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Abstract: Remote sensing technologies, particularly with Synthetic Aperture Radar (SAR) system,
can provide timely and critical information to assess landslide distributions over large areas.
Most space-borne SAR systems have been operating in different polarimetric modes to meet
various operational requirements. This study aims to discuss how much detectability can be
expected in the landslide map produced from the single-, dual-, and quad-polarization modes of
observation. The experimental analysis of the characteristic changes of PALSAR-2 signals showed
that quad-polarization parameters indicating signal depolarization properties revealed noticeable
landslide-induced temporal changes for all local incidence angle ranges. To produce a landslide
map, a simple change detection method based on characteristic scattering properties of landslide
areas was proposed. The accuracy assessment results showed that the depolarization parameters,
such as the co-pol coherence and polarizing contribution, can identify areas affected by landslides
with a detection rate of 60%, and a false-alarm rate of 5%. On the other hand, the single- or dual-pol
parameters can only be expected to provide half the accuracy with significant false-alarms in areas
with temporal variations independent of landslides.

Keywords: landslides; automatic mapping; SAR; polarimetric response; microwave scattering
mechanism; local incidence angle; change detection

1. Introduction

Landslides are one of the most widespread natural disasters. Producing a landslide map or event
inventory map is an essential task to understand the extent and magnitude of landslides. Remote
sensing techniques can accelerate the production of landslide maps for large spatial scales [1]. Since the
landslide triggering event often hampers the acquisition of optical remote sensing data, the microwave
remote sensing techniques including Synthetic Aperture Radar (SAR) can be very useful tools for near
real-time landslides detection. The application of SAR images related to landslides has been mainly
studied for monitoring slow-moving landslides through interferometric SAR technique based on phase
information of SAR images [2]. However, the use of SAR amplitude information for the landslide
application is not widespread.

Most studies on the detection of event landslides using SAR amplitude information have been
carried out using polarimetric SAR data to overcome difficulties in discriminating landslide areas from
land cover classes. Czuchlewski et al. [3] employed L-band airborne polarimetric SAR data (AIRSAR)
and examined the usability of polarimetric parameters for detecting a large slope failure triggered by an
earthquake in Taiwan. The scattering characteristics of the landslide region were able to be identified
by the eigenvalue-eigenvector decomposition [4]. After the launch of space-borne polarimetric SAR
systems, several studies have been conducted to analyze the availability of satellite SAR data for
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landslide detection. Yonezawa et al. [5] applied another type of polarimetric decomposition, such as
the model-based decomposition [6], as well as the eigenvalue-eigenvector decomposition to examine
landslides triggered by the earthquake in Japan by using L-band ALOS PALSAR data. The model-based
decomposition enables interpreting radar images more easily by fitting elementary scattering models,
such as the surface scattering, the double-bounce scattering, and the volume scattering, into the
polarimetric SAR observation. They found that the surface scattering component can be dominant
among other scattering mechanisms in landslide areas. Shibayama et al. [7] applied a similar approach
to ALOS-2 PALSAR-2 data, which observed several landslide scars triggered by a typhoon. They
examined the scattering properties of landslide areas by an improved version of the model-based
decomposition [8] in relation to the local slopes. Wang et al. [9] also applied similar decomposition
techniques to examine X-band polarimetric response of landslide areas in China using airborne
polarimetric SAR data. Plank et al. [10] further investigated X-band scattering properties of landslide
areas using space-borne TerraSAR-X data. Instead of full quad-polarimetric parameters, they used
the dual-polarization eigenvalue parameter of TerraSAR-X data and the spectral vegetation index of
optical data to generate landslide maps in two different landslide sites in USA and Russia.

Most space-borne SAR systems have been operating in different polarimetric modes, such as the
single-polarization (single-pol), dual-polarization (dual-pol), and full or quad-polarization (quad-pol)
modes, to meet various operational requirements on the resolution and coverages. In this study, we
analyzed the different polarimetric SAR observables, which can be obtained from different polarimetric
modes, for detecting landslide areas. However, since there is a lack of studies on the appropriate
polarimetric mode for observing disasters such as landslides, it can be difficult to carry out emergency
observation effectively. This study aims to discuss how one can actually map the landslide area
using each polarimetric mode. Although there were several studies to identify landslides using
polarimetric SAR data, few studies performed detection and analyzed accuracies. In this study, we
also analyzed how much detectability can be expected in the landslide map produced from each
polarimetric observation. Several landslides triggered by the 2016 Kumamoto earthquake in Japan
were investigated using the PALSAR-2 data of the ALOS-2 satellite acquired in pre- and post-landslide
conditions. This paper is organized as follows: In Section 2, the study area and a description of the
acquired SAR data used for this paper are discussed. In Section 3, radar scattering behaviors observed
by single-, dual- and quad-pol parameters are discussed. Methods to generate landslide map and the
experimental results are presented in Section 4. Discussion on the detection results in relation to the
previous studies and environmental conditions are given in Section 5, and summaries and concluding
remarks are presented in Section 6.

2. Study Area and Data

A series of earthquakes occurred in Kumamoto, Kyushu Island, Japan in 2016 [11]. The first major
shock (foreshock) occurred at 21:26 Japanese Standard Time (JMT) on 14 April 2016 with the moment
magnitude of Mw 6.2. Subsequently, on 16 April at 01:26 JMT, a second strong shock (mainshock)
occurred nearby with the magnitude of Mw 7.0. The foreshock occurred at a depth of 11 km. The focal
mechanism exhibited right-lateral strike-slip faulting with a NNW–SSE tension axis. The epicenter of
the mainshock is approximately 4.5 km northwest of the epicenter of the foreshock. Figure 1 shows the
epicenter of the foreshock and mainshock. The focal mechanism of the mainshock is a right-lateral
strike-slip fault with a tension axis in the NW-SE direction. It triggered numerous landslides in and
around Minamiaso, which is located in the western part of Aso caldera [12].
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3. Radar Scattering Characteristics of Landslide Area 

In this Section, we recall the single-, dual-, and quad-pol SAR observables and evaluate their 
scattering characteristics of manually selected landslide affected areas. 

Figure 1. Location of the foreshock and mainshock of the 2016 Kumamoto earthquake and ALOS-2
PALSAR-2 data coverage. Boxed area in the PALSAR coverage is the Minamiaso study site in which
many landslides occurred during the earthquake.

Among several observation modes of the ALOS-2 PALSAR-2 sensor, a fully polarimetric quad-pol
mode data observed on 21 April 2016, about 5 days after the mainshock, was obtained in this study. In
addition, a pre-event quad-polarization PALSAR-2 data observed on 3 December 2015 was obtained
with the same observation mode. To evaluate landslide-induced changes of SAR signals, a study area
(white rectangle in Figure 1) was selected in which several landslides and slope failures occurred by
the Kumamoto earthquakes.

The PALSAR-2 images of the study area acquired before and after the earthquake are shown in
Figure 2. Six landslides sites (marked in black in Figure 2b) for the examination of radar scattering
responses were manually selected by the literature [12] and the aerial photos [13]. Three of the selected
landslides (S1, S2, and S3) occurred in forested areas, while the other three (S4, S5, and S6) occurred in
non-forested grasslands and shrublands. Since a landslide generally occurs in sloping terrain, geometric
distortions of SAR image should be corrected before further analysis of SAR signals. To represent the
SAR images as geometrically similar to the map coordinates, all SAR images were converted to the
multilook covariance matrix format [14]. Then, the range-Doppler orthorectification was performed by
using SRTM (Shuttle Radar Topography Mission) global 1 arc second digital elevation model (DEM).
In addition, polarimetric speckle filtering using the IDAN filter [15] was applied to all PALSAR-2 data
to reduce speckle.
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3. Radar Scattering Characteristics of Landslide Area

In this Section, we recall the single-, dual-, and quad-pol SAR observables and evaluate their
scattering characteristics of manually selected landslide affected areas.

3.1. Single-Pol Scattering Characteristics

Most of conventional SAR systems have been operated in the single polarization channel, which
transmit and receive either horizontally (H) or vertically (V) polarized electromagnetic wave. In this
study, we will only consider the horizontally polarized signal. The horizontally polarized scattered
field Es

H is related the incident field Ei
H by the complex scattering amplitude SHH as

Es
H =

e− jkr

r
SHHEi

H. (1)

where k is wavenumber and r is the distance between the target and the receiving antenna. The
scattering amplitude depends on the dielectric and geometric properties of the scatterer in the direction
of incident and scattered fields. The scattering properties of natural objects can be generally described
by the backscattering coefficient σ0

HH = 〈SHHS∗HH〉 = 〈|SHH |〉
2, which is the averaged scattering intensity

of a distributed scatterer.
Figure 3a,b show temporal σ0

HH histograms acquired over the selected landslide sites that occurred
in forested areas and non-forested grasslands and shrublands, respectively. It is seen that σ0

HH generally
increases after the landslides occurred in non-forested areas, while there is no clear difference between
the two histograms in forested areas. It is probably attributed to changes in the microwave scattering
mechanisms, particularly the surface and double-bounce scattering mechanisms, in mountainous
forest areas [16].

In the case of the sloping terrain, topography effects should be considered in the analysis of
scattering response. Particularly, it was shown in the previous study [16] that the variations of local
incidence angle due to local topography can lead to changes in the scattering processes. The local
incidence angle θl is defined as the angle between the line of sight direction and the surface normal as

cosθl =
tanαrg sinθ+ cosθ√
1 + tan2 αrg + tan2 αaz

, (2)

where αrg and αaz are local slope angles in range and azimuth directions respectively, and θ is the
incidence angle defined in the flat geometry. Figure 3c,d show the landslide-induced changes of σ0

HH
in relation to the local incidence angle. The uncertain temporal variations of in σ0

HH histogram can be
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better explained by the local incidence angle. The temporal changes show different angular trends,
particularly in forested areas. The σ0

HH value increases after the landslide at the low local incidence
angle region while it shows no apparent changes at the high local incidence angle regions.
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3.2. Dual-Pol Scattering Characteristics

According to the observation strategy [17], PALSAR-2 primarily acquires data in the dual-pol
mode. It employs a single polarization transmission (H) and dual (H and V) coherent reception. The
dual-pol mode provides two complex scattering amplitude, SHH and SVH, which relate the incident
and scattered signals as [

Es
H

Es
V

]
=

e− jkr

r

[
SHH

SVH

]
Ei

H, (3)

Then, the dual-pol covariance matrix [C2] can be obtained by applying multilook processing to

the dual-pol complex scattering vector
→

k 2 =
[

SHH SVH
]T

, such as

[C2] = 〈
→

k 2
→

k
∗T

2 〉 =

[
〈SHHS∗HH〉 〈SHHS∗VH〉

〈SVHS∗HH〉 〈SVHS∗VH〉

]
. (4)

The diagonal terms of the dual-pol covariance matrix provides additional scattering intensity in
VH-polarization basis, such as σ0

VH = 〈SVHS∗VH〉 = 〈|SVH |
2
〉. The off-diagonal term is the correlation

between HH (co-pol) and VH (cross-pol) scattering amplitudes. Since there will be usually no co-
and cross-pol correlation term in natural reflection symmetric media, two scattering intensities or
backscattering coefficients are the two important observables in the dual-pol mode.
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Figure 4a,b show temporal σ0
VH values of landslide areas that occurred in forested and non-forested

areas. As compared with the σ0
HH case, it shows slightly better separation between pre- and

post-landslide conditions at the high incidence angle region, while it shows no apparent differences at
the low local incidence angle regions. The two polarization channels exhibit somewhat complementary
angular trends, the ratio between VH- and HH-polarization intensities, such as the cross-pol ratio
σ0

VH/σ0
HH, can be used to further characterize landslide-related backscatter changes. Figure 4c,d show

the cross-pol ratio of landslide affected areas in relation to the local incidence angle. It shows a much
weak angular dependency on the local incidence angle variations and emphasizes the landslide-induced
changes of radar scattering properties in forested areas at either low or high local incidence angle region.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 6 of 16 
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3.3. Quad-Pol Scattering Characteristics

In general case, both the incidence wave and the wave scattered by an object can be adequately
described by the two-dimensional orthogonal bases. The incidence wave of the quad-pol mode
observation has both horizontal and vertical polarization component. Then, a scattering object can be
characterized by the 2× 2 complex scattering matrix [S], such as[

Es
H

Es
V

]
=

e− jkr

r

[
SHH SHV

SVH SVV

][
Ei

H
Ei

V

]
=

e− jkr

r
[S]

[
Ei

H
Ei

V

]
. (5)

The scattering properties of natural media can be described by the quad-pol covariance matrix.
In the monostatic backscattering case, when SHV = SVH by the scattering reciprocity, the quad-pol
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covariance matrix [C3] can be formed by the complex scattering vector
→

k 3 =
[

SHH
√

2SHV SVV
]T

,
such as

[C3] = 〈
→

k 3
→

k
∗T

3 〉 =


〈SHHS∗HH〉

√
2〈SHHS∗HV〉 〈SHHS∗VV〉√

2〈SHVS∗HH〉 〈SHVS∗HV〉
√

2〈SHVS∗VV〉

〈SVVS∗HH〉
√

2〈SVVS∗HV〉 〈SVVS∗VV〉

. (6)

The Hermitian [C3] matrix is fully characterized by nine real parameters: three polarimetric
intensities in the diagonal elements and three complex polarimetric correlations in the off-diagonal
elements. As aforementioned, the co- and cross-pol correlation terms, 〈SHHS∗HV〉 and 〈SHVS∗VV〉, will be
close to zero for the natural scatterers having reflection symmetry. On the other hand, the correlation

coefficient between HH- and VV-polarization, such as 〈SHHS∗VV〉/
{√
〈SHHS∗HH〉〈SVVS∗VV〉

}
, contains

important information on the scatterers. The magnitude of the correlation, named co-pol coherence
ρHHVV, indicates signal depolarization and varies from 0 for completely random signal to 1 for pure
single scattering [18]. Since a landslide generally results in changes of land cover types from vegetation
to bare surface, identification of signal depolarization properties will be important in mapping landslide
affected areas.

In addition to the polarimetric intensities and correlation terms in the [C3] matrix, the general
depolarization properties of a scatterer can be characterized by using the eigenvalue analysis [18]. By
definition, [C3] is a Hermitian matrix and can be decomposed into three real non-negative eigenvalues
and three orthogonal unitary eigenvectors as:

[C3] =
3∑

i=1

λi
→
e i
→
e
∗T
i =

3∑
i=1

λi[C3i], (7)

where λi and
→
e i are eigenvalues and eigenvectors of [C3], respectively.

The eigenvalue decomposition expands [C3] into the sum of three uncorrelated target matrices [C3i]

where the eigenvalues λi (λ1 ≥ λ2 ≥ λ3 ≥ 0) are the statistical weights for the three components. The
amount of polarizing contribution corresponds to the largest eigenvalue while the other eigenvalues
are the depolarization components in the [C3] matrix. Consequently, the relative contribution of the
eigenvalues can be a good indicator of system depolarization properties. In order to interpret the
eigenvalue contributions, we can define pseudo probabilities Pi as

Pi =
λi

λ1 + λ2 + λ3
. (8)

The spread of probabilities can be represented by the single scaler measure, such as polarimetric
entropy H defined as [19]:

H =
3∑

i=1

−Pi log3 Pi. (9)

It indicates the scattering randomness which ranges from 0 (single nonzero eigenvalue) for the
single scatter to 1 (three equal eigenvalues) for the random scatterer.

For a highly depolarizing media, the entropy is not a unique function of the eigenvalue ratios,
and another eigenvalue parameter defined as the polarimetric anisotropy A defined as Equation (10)
can be useful to describe two minor eigenvalues [20].

A =
λ2 − λ3

λ2 + λ3
(10)

It indicates relative importance of the second and the third eigenvalues which also ranges from 0
to 1. High entropy and low anisotropy values imply strongly depolarizing systems with the presence
of several scattering mechanisms.
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In addition to the entropy and anisotropy parameters, each eigenvalue contribution in Equation
(8) can be directly used as a measure of depolarization in a random media. Among them, the smallest
eigenvalue P3 has been used to infer the amount of vegetation. It is called Radar Vegetation Index
(RVI) defined as [21]

RVI = 4P3. (11)

The factor 4 was introduced so that the RVI for a cloud of randomly oriented thin cylinders
would be equal to 1. On the other hand, the amount of polarizing contribution among backscattered
signals, which is represented by the largest eigenvalue P1 [18], can be a useful parameter for identifying
changes of signal depolarization levels caused by the landslide. P1 has a maximum value of 1 when
λ2 = λ3 = 0 and a minimum value of 1/3 when λ1 = λ2 = λ3. Therefore, as in the case of RVI, the
normalized value of P1, named Ppol, can be defined as:

Ppol = 1.5P1 − 0.5. (12)

It indicates the polarizing contribution of a partially polarized system which ranges from 0 for the
random noise process to 1 for the pure polarizing target.

Figures 5 and 6 show the temporal changes of various polarimetric parameters of landslide areas
that occurred in forested and non-forested areas, respectively. Among the diagonal components of
the [C3] matrix, only VV-polarization scattering intensity σ0

VV = 〈SVVS∗VV〉 is illustrated in Figures 5a
and 6a, because the HH- and HV-polarization scattering intensities were discussed in Figures 3 and 4.
Similar to the single or dual-pol cases, it is difficult to distinguish signals from pre- and post-landside
conditions in temporal σ0

VV values, particularly in the forested areas.
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(e) RVI, and (f) Ppol in non-forested areas with respect to the local incidence angle.

It is seen that the polarimetric parameters defined by scattering amplitude and eigenvalue ratios in
Figure 5b–f show better discriminability between pre- and post-landslide conditions of the selected sites.
Among them, the polarimetric parameters indicating signal depolarization properties, particularly
ρHHVV, entropy, and Ppol, exhibit significant landslide-induced changes for all local incidence angle
regions. The anisotropy and RVI parameters, which utilize the minimum eigenvalue, cannot clearly
distinguish signals from pre- and post-landslide conditions, especially in non-forested areas as shown
in Figure 6.

4. Landslide Detection

One of the goals of remote sensing data analysis for a landslide event is to generate the landslide
map or landslide inventory map. A simple way to map landslide affected areas is to compare remote
sensing data acquired at pre- and post-landslide conditions by image differencing. Consider two
M ×N polarimetric parameters, X1 and X2, acquired at before and after the landslide, respectively.
Figure 7 illustrates the difference image, ∆X = X2 − X1, for the different polarimetric parameters.
Figure 7a–d corresponds to the single- and dual-pol parameters, and Figure 7e–f corresponds to the
quad-pol parameters. It also shows a manually generated reference image which illustrates regions
of interests for landslide damaged areas and undamaged forest and agricultural areas. It is seen
that changes in polarimetric parameters highlight the damaged areas except for the cross-pol ratio
and the anisotropy. Three intensities σ0

HH, σ0
HV, and σ0

VV show landslide-induced changes, but the
direction of changes vary depending on the slope direction. The eigenvalue parameters and the co-pol
coherence exhibit one-directional changes for landslide areas from high depolarization states at the
pre-landslide condition to low depolarization states at the post-landslide condition. However, the
amount of changes in the landslide areas and the level of general changes unrelated to landslides vary
across the polarimetric parameters.
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After generating the difference image, the landslide map can be generated by a change detection
approach. It aims to assign each pixel of the difference image to either changed class ωc or unchanged
background classωn. One of the simple and unsupervised solutions to this problem, which is important
in emergency observation, is to select the global threshold in the difference image. In order to better
reflect the characteristic changes of polarimetric parameters occurred in the landslide areas and other
undamaged areas, change detection was carried out considering the negatively changed (ωc1) and the
positively changed (ωc2) classes in this study. To find multiple thresholds from the difference image,
we adopted the Expectation–Maximization (EM) thresholding method [22–25].

We assume that the probability distribution of the difference image p(∆X) is a mixture of three
density components associated with the negatively and positively changed classes and unchanged
background class, that is,

p(∆X) = P(ωc1)p(∆X|ωc1) + P(ωn)p(∆X|ωn) + P(ωc2)p(∆X|ωc2), (13)
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where P(ωc1), P(ωc2), and P(ωn) are the prior probabilities of negatively changed, positively changed,
and unchanged classes, respectively, and p(∆X|ωc1), p(∆X|ωc2), and p(∆X|ωn) are their conditional
probability density functions. Both the unknown prior probabilities and the conditional probability
density functions can be calculated iteratively by the EM procedure until convergence. If we further
assume the Gaussian density functions, the prior and conditional probabilities of ith class where
ωi ∈ {ωc1,ωn,ωc2} at (t + 1) iteration is given by:

Pt+1(ωi) =

∑M
m=1

∑N
n=1

Pt(ωi)pt(∆X(m,n)|ωi)

pt(∆X(m,n))

MN
(14)

µt+1
i =

∑M
m=1

∑N
n=1

Pt(ωi)pt(∆X(m,n)|ωi)

pt(∆X(m,n)) ∆X(m, n)∑M
m=1

∑N
n=1

Pt(ωi)pt(∆X(m,n)|ωi)

pt(∆X(m,n))

(15)

σ2
i

t+1 =

∑M
m=1

∑N
n=1

Pt(ωi)pt(∆X(m,n)|ωi)

pt(∆X(m,n))

{
∆X(m, n) − µt

i

}2

∑M
m=1

∑N
n=1

Pt(ωi)pt(∆X(m,n)|ωi)

pt(∆X(m,n))

(16)

where the conditional probability density function of ith class is described by the mean µi and the
standard deviation σi. Once the final parameter estimates of the three probability distributions are
obtained, the optimal threshold values T1 and T2 can be derived according to the maximum a posterior
decision rule, that is, solving following equations with respect to the variable ∆X:

P(ωn)p(∆X|ωn) = P(ωc1)p(∆X|ωc1) and P(ωn)p(∆X|ωn) = P(ωc2)p(∆X|ωc2). (17)

Since the EM-based threshold is applied exclusively to the pixel values of the difference image,
the change detection usually provides noisy classification results. To further improve the detection
results, spatial contextual information can be considered after obtaining three probability distributions
and preliminary decisions from two threshold values. The Markov Random Field (MRF) model can
provide a useful tool for characterizing contextual information [23–26]. The final change detection
map after obtaining class labels for each pixel Cl(m, n) ∈ {ωc1,ωn,ωc2} can be generated by minimizing
the energy function U(∆X, Cl) such as:

U(∆X,ω) =
M∑

m=1

N∑
n=1

[Udata(∆X(m, n),ω(m, n)) + Ucontext(ω(m, n))] (18)

where Udata is the class conditional energy function. Under the Gaussian assumption, it can be
written as:

Udata(∆X,ω) =
1
2

ln
∣∣∣2πσ2

ω

∣∣∣+ 1
2
(∆X − µω)

2/σ2
ω (19)

The contextual energy function Ucontext(ω) describes spatial contextual information in a local
spatial neighborhood systemN given as:

UContext(ω) = −β
∑

(p,q)∈N

δ(ω(m, n),ω(p, q)). (20)

It counts the number of pixels in the neighborhood system assigned to the same class as pixel
(m, n) with delta function and the β parameter tunes the importance of spatial context. In this study,
we used the second-order neighborhood system containing eight neighboring pixels with β = 1.6.

After obtaining the class decision among the negatively and positively changed classes and
unchanged background class for each pixel, the final landslide map can be generated accordingly
with the characteristic changes of polarimetric parameters. Each pixel x(m, n) of the detection map is
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assigned to either 1 or 0, where 1 indicates landslide damaged areas and 0 indicates undamaged areas
according to:

x(m, n) =

1, Cl(m, n) = ωck, k= 1 or 2

0, otherwise
(21)

Appropriate types of change ωck for different polarimetric parameters (Table 1) were selected
based on the analysis on the polarimetric scattering characteristics of landslide areas discussed in the
previous Section.

Table 1. Selected changed class ωck associated with the landslide area for different
polarimetric parameters.

∆X ∆σ0
HH, ∆σ0

HV , ∆σ0
VV ∆

(
σ0

HV/σ0
HH

)
∆ρHHVV ∆H ∆A ∆RVI ∆Ppol

ωck ωc1 & ωc2 ωc1 ωc2 ωc1 ωc1 & ωc2 ωc1 ωc2

Figure 8 illustrates the final binary decision results for landslide-related changes derived from the
selected polarimetric parameters. Comparing the detection results with the reference landslide map in
Figure 8i, it is seen that the landslide affected areas can be successfully identified by the automatic
change detection from quad-polarization SAR observations. In order to evaluate the detection result
quantitatively, several accuracy metrics were considered including the detection rate (Pd), false-alarm
rate (Pfa), overall accuracy (OA), and Kappa coefficient (Kappa) [27].

Table 2 shows the accuracy analysis results for each binary classification result. The entries
highlighted in bold correspond to the best and second-best polarimetric parameters of a specific
accuracy metric. Detection rates of around 60% can be obtained using the co-pol coherence ∆ρHHVV,
the entropy ∆H, and the polarizing contribution ∆Ppol. Changes of single-pol scattering intensities can
also provide high detection rates but suffer from significant false alarms at the same time. The OA and
Kappa provide an overall idea of detectability. Both accuracy metrics show that ∆ρHHVV and ∆Ppol are
two best parameters for landslide detection. The OA shows much higher values than other accuracy
metrics for all polarimetric parameters because of the low proportion of landslide areas in all pixels
selected for accuracy analysis. In this case, the overall detection performance of different polarimetric
parameters can be better evaluated by the Kappa. According to Kappa, we can expect about two times
better performance by using quad-pol parameters with the significantly less false alarm errors than
single- or dual-pol parameters.

Table 2. Detection accuracies for the different polarimetric parameters.

Pd Pfa OA Kappa

∆σ0
HH 0.49 0.13 0.85 0.21

∆σ0
HV 0.51 0.13 0.85 0.22

∆σ0
VV 0.54 0.11 0.88 0.25

∆
(
σ0

HV/σ0
HH

)
0.27 0.05 0.91 0.22

∆ρHHVV 0.6 0.06 0.92 0.45
∆H 0.52 0.06 0.92 0.39
∆A 0.23 0.15 0.82 0.05

∆RVI 0.44 0.06 0.91 0.33
∆Ppol 0.58 0.05 0.93 0.45
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5. Discussion

5.1. Comparison with Previous Study

Although several papers have discussed landslide detection problems from single-, dual-, and
quad-pol SAR data, there have been few studies that have provided accuracy analysis results of
landslide detection. Plank et al. [10] analyzed the overall accuracy as well as detection and false alarm
rates for two landslide sites in USA and Russia. They used pre-event optical and post-event dual-pol
SAR data for detecting landslide areas. The detection rates varied from 0.48 to 0.87 with false alarms
ranging from 0.001 to 0.003. Since they used small image chips for the evaluation and ancillary slope
information for refining detection results, it was not appropriate to directly compare the accuracies
obtained previous study and this study. However, it was possible to examine the performance of the
dual-pol parameter used in [10] in comparison with the result obtained in this study.
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The key parameter for the landslide identification in [10] was the dual-pol entropy H2. It can be
derived from the two eigenvalues λ1 and λ2 of the dual-pol covariance matrix [C2].

H2 =
2∑

i=1

−Pi log2 Pi, Pi =
λi

λ1 + λ2
(22)

To evaluate the detectability of the H2 parameter, the EM–MRF based landslide detection method
was applied to the temporal change ∆H2 shown in Figure 9a. In comparing ∆H2 and the quad-pol
entropy ∆H in Figure 8f, ∆H2 provides more noisy changes in undamaged areas resulting in noisy
detection result as shown in Figure 9b.
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Figure 9. (a) The difference images of the dual-pol entropy and (b) the landslide detection result.

Table 3 summarizes accuracy parameters of ∆H2 as compared with those of ∆H. The dual-pol
entropy offers lower detectability with a significant amount of false alarms. According to the Kappa
coefficient, the overall detection performance of the dual-pol entropy is only about half of the quad-pol
entropy. Therefore, it is important to use quad-pol SAR data in the generation of the landslide map.

Table 3. Detection accuracies for the different polarimetric parameters.

Pd Pfa OA Kappa

∆H2 0.41 0.12 0.85 0.18
∆H 0.52 0.06 0.92 0.39

5.2. Influence of Slope and Land Cover on the Detectability

As discussed in Sections 3 and 4, the quad-pol parameters indicating depolarization properties
exhibited clear landslide-induced temporal changes for all incidence angle regions, and provided much
higher detectability than single- or dual-pol parameters. Nonetheless, there were some differences
in the detection performance between signal depolarization parameters such as ρHHVV, H, and Ppol.
In order to better understand the detection performance of depolarization parameters, the influence
of environmental conditions, such as land cover types and slopes, on the detectability was further
examined. Similar to Section 3, the regions of interest were divided into two categories, such as forested
areas and non-forested grasslands and shrublands at the pre-landslide condition. The pixels belonging
to each category were further subdivided based on the local incidence angle according to the local
slope. Then, we recalculated the detection rates for the subdivided regions of interest.

Figure 10 illustrates the effects of environmental conditions on the detectability of two selected
depolarization parameters, ∆ρHHVV and ∆H, that differed in detection accuracy. In Figure 10, the
detection rates, which were recalculated for two different land cover types, were plotted with respect to
the local incidence angle. It is seen that the detectability of polarimetric parameters can be affected by the
local slope. The detection rates generally decrease with an increase of the local incidence angle. In the
case of ∆H, which offers a slightly lower detection rate for the entire study area among depolarization
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parameters, the angular dependency of the detection rate is more evident regardless of the land cover
condition. The detection rate of ∆ρHHVV, however, is much less sensitive to the local incidence angle
variation particularly in the non-forested area resulting in the higher overall detectability.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 14 of 16 

 

pol entropy. Therefore, it is important to use quad-pol SAR data in the generation of the landslide 
map. 

Table 3. Detection accuracies for the different polarimetric parameters. 

 Pd Pfa OA Kappa ∆  0.41 0.12 0.85 0.18 ∆  0.52 0.06 0.92 0.39 

5.2. Influence of Slope and Land Cover on the Detectability 

As discussed in Sections 3 and 4, the quad-pol parameters indicating depolarization properties 
exhibited clear landslide-induced temporal changes for all incidence angle regions, and provided 
much higher detectability than single- or dual-pol parameters. Nonetheless, there were some 
differences in the detection performance between signal depolarization parameters such as , 

, and . In order to better understand the detection performance of depolarization parameters, 
the influence of environmental conditions, such as land cover types and slopes, on the detectability 
was further examined. Similar to Section 3, the regions of interest were divided into two categories, 
such as forested areas and non-forested grasslands and shrublands at the pre-landslide condition. 
The pixels belonging to each category were further subdivided based on the local incidence angle 
according to the local slope. Then, we recalculated the detection rates for the subdivided regions of 
interest. 

Figure 10 illustrates the effects of environmental conditions on the detectability of two selected 
depolarization parameters, ∆  and ∆ , that differed in detection accuracy. In Figure 10, the 
detection rates, which were recalculated for two different land cover types, were plotted with respect 
to the local incidence angle. It is seen that the detectability of polarimetric parameters can be affected 
by the local slope. The detection rates generally decrease with an increase of the local incidence angle. 
In the case of ∆ , which offers a slightly lower detection rate for the entire study area among 
depolarization parameters, the angular dependency of the detection rate is more evident regardless 
of the land cover condition. The detection rate of ∆ , however, is much less sensitive to the local 
incidence angle variation particularly in the non-forested area resulting in the higher overall 
detectability. 

 
Figure 10. Variations of the detection rates according to the local incidence angle and the land cover 
type for the detection results from (left) ∆  and (right) ∆ . 

6. Conclusions 

Due to various triggering mechanisms, landslides are widespread in many parts of the world. 
With a significant triggering event, slope failures can be sparse and widely distributed across a large 
area. Remote sensing technologies, particularly with air-borne or space-borne SAR sensors, can 

Figure 10. Variations of the detection rates according to the local incidence angle and the land cover
type for the detection results from (left) ∆ρHHVV and (right) ∆H.

6. Conclusions

Due to various triggering mechanisms, landslides are widespread in many parts of the world.
With a significant triggering event, slope failures can be sparse and widely distributed across a large
area. Remote sensing technologies, particularly with air-borne or space-borne SAR sensors, can provide
timely and critical information to assess landslide distributions over large areas. Nonetheless, studies
on the systematic use of SAR data to produce event landslide maps are rare. In this context, this study
discussed an automatic detection and mapping strategy of landslide areas from polarimetric SAR data.
This study focused mainly on the usability of different polarimetric parameters of single-, dual-, and
quad-pol modes observations for deducing information about landslide areas.

The experimental analysis on the characteristics of landslide-induced changes for different
polarimetric parameters showed that, in general, SAR observations were largely influenced by the
local slopes in which the landslide occurred. This is because the microwave scattering mechanisms
can vary not only by landslide-induced land cover changes but also local incidence angle variations
in the sloping terrain as reported in the previous study [25]. Consequently, single- or dual-pol SAR
observations were not able to represent various landslide areas that occurred in different topographic
conditions. However, quad-pol parameters indicating signal depolarization properties revealed
noticeable landslide-induced temporal changes for all local incidence angle ranges.

To produce a landslide map, a simple change detection method based on EM thresholding and
MRF contextual classification was also presented in this study. For an automatic identification of
landslide areas, binary decision strategies based on the characteristic scattering properties of landslide
areas were proposed. The accuracy assessment results showed that the depolarization parameters,
such as the co-pol coherence and polarizing contribution, can identify areas affected by landslides
in about 18.9 km2 study area with a detection rate of 60%, a false-alarm rate of 5%, and a Kappa
coefficient of 0.45. On the other hand, the single- or dual-pol parameters can only be expected to
provide half the accuracy with significant false-alarms in areas with temporal variations independent
of landslides. It is worth noting that the results were obtained exclusively from the polarimetric SAR
data. The detection algorithm is unsupervised and fully automatic. Therefore, the proposed detection
accuracy can be considered to be the minimum values that can be expected from the quad-pol scattering
mechanism indicators if a rapid survey is required. There is enough room to improve accuracy through
advanced change detection or supervised classification methods. In particular, considering the effects
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of environmental conditions on the SAR observations, it is considered that the detection accuracy can
be improved by using ancillary information such as DEM and optical remote sensing data.
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