-the-shelf network, and ‘n/a’ means local method is not
applicable. Dim: The final dimension of the image representation. Marked with * is our method, which
is used in combination with learning whitening Lw and multi-scale representation.

Net Method F-tuned Dim Oxford5k Oxford105k Paris6k Paris106k Holidays Hol101k

Compact representation using deep networks

VGG

MAC [27] † no 512 56.4 47.8 72.3 58.0 79.0 66.1
SPoC [41] † no 512 68.1 61.1 78.2 68.4 83.9 75.1
CroW [22] no 512 70.8 65.3 79.7 72.2 85.1 -

R-MAC [21] no 512 66.9 61.6 83.0 75.7 86.9 -
BoW-CNN [23] no n/a 73.9 59.3 82.0 64.8 - -
NetVLAD [3] no 4096 66.6 - 77.4 - 88.3 -
NetVLAD [3] yes 512 67.6 - 74.9 - 86.1 -
NetVLAD [3] yes 4096 71.6 - 79.7 - 87.5 -

Fisher Vector [24] yes 512 81.5 76.6 82.4 - - -
R-MAC [31] yes 512 83.1 78.6 87.1 79.7 89.1 -

GeM [27] yes 512 87.9 83.3 87.7 81.3 89.5 79.9
*ours (VGG16) yes 512 83.2 78.6 89.4 83.8 90.2 82.7
*ours (VGG19) yes 512 85.7 81.4 89.8 82.2 90.7 82.9

Res
R-MAC [21] no 2048 69.4 63.7 85.2 77.8 91.3 -

GeM [27] yes 2048 87.8 84.6 92.7 86.9 93.3 87.9
*ours yes 2048 87.9 84.8 93.8 87.5 93.3 88.24

Re-ranking(R) and query expansion (QE)

n/a
BoW+R+QE [25] n/a n/a 82.7 76.7 80.5 71.0 - -

BoW-fVocab+R+QE [42] n/a n/a 84.9 79.5 82.4 77.3 75.8 -
HQE [26] n/a n/a 88.0 84.0 82.8 - - -

VGG

CroW+QE [22] no 512 74.9 70.6 84.8 71.0 - -
R-MAC+R+QE [21] no 512 77.3 73.2 86.5 79.8 - -

BoW-CNN+R+QE [23] no n/a 78.8 65.1 84.8 64.1 - -
R-MAC+QE [31] yes 512 89.1 87.3 91.2 86.8 - -
GeM+αQE [27] yes 512 91.9 89.6 91.9 87.6 - -
*ours (VGG16) yes 512 90.0 86.9 94.2 89.9 91.2 82.8
*ours (VGG19) yes 512 90.8 87.4 94.6 90.5 91.6 83.3

Res

R-MAC+QE [21] ‡ no 2048 78.9 75.5 89.7 85.3 - -
R-MAC+QE [43] yes 2048 90.6 89.4 96.0 93.2 - -
GeM+αQE [27] yes 2048 91.0 89.5 95.5 91.9 - -

*ours yes 2048 92.0 90.5 96.7 93.8 93.7 89.5
†: The results of our evaluation of SPoC and mac using PCAw and off-the-shelf networks. ‡: Results of evaluating
R-MAC using [39] and off-the-shelf networksISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 22 of 25 
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of the bad ones while bottom (ours) rows are the good results the finetuning of Resnet101. Note, a red
bounding box marks non-relevant images and a green bounding box marks not-perfect image. See text
for more detail.
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5. Conclusions

In this paper, we proposed a new metric learning loss called multiple loss based on L2R.
For contrastive loss, triple loss, and quadruple loss, we can use multiple examples simultaneously to
improve the robustness of the model. In our method, we calculate a distance sequence, choose the
maximum positive distance and the different negative pairwise distances after adjusting the threshold
to calculate the final loss. In this way, the ranking-based multiple loss trains the network using a
dissimilar positive image and multiple negative images, selected from different clusters, thus sharing
different similarities with the query image. We used VGG16 and ResNet101 as the base model to
perform some comparative experiments with different metric losses.

The comparison shows that our multiple loss network based on L2R has achieved the top
performance. We have then compared our approach to some of the most advanced methods available
today. On several benchmark datasets, including Oxford, Paris, and Holiday, our approach shows
better performance than those methods.

In the future, we will investigate other ways to improve the performance of images retrieved, such
as increasing the number of negative samples for better feature extraction. Furthermore, we will expand
our work by building up a more effective network architecture where a positive sample sorting sequence
is introduced to improve multiple loss. This makes the proposed architecture obtain robustness in
image processing, and also extracts some high-level cues, so as to accurately retrieve images.
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