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Abstract: Several methods have been tried to estimate air temperature using satellite imagery.
In this paper, the results of two machine learning algorithms, Support Vector Machines and Random
Forest, are compared with Multiple Linear Regression and Ordinary kriging. Several geographic,
remote sensing and time variables are used as predictors. The validation is carried out using
two different approaches, a leave-one-out cross validation in the spatial domain and a spatio-temporal
k-block cross-validation, and four different statistics on a daily basis, allowing the use of ANOVA
to compare the results. The main conclusion is that Random Forest produces the best results
(R2 = 0.888 ± 0.026, Root mean square error = 3.01± 0.325 using k-block cross-validation). Regression
methods (Support Vector Machine, Random Forest and Multiple Linear Regression) are calibrated
with MODIS data and several predictors easily calculated from a Digital Elevation Model. The most
important variables in the Random Forest model were satellite temperature, potential irradiation and
cdayt, a cosine transformation of the julian day.

Keywords: air temperature, MODIS, machine learning, interpolation

1. Introduction

Air temperature (Ta) is a very relevant climatic variable that controls several environmental
processes, particularly evapotranspiration [1]; it is also a key feature in global change studies,
and reflects the surface energy balance [2]. So, accurate estimations of Ta and its spatio-temporal
variability are important in several Earth and environmental sciences and in land surface process
modelling [1,3]. Air temperature is usually measured at weather stations at a standard height of 1.5–2 m
with diverse temporal resolutions. However, because weather stations provide limited information
about spatial patterns at regional or global scales [3], several methods have been used to estimate the
spatial distribution of Ta [4,5]:

• Vertical lapse methods [4] use height as the main variable to explain temperature spatial
distributions. The vertical lapse rate is evaluated from the sampling data and then applied
to the whole study area. A more sophisticated approach uses daily atmospheric profiles provided
by the Moderate Resolution Imaging Spectroradiometer (MODIS) product MOD07_L2 to locally
estimate the adiabatic lapse rate [6]. The main drawback of this approach is the coarse spatial
resolution (5 km) of those products.
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• Simple linear regression using land surface temperature (LST), retrieved by remote sensing, as
a predictor for Ta [7]. MODIS, for example, provides global coverage of several environmental
variables with large temporal resolution and moderate spatial resolution [6].

• Multiple regression models using LST and other variables such as NDVI, solar zenith angle,
solar radiation, altitude, julian day, distance to the coast, normalised difference water index
(MNDWI) or albedo as predictors [8–15]. The algorithms used range from multiple linear
regression [5,10,11,16] to more sophisticated machine learning algorithms, such as neural
networks [9] or Random Forest (RF) [14].

• Geostatistical techniques (kriging) [17,18] estimate Ta as a weighting average of the sampling
points with the weighting coefficients obtained after a statistical analysis of the spatial variability
of the variable (semivariogram functions).The main drawbacks of such interpolation methods
are that they do not use covariates and that they may be sensitive to a clustered distribution of
weather stations [19].

• The Temperature-Vegetation Index (TVX), proposed by [20,21], is based on the correlation between
NDVI and LST, assuming that Ta is approximately equal to LST in fully vegetated areas. Significant
uncertainties appear in sparse vegetation areas [22].

• Methods based on the surface energy balance such as ADEBAT [4,13]. The objective is to estimate
Ta using a more physical approach. It has two main drawbacks: several variables that can only be
measured in weather stations are needed and, as the Bowen ratio (the ratio between the sensible
heat flux and the latent heat flux) is one of them, it is necessary to know the latent heat flux (LE)
to use ADEBAT. However, Ta is usually, as in this case, estimated in order to estimate LE from it,
so the use of a surface energy balance is not suitable.

Remote sensing methods are constrained by the time of the day when images are taken. During
the night, LST is a very accurate proxy for Ta as solar radiation has no effect, simplifying the ground
surface energy balance. During the day, it is necessary to take into account several variables, such
as cloud cover, wind speed, soil moisture and surface roughness, which remote sensors cannot
retrieve [6]. However, as remote sensing provides LST spatially distributed estimations, they may
be used as highly correlated predictors to estimate air temperature. Tao et al. [23] showed that
correlation between LST at night and minimum Ta is higher (R2 = 0.93) than between their daytime
equivalents (R2 = 0.79).

Several approaches have been recently used to estimate air temperature from satellite data;
one of the objectives being to use just remote sensing data adding, at most, easy to obtain
environmental variables. Jin and Dickinson [24] estimated the diurnal cycle of LST through temporal
interpolation of NOAA-AVHRR. Sun et al. [25] used the same method for modeling Geostationary
Operational Environmental Satellite (GOES) measurements. Gholamnia et al. [26] attempted to
introduce methods that estimate air temperature based on LST data by direct approach and without
auxiliary environmental information. Golkar et al. [27] estimate instanteneous air temperature using
standard remote sensing methods with minimum data. Mira et al. [28] tried to introduce LST and
elevation as predictors to a multiple linear regression model (MLRM). Recently, machine learning
methods have been compared with traditional MLRM; for instance, Xu et al. [14] stated that linear
regression cannot predict the air temperature based on LST in all conditions and that RF models obtain
better accuracy than the MLRM.

As a result of these attempts, several global weather products have been produced that estimate
variables using satellite imagery. For instance, Hooker et al., [29] estimated a monthly temperature
dataset at a spatial resolution of 0.05◦ for the interval 2003–2016.

We think that more research is needed to investigate how the use of satellite information and
different geographic predictors to calibrate machine learning algorithms might outperform traditional
interpolation methods. Thus, the objective of this work is to use two well known machine learning
algorithms, Support Vector Machines (SVM) and RF, to estimate Ta at the AQUA passage time (between
12:00 and 14:20) in a medium size basin in SE Spain. We used as predictors a set of environmental
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variables included in some of the previous works that we think would influence the temperature
spatial patterns. The results are compared to those obtained with more traditional approaches: MLRM
and Ordinary Kriging (OK). Finally, regression-kriging will be tested using OK to interpolate the
residuals of the three regression models, provided that such residuals show spatial autocorrelation.
Two cross-validation approaches were carried out to deal with accuracy over-estimation induced
by spatio-temporal autocorrelation: a simple leave-one-out cross-validation (LOO-CV) in the spatial
domain and a spatio-temporal k-block cross-validation (k-block-CV).

The use of both approaches allows to evaluate accuracy in two different situations: spatio-temporal
k-block-CV provides an accuracy estimation for models calibrated with a large observations set but
avoiding the overfitting due to spatio-temporal dependence. On the other hand, LOO-CV in the
spatial domain produces an accuracy estimation when only spatial but not temporal dimensions are
considered (models are generated using observations for just one day, an observation is extracted in
each iteration to estimate the model error on it).

2. Methodology

Figure 1 shows a flow chart summarising the methodology, which will be detailed below. All the
research was carried out using free and open source software. For step 1, that includes downloading
and preprocessing of information, GRASS [30], a multi-purpose Geographical Information System,
was used. Step 2, that includes model calibration, validation and the generation of raster predictions,
was carried out using the R-CRAN program [31].
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Figure 1. Flow diagram of the methodology.

2.1. Study Area

This research was carried-out in the area controlled by the River Segura Water Authority (DHS
in its Spanish abbreviation) (Figure 2), which includes the Segura river basin (19,000 km2) and
several minor coastal basins in SE Spain. It is a semiarid area with scarce and irregular precipitation,
high temperatures, and a large number of hours of sun that cause high potential evapotranspiration.
Despite the scarcity of water, agriculture is an important economic sector using both groundwater
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(available because the predominance of carbonate rocks) and water transferred from other basins.
Population density and intensive irrigated agriculture represent a significant water demand.
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Figure 2. Land uses (left) and elevation (right) of the study area. Solid lines represent DHS boundaries
and dotted lines province boundaries.

The study area is also characterised by substantial height differences over short distances, which
together with the semiarid climate and the use (limited in space) of groundwater and transferred water,
create a strong environmental variability.

The spatial distribution of temperature is strongly influenced by height distribution, the annual
average temperature increases gradually from the Northwest mountain ranges (10 ◦C) to the coast
(18 ◦C). The annual temperature regime has a winter low in December and January, while the highest
values occur in July and August [32]. The proximity to the sea softens summer and winter temperatures
in the coast, while an increase in continental features is observed towards the northern area, both
because of the distance to the sea and because of the presence of successive mountain alignments [33].

The cloudiness in the DHS is more abundant in the equinoctial seasons, since in winter and
summer long periods with anticyclonic situations are common. The northwestern sector has the
highest cloud cover of the DHS, as it is exposed to the Atlantic fronts and suffers frequent convective
storms in the May-September period, while coastal areas experience less cloudiness, especially the
southwestern coast, although is not infrequent the presence of coastal mist. Thus, the average cloud
fraction varied over the 2012–2014 period in much of the DHS between 20–30 % in summer, between
30–40 % in winter and between 40–50 % in spring and autumn. In the north-west, such numbers are
increased by 10 %. With respect to clear days (those with an average cloud fraction of less than 10 %),
in summer they range from 30 in the north-western extreme to 60 in coastal areas. In spring and
autumn the number of clear days presents a greater homogeneity in the DHS, oscillating between 15
and 25 days. Finally, in winter, clear days range from 20 to 30 in the study area, with slightly more
than 30 days in coastal areas.

2.2. Data Set

Different variables were used as predictors: (1) geographical variables: longitude, latitude,
altitude, Topographic Wetness Index (TWI) [34] (used to describe the potential accumulation of cold air),
monthly potential irradiation (Wh m−2 month−1) obtained from heights using the method proposed
by [35] and distance from the coast; (2) time variables: day duration, cdayt (a cosine transformation of
julian day following [36]), and the satellite passage time; and (3) variables provided by the MODIS
sensor: EVI, albedo and the terrestrial surface temperature (LST) at the passage time of AQUA satellite.

The objective was to have a set of easy to obtain predictors that are, at the same time related with
processes that explain air temperature. Latitude and altitude relation with temperature is well known;
longitude was included to complete the 3 spatial axes. TWI estimates the accumulation of water in the
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terrain contributing to a cooling of the air. Monthly potential irradiation accounts for the differences
in the amount of solar radiation reaching land surface due to differences in slope and aspect. LST is
surface temperature as estimated by the satellite. As LST will vary in relation with the time when
the satellite takes the image, this time needs to be taken into account. Cdayt is a transformation of
the julian day to guarantee smooth transition between December and January; it oscillates between
−1 (summer) and 1 (winter). Albedo measures the proportion of incident radiation reflected to the
atmosphere. Distance to the coast is a proxy for continentality. EVI is a vegetation index useful as
vegetation moderates extreme temperatures. Finally, the duration of the day increase the daily heat
accumulation contributing to increase air temperature.

The classical formulation of TWI [37] is:

TWI = log
( a

tan(b)

)
(1)

where a is the upslope contributing area per unit contour and b is the slope. A more detailed description
of methods to calculate slope and contributing area from a DEM can be found in [38].

The equation to calculate cdayt is:

cdayt = cos
(
[tD − φ] · 2π

365

)
(2)

where tD is the julian day and φ is a time delay from the coldest day.

2.2.1. Weather Data

Air temperature data every 30 min is recorded by 53 weather stations belonging to the SIAM and
SIAR networks (Sistema de Información Agrometeorológico de la Región de Murcia, Agro-meteorological
information System in Murcia Region) and Sistema de Información Agroclimática para el Regadio,
Agro-meteorological Information System for Irrigation) (Figure 3). In this work, only data for 2012
were analysed to test which model produces the most accurate results.

&

&

&

&

&

&

&

&

&

&
&

&&

&

&

&

& &

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&
&

&

&

&

&
&

&

&

&&

&

&

&

&

&
&

470000

470000

500000

500000

530000

530000

560000

560000

590000

590000

620000

620000

650000

650000

680000

680000

710000

710000

740000

740000

4
15

0
0

00

4
15

0
0

00

4
18

0
0

00

4
18

0
0

00

4
21

0
0

00

4
21

0
0

00

4
24

0
0

00

4
24

0
0

00

4
27

0
0

00

4
27

0
0

00

4
30

0
0

00

4
30

0
0

00

Elevation (m) 
High: 2040

Low: 0

0 25 5012.5 Km

Wheather stations

1

1

3

4

2 6

5

Figure 3. Location of weather observatories in the study area. Blocks for the k-block-CV are also shown.

We assumed that the mean air temperature data (obtained from the average of 3 measurements
taken every 10 min) provided by the SIAR and SIAM networks are equal to the air temperature at the
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time of satellite passage. Therefore, these data were used to calibrate and validate the different models
used in this work for the prediction of the instantaneous air temperature.

Only data from clear days were used. Since there is no consensus in the scientific literature on
the definition of a clear day, we considered as such those days with an average cloud cover lower
than 10 %.

2.2.2. Remote Sensing Data

The three environmental variables used as predictors in this work (albedo, vegetation index
and surface temperature) were obtained from different MODIS products (Table 1). The R packages
MODIStsp [39] package was used to download and process the images.

Table 1. Main characteristics of MODIS products used in this work.

Sensor Platform Layer Name Spatial Res. Temporal Res.
(km) (days)

MODIS Aqua LSTday, LSTnight MYD11A1 1 1
MODIS Terra + Aqua Albedo, α MCD43A3 0.5 1 (16 days average)
MODIS Terra EVI MOD13Q1 0.25 16
MODIS Aqua EVI MYD13Q1 0.25 16

The 8 day delay between the MOD13Q1 and MYD13Q1 products allows to obtain layers of
both EVI combining AQUA and TERRA satellites with a temporal resolution of 8 days. The process
involves 3 steps: (1) Elimination of pixels with very low quality or with large observation errors. To this
end, according to [40] all pixels with a value greater than 5 in the VI usefulness index (VIUI) [41,42] were
removed. (2) Combination of the EVI layers obtained by the MOD13Q1 and MYD13Q1 in those pixels
whose values of both products were available. (3) Filling the gaps after step 2. If EVI values one week
before and one week after were available, the average of both layers was used. Otherwise, the values
estimated one week earlier or later were used. If no EVI values were available for the prior or the
posterior weeks, the same process were carried out with the estimated values for 2 weeks before
and after.

With regard to the LST layers, we decided to use those provided by the product MYD11A1,
since AQUA passage time is closer than TERRA’s to the temperature recording time. The LST layers
were corrected taking into account the quality of the different pixels. In this case, according to [43] the
LST pixels with an error estimation of more than 3 degrees Kelvin were removed. The GRASS module
i.modis.qc was used to obtain the error layers. We also used the MODIS White-Sky Albedo layer as
albedo estimation.

The hourly cloud fraction layers available in the database CMSAF-COMET Edition 1 [44] were
used to obtain layers of the mean cloud fraction during the daytime period. This raster database
(resolution of 0.05 ◦) collects information on the fraction of cloudiness obtained from METEOSAT
satellites, with an hourly time resolution. With the objective of giving greater importance to the central
hours of the day, when the irradiation is concentrated, the daily layers were obtained as a weighting
average of the hourly layers. The cosine of the angle of the solar zenith (β), proportional to the
radiation received at any given time, was used; for the nocturnal layers w = 0 and for the diurnal
layers w = cos β/ ∑(cosβ).

2.2.3. Geographical Variables

Some of the geographical variables (elevation, distance to the sea, potential insolation and TWI)
used as predictors with the regression methods were calculated from the official 25 m resolution Digital
Elevation Model (DEM) downloaded from the Spanish National Geographical Institute (Instituto
Geográfico Nacional, IGN) website (http://centrodedescargas.cnig.es/CentroDescargas/index.jsp).

http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
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2.3. Estimation Methods

Four methods were used to estimate air temperature at the satellite passage time: MLRM, SVM
and RF are regression (global interpolation) methods that rely on predictor variables to estimate the
dependent variable; in this paper, only satellite data and other predictors that can be easily obtained
were used, the first based on classical statistics and the last two on machine learning; finally OK, a local
interpolation method that does not take into account predictors, was used for comparison. Finally,
the residuals of the three regression models were interpolated with OK to obtain regression-kriging
models (GLSRK, SVMRK and RFRK).

2.3.1. Multiple Linear Regression

Simple and multiple linear regression models (MLRM) are the most popular models for estimating
air temperature. MLRM is a global interpolation method in which a functional relationship is
defined between the dependent variable (in this case maximum and minimum temperature estimated
in different observatories in the territory), and a set of spatially distributed environmental and
geographical variables. The parameters may be estimated using ordinary least squares (OLS) or
generalised least squares (GLS), a modification of OLS that takes into account the heterocedasticity
and the spatial correlation in the observations. In this work, we used the implementation of GLS in the
R package nlme [45].

The assumptions of the model were assessed by hypothesis contrasts: the Kolmogorov-Smirnov
test to assess the normality of residuals (usually met) and the Breush-Pagan test to assess
homocedasticity (usually not met).

With all the regression methods, a first step of variable selection was carried out using the Variance
Inflation Factor (VIF) methodology proposed by [46]. In the case of MLRM a subsequent stepwise
procedure was carried out to minimise the number of variables to provide a more parsimonious model.

2.3.2. Support Vector Machines

SVM [47] was originally developed for classification but it was adapted to regression as a robust
method that tries to minimise the effect of outliers. SVM for regression is described in [48]. Instead
of trying to minimise the sum of squared errors, data points whose residual absolute values are
lower than a user defined threshold (ε) do not contribute to the fit, whereas points with |e| > ε,
the so called support vectors, contribute linearly rather than quadratically to the error objective
function to be minimised. This somewhat counterintuitive approach (the more accurately predicted
points are not used to fit the line) has proven effective. A detailed description of this method can be
found in [48] or [49].

SVM has been reported to obtain similar accuracy as RF and better accuracy than other machine
learning methods such as neural networks [50–52]; however, its main drawback is that there is no
way to know in advance which kernel and parameter values will give the best results. In this case,
we reduced the problem by using a radial basis function (RBF) kernel. We optimised parameters C and
σ simultaneously using a grid search method, 10-fold cross validation with the training data and mean
squared error as performance measure. The implementation used was that of the R package e1071 [53].

2.3.3. Random Forest

RF [54] is an ensemble of decision trees. Decision trees are characterised by a small bias but
a high variance. RF tries to solve this issue by training several (500 as default) decision trees. Each tree
is trained with a bootstrapped subsample of the available training cases. In addition, every time
a variable has to be selected to split a node, only a subset of the independent variables is considered
(by default the integer part of

√
p where p is the number of variables). In this way, although each tree

provides a high variance estimation, averaging the results of all of them will result in a low bias and
low variance estimation.
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RF has 4 main advantages over other machine learning methods: (1) It provides an internal
cross-validation procedure, (2) the default values for the parameters provide optimal estimations most
of the times, (3) the decrease in heterogeneity provided by each variable along the calibration process
of each tree, when aggregated, provides a measure of the importance of each variable, (4) it is possible
to obtain an estimation of the effects of the different predictors on the model, allowing the operator to
decide if such effects are physically sound or not. Points 3 and 4 mean that RF is not really a black box
model, as other ML techniques; rather it might be considered a grey box model.

In this work, we used the version in the R ranger package [55], a very fast and memory efficient
implementation of RF. We used the default values for the ntree (500) and mtry ( f loor(

√
p)) where p is

the number of predictors. Previous research [56,57] has shown that the accuracy achieved with such
parameters is usually near the optimum.

2.3.4. Ordinary Kriging

OK is a local interpolation method based on the regionalized variable theory [58]. It uses solely
the values measured in the observation points and their location. Its main advantage over other local
interpolation methods (such as Inverse Distance Weighting) is that a statistical analysis of the spatial
variability of the values is previously performed and summarised in the semivariogram function.
Finally, OK performs, at each pixel, a weighted average of the values in the surrounding observation
points with the weights calculated as a function of the semivariogram. The assumptions of OK are
normality and first and second order stationarity, that is, the mean and the variance are constant in the
area. These assumptions are rarely met, so several variations have been proposed to deal with trends in
the data: e.g. Universal Kriging (taking into account spatial trends in the values) and regression-kriging
(taking into account other predictors).

In this work, we used the R package automap [59], its main advantage being the
automatization of a weighted least squares optimal estimation of semivariogram parameters using
Gauss-Newton [60]. The variable was log-transformed to obtain a normal variable.

2.3.5. Regression-Kriging

A different approach is to perform a global (regression) interpolation, and interpolate its residuals
with a local (e.g. kriging) method. In this way the local variability not explained by the global model
and accounted in their residuals is dealt with by the local method.

Universal kriging is a well known method that firstly fits with a linear model a global
surface using coordinates as predictors and secondly interpolates the residuals with OK [61].
Regression-kriging [62,63] is the same approach but using any environmental variables as predictors.
Obviously any global method (GLS, RF, SVM, etc.) can be used in the regression part and any local
interpolation method can be used instead of kriging to deal with the residuals. In this work we used
OK to interpolate the residuals of MLRM, SVM and RF.

2.3.6. Validation

As the aim of this work is to evaluate the predictive performance of different models, cross
validation was carried out for the seven estimation methods. Two types of problem have been raised
about the use of cross-validation with spatio-temporal data when the objective is to extrapolate
outside the spatio-temporal structure. Firstly, error estimates in a random cross validation may be too
optimistic [64]. Secondly, time-static spatially distributed predictors (such as elevation) are prone to
over-fit models [65].

In order to solve the spatial autocorrelation problem, it is advisable to validate with cases that
are far enough from the training data to decrease spatial dependence and avoid too optimistic error
estimates [64,66]. Something similar occurs with time-correlated data [64].

To carry out cross-validation, we have considered two approaches. Firstly a simple leave-one-out
CV (LOO-CV) in the spatial domain, in which each case is used to validate a model calibrated with
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temperature data from the other observatories in the same day. The next pseudocode shows how
it works:

for each location i {
for each time t {

calibrate a model with D[-i,t]
estimate Tair in D[i,t]
compute error[i,t] as Estimation - Real

}
}

Secondly, a block cross-validation strategy [67]. Blocks are similar to folds in k-fold
cross-validation, but, instead of the cases in each block being randomly selected (as in folds), all
cases in a block correspond to a spatio-temporal subset of the 3D space formed by the 2D space and
time. Spatial blocks forces testing on more spatially distant records, thus decreasing spatial dependence
and reducing optimism in error estimates [66]; temporal autocorrelation is functionally similar, and
blocks may be drawn in the same manner to better ensure independence between cross-validation
folds [64]. The size of such blocks is determined after an analysis of the spatio-temporal autocorrelation
identified in the data studied.

In order to implement k-block-CV, a prior study of the temporal and spatial autocorrelation of
the daily instantaneous temperature was carried out. The temporal autocorrelation was analysed
using autocorrelation functions (ACF) and partial autocorelation functions (PACF), and the spatial
autocorrelation was analysed using semivariograms. In both cases the objective was to identify the
distance (meters) and time lag (days) beyond which autocorrelation ceases to affect. The lag values of
the ACF in each station and the ranges of the semivariograms in each day were obtained, allowing
to estimate the adequate size for the k-spatial and k-temporal blocks inside each k-spatial block.
The number of resulting blocks was the number of spatial multiplied by the number of temporal blocks.

In order to solve the second problem, concerning the predictor selection, a forward feature
selection algorithm (FFS) [65] was applied to the variables selected in the VIF analysis. The algorithm
is implemented in the R CAST package [65]. It, firstly, trains models of all possible 2-variable
combinations, keeping the best model. Then, the number of predictors is iteratively increased and the
improvement of the model tested for each additional predictor. The process stops when none of the
remaining variables decreases the error of the currently best model [65]. The k-block-CV framework is
used in FFS to obtain performance statistics.

Bennett et al., [68] state that Goodness of fit statistics measure different performance aspects,
so several statistics should be used to decide which is the most accurate model. Four statistics,
whose detailed description and interpretation criteria can be consulted in [69] or [68], were used in
this research:

Root mean square deviation (RMSE):

RMSE =

√
∑n

i=1(Oi − Ei)2

n
(3)

Coefficient of determination (R-Squared):

R2 =
(COV(O, E)

sO · sE

)2
(4)

The modified Nash-Sutcliffe efficiency (NSE) measures the relative magnitude of the residual
variance compared to the observed data variance, it is less sensitive than R2 to outliers [69]:

NSE =
∑n

i=1(Oi − Ei)
2

∑n
i=1(Oi − Ō)2 (5)
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NSE ranges from -Inf to 1, this last value indicating a perfect match. If NSE = 0, the model is as
accurate as using the mean of the observed data as predictor. If NSE < 0, the observed mean is a better
predictor than the model.

Percent bias (PBIAS) measures the relative tendency of the estimated values to differ from the
observed values. It is less sensitive than RMSE to outliers and to the magnitude of the data:

PBIAS =
∑n

i=1(Oi − Ei)

∑n
i=1 Oi

(6)

The optimal value of PBIAS is 0, with positive values indicating overestimation and negative
values indicating underestimation.

In Equations (3) to (6), Oi are observed values and Ei estimated values. The four statistics
were calculated for both validation methodologies. For LOO-CV in the spatial domain, they were
calculated each day, so statistical distributions of their values along the year can be obtained and
compared. An alternative option would have been to calculate statistics for each observatory; however,
the temperature variations along the year would produce high R2 and NSE values even if the accuracy
of the different observatories were small (Simpson paradox).

As normality and homocedasticity could not be assumed, a robust version of one-way ANOVA
using a heteroscedasticity-consistent covariance matrix of the parameters (HC3) method [70] to test
whether differences among the methods were significant. If that was the case, a post-hoc contrast
between pairs of models, based on Tukey–Kramer contrast and using HC3 method to correct p-values
among classes, was performed to discover groups of non-significantly different methods.

3. Results

Two different validation approaches were used in this work, but the main objective was to compare
different interpolation methods. For this reason we will present the results comparing the accuracy of
the different methods, first with the LOO-CV in the spatial domain approach, and, later, with k-block
Cross-Validation.

3.1. Leave-One-Out Cross-Validation in the Spatial Domain

For the regression models (GLS, RF, SVM) a VIF analysis was previously performed to recursively
eliminate those variables with a high linear correlation with the rest. Recommended threshold values
for VIF range from 5 [71] to 10 [72]. In this work it was firstly established in 5, but it was relaxed to
allow the inclusion of LST (VIF = 6.43) as we considered LST, a priori, the most significant predictor,
it is near to the lowest recommended value than to the higher recommended value, and the finally
eliminated predictors have VIF values way larger: day duration (VIF = 39.04) and latitude (VIF = 24.43).

Both latitude and day duration were filtered out for their high correlation with other variables.
Day duration is highly correlated with cdayt, and, due to the NW-SE altitude descent, altitude and
longitude make latitude redundant in the study area (see Figure 3).

Table 2 and Figure 4 show the results of the cross-validation of the eight methods. The number
of days were 121 with RF, RFRK, SVM, SVMRK and OK, and 118 with GLS and GLSRK. The cross
validation was limited to those days in which the number of observations (weather stations without
clouds and with data available for that day) was greater than the number of predictors (10). That means
121 days including 3995 predictions. However, in the case of GLS and GLSRK, the final set of predictions
was 3928 and 118 days due to errors derived from the estimation of the variance-covariance matrix.

On average, validation statistics indicate that RFRK obtains the most accurate results, followed by
RF. In addition, GLS and GLSRK show very high prediction errors, although predictions with absolute
residuals larger than 20 ◦C were filtered out. When this filtering was carried out, the final number
was 3886 in the GLS and GLSRK models. In the case of GLS and GLSRK, errors occurred in areas
outside the domain and/or range of the data and in areas with local effects that implied situations
not considered in the linear relationship estimated in the general model. In these cases, as can be seen
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in Figure 4, machine learning methods are more accurate. This difference is due to the fact that the
linear models predict poorly outside the boundaries of the training data set, whereas the machine
learning methods have a better generalisation capability and predict well outside the boundaries of
the training data set [73].

Table 2. Mean and confidence intervals of the four validation statistics calculated for the seven
temperature estimation methods and LOO-CV in spatial domain approach. The contrast for PBIAS is
done with absolute value.

GLS RF SVM GLSRK RFRK SVMRK OK

R2 0.493 ± 0.024 0.558 ± 0.019 0.460 ± 0.018 0.506 ± 0.024 0.612 ± 0.019 0.482 ± 0.018 0.515 ± 0.021
NSE −0.679 ± 0.43 0.504 ± 0.022 0.405 ± 0.019 −0.620 ± 0.423 0.578 ± 0.025 0.452 ± 0.021 0.468 ± 0.029
RMSE 1.587 ± 0.097 1.181 ± 0.025 1.301 ± 0.025 1.550 ± 0.096 1.068 ± 0.027 1.236 ± 0.023 1.214 ± 0.036
PBIAS 0.009 ± 0.144 0.036 ± 0.038 0.184 ± 0.037 0.060 ± 0.151 −0.172 ± 0.046 0.125 ± 0.038 0.340 ± 0.033
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Figure 4. Boxplot showing Anova results of the 4 validation statistics calculated for the seven
temperature estimation methods and LOO-CV in spatial domain approach. Significantly different
groups (Tukey–Kramer contrast using heteroscedasticity-consistent covariance matrix of the parameters
(HC3), alpha = 0.05) are represented by different letters.

The ANOVA shows significant differences among the algorithms for all the statistics with large
F values (R2: 18.907, NSE: 17.053, RMSE: 67.698, PBIAS: 26.847) and p-values lower than 0.001 in all
cases. Table 2 and Figure 4 show detailed results of such an analysis. The letters above the plots in
Figure 4 indicate to which groups of non-significantly different values belong each method. According
to NSE and RMSE, RF with kriging of the residuals (RFRK) is significantly better than the other
methods (group a in Figure 4a,c). The next more accurate method is RF (NSE = 0.504± 0.022 and
RMSE = 1.181± 0.025 oC), increasing NSE and worsening the RMSE results of the previous method
(NSE = 0.578± 0.025 and RMSE = 1.068± 0.027 oC). According to R2 RFRK is the most accurate
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method with the exception of RF without residual kriging. Several methods (all except GLS and
GLSRK) obtain PBIAS values near to zero and do not show significant differences, so those methods
do not overestimate or underestimate temperature values. Figure 4d represents the percentage of bias
obtained, but the groups in the a posteriori contrast are obtained using bias in absolute terms. RF and
RFRK (group a and ab respectively) are the most accurate cases. RF underestimates the temperature
by 0.04%, while RFRK overestimates it by 0.17%. It is noteworthy that GLS and GLSRK, whose mean
PBIAS are practically 0, obtain biases in absolute terms greater than the rest. The R2 values obtained
by the regression models were very high when measured in calibration (GLS: 0.9165, RF: 0.9939 and
SVM: 0.9627).

From these results we conclude that, in general, RF-based methods are more accurate and their
performance increases when spatial component are included (RFRK). It is also noteworthy the greater
variance observed in the GLS method versus machine learning and OK based methods (Figure 4).
This results show that the accuracy is very different among observatories and, therefore the robustness
of the methods is lower.

Figure 5 shows the importance of the predictors and their effects on the RF model. Effects in RF
are computed using partial plots. In such plots, the prediction for a variable X, evaluated at X = x, is:

f (x) = ∑n
i=1 f̂ (x, xi, o)

N
(7)

where xi,o represents the value for predictors other than X for individual i and f̂ is the predicted value.
For continuous variables, red points indicate partial values and dashed red lines indicate a smoothed
error bar of +/− two standard errors. Black dashed line are the partial values. We used the function
partial.plot in the R package randomForestSRC [74].

The most important predictors are LST, cdayt and radiation. The effect of all of them are clearly
as expected, except the slight reduction in estimated temperature for the largest radiation values.
We think the real behaviour might be a stabilisation of temperature for high radiation, although this
was altered because of the three points with larger temperature estimation, which may represent a local
effect. The least important predictors also have sound effects, although in two of them (albedo and
TWI) confidence intervals are too large to draw any clear conclusion. On the other hand, the effects of
longitude and TWI are very small, less than 1 ◦C.
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Figure 5. Effects and importance of predictors in the Random Forest Model and LOO-CV in spatial
domain approach.

3.2. K-block Cross-Validation

Figure 6a shows the semivariogram of the mean of the daily instantaneous temperature values;
its range is about 49 km. Figure 6b shows a boxplot of the range values estimated in the different
daily semivariograms. In every case the range is higher than 80 km, so this value was used as the size
of the spatial blocks. The blocks were generated with the R blockCV package [67], obtaining finally
7 cells distributed in k = 6 blocks as the number of cases in the two cells forming block 1 is quite low.
The cells, and block identification, are included in Figure 3.
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Figure 6. (a) semivariogram of the mean of the daily instantaneous temperature; (b) boxplot of the
semivariogram estimated ranges of daily instantaneous temperatures.

Figure 7a represents the autocorrelation function (ACF) of the daily average of instantaneous
temperature of all weather stations. As expected, this variable shows a clear intra-annual cyclic
behaviour. Figure 7b shows the distribution of the first non-significant lag time for all weather stations.
According to the figure, 25 days may be considered a safe threshold beyond which no autocorrelation
occurs. So, blocks with temporal size larger than 25 days guarantee that temporal autocorrelation is
not affecting cross-validation. However, to reduce computation time and to avoid problems due to
some missing data, just two temporal blocks were used.
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Figure 7. (a) ACF of the aggregated time series; blue dashed lines represent the 95% confidence
intervals. (b) Distribution of the first non-significant lag time (in days).

An additional problem of this k-block-CV approach is that cases in the border of a spatio-temporal
block are nearer to cases in the neighbour blocks than the advisable distance,so it is safer to reduce the
number of blocks to reduce the percentage of such cases. To avoid this issue, to reduce computation
time and to avoid problems due to some missing data, the number of temporal blocks was reduced
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to 2. Therefore, in this study a spatio-temporal k-block-CV with K = 36 (6 spatial blocks and 2 temporal
blocks) was implemented.

Table 3 shows the accuracy statistics for the three main predictive models. Neither local nor
regression-kriging were validated with this approach because the computing time was excessive and
because the semivariograms computed in a blocks are not necessarily representative for other blocks.
Figure 8 shows these values and also the results of the comparisons of the values of the statistics. RF is
the most accurate method according with all statistics, only PBIAS gives not very different results for
all methods.

Table 3. Mean and confidence intervals of the four validation statistics calculated for the three
temperature estimation regression methods and spatio-temporal k-block-CV approach. The contrast
for PBIAS is done with absolute values.

GLS RF SVM

R2 0.805 ± 0.039 0.888 ± 0.026 0.827 ± 0.036
NSE 0.444 ± 0.135 0.805 ± 0.064 0.571 ± 0.135
RMSE 5.251 ± 0.693 3.009 ± 0.325 4.606 ± 0.968
PBIAS 8.142 ± 12.249 6.258 ± 4.013 10.092 ± 9.528

●
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Figure 8. Boxplot showing Anova results of the four validation statistics calculated for the four
temperature estimation regression methods and spatio-temporal k-block-CV approach. The contrast
for PBIAS is done with absolute values. Significantly different groups (Tukey–Kramer contrast using
heteroscedasticity-consistent covariance matrix of the parameters (HC3), alpha = 0.05) are represented
by different letters.

Figure 9 shows the RF importance and the effects of the variables that overcome the fast forward
feature selection method. The most important variables are satellite land surface temperature, cdayt
and radiation. Considerably less important variables, but still in the model, are time passage of the
satellite, distance to the coast, and elevation.



ISPRS Int. J. Geo-Inf. 2019, 8, 382 16 of 23

All the effects are quite significant as their confidence interval are quite narrow, both the confidence
intervals and the shape of the effects plots are quite similar to those shown in Figure 5 for the
same variables.
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Figure 9. Effects and importance of predictors in the RF Model with the variables selected by FFS
algorithm and k-block-CV to evaluate performance.

3.3. Final Prediction

Figure 10 shows the resulting temperature maps at the satellite passage time for the seven methods
analysed. The spatial pattern produced by OK is clearly poorer as it does not use any ancillary data.
The patterns produced by the regression methods are quite similar, reproducing the influence of the
topographical variables that are relevant for the modelling of the spatial variability of temperature.
The main differences among the regression methods involves the prediction of maxima and minima.
The regression trees on which RF is based prevent the prediction of abnormally high or low values
when the values of the predictors exceed the values used in calibration. This does not happen with GLS
or SVM, whose maps show higher extremes, especially in the case of the GLS model. These extreme
values are, however, smoothed by the kriging of the residuals. Although the lack of anomalous values
when predicting beyond the range of values used to calibrate the model is probably a point in favour
of RF, it is difficult to ascertain to what extent it may result in an overestimation of minima and
underestimation of maxima. Finally, all regression methods produce an artifact in the cells nearest the
coast, which show temperature values probably lower than the real values.
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Figure 10. Predictions for day 145 in 2012.

As was mentioned in the introduction, SVM has been reported to obtain similar accuracy than
RF and better accuracy than other machine learning methods such as neural networks; however, its
main drawback is that there is no way to know in advance which kernel and parameter values will
give the best results. It is noteworthy that, in this study, RF obtained more accurate results than SVM,
even when the parameters of the latter were optimised (C = 8, σ = 0.072) but not those of the former.

4. Discussion

Some of the research in which instantaneous temperature values are obtained at the time of
passage of the TERRA and AQUA satellites on clear days, are based on the adiabatic lapse rate [6,27].
In these research, RMSE values of 3.3 ◦C and 2.6 ◦C, respectively, were obtained. Other studies are
based on the assumption of a hydrostatic equilibrium in the atmosphere [27,75], obtaining an RMSE of
2.9 ◦C in both works. Most of the work related to the estimation of the air temperature from remote
sensing data and using regression models are focused on obtaining the maximum and minimum
temperatures, but not on the estimation of Ta at the time of satellite passage. In this sense, ref. [15]
propose a multiple linear regression using as predictors some of the variables used in the present work
and in which they obtain an RMSE of 1.9 ◦C, although in this case the results do not correspond only to
clear days, so their results are not extrapolable to those obtained in this work. The results obtained in
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the present work, especially for RF and RFRK, represent an important improvement with respect to the
models based on the adiabatic lapse rate or on the hydrostatic equilibrium of the atmosphere and can be
of great help for the improvement of the estimation of the real evapotranspiration, on a regional scale.
Traditionally, the temperature at the time of the passage of the satellites, required by most methods,
has been obtained using mechanical interpolation techniques, as the Inverse Distance Weighting [76]
or models based on the hydrostatic equilibrium of the atmosphere from the values provided by the
MODIS MOD07 product [77], which in addition to presenting a lower accuracy than that obtained for
RFRK in this work, have the disadvantage of having a spatial resolution of 5 km.

In this paper, two different approaches to cross validation have been used: LOO-CV in the spatial
domain and spatio-temporal k-block-CV. The latter approach arises from concerns about the problems
of doing random cross-validation with spatio-temporal data due to a lack of independence among
samples. In our case, quite larger R2 and NSE values when doing k-block-CV, whereas RMSE and PBIAS
values were also larger. The reason of the difference in RMSE and PBIAS when comparing the two
validation methods is that the range of air temperature values in LOO-CV in the spatial domain models
(using just one day) is lower than the corresponding range in the k-block-CV models (using 182 days).
For this reason, comparison of RMSE and PBIAS among different validation approaches could be
misleading; however, comparisons of R2 and NSE are quite safer. The fact that LOO-CV in the spatial
domain produces lower accuracy statistics is probably due to the use of a quite lower number of data
when calibrating the models.On the other hand the results on which method is more accurate are also
similar, with k-block-CV highlighting RF as the most accurate method.

It is difficult to establish the generalisation capability of this approach. The fact that in this case
RFRK were the best model does not mean that it is going to be the best model in other areas. In general,
it is not easy to pointing out a machine learning method as the best, in any research field. We think
that similar investigations are needed in different areas, so that a meta-analysis of their results might
be carried out to obtain some insight on which methods work best and under what circumstances.

5. Conclusions

The results obtained in the present work, especially for RF and RFRK, represent an important
improvement with respect to the most widely used models. The accuracy of different machine learning
algorithms was tested and compared with those of more traditional methods, such as MLRM and OK.
The framework built for that goal is based on free and open source software and would be easily
reproducible in other study areas. Easy to obtain environmental variables were used as predictors.
Finally, this methodology produces daily temperature distributed surfaces with an accurate fit to the
observations. It is noteworthy that the spatial variability of both temperature and environmental
predictors in Mediterranean semiarid environments and the heterogeneous landscape due to intense
human pressure difficult the estimation of environmental variables.

Both validation approaches show that machine learning algorithms, specially RF, reach
significantly higher accuracy values. The use of both approaches allows a better knowledge of model
accuracy in two different situations: Spatio-temporal k-block-CV allows to evaluate in a realistic
way the accuracy of models that include all observations in time and space, considering the effect of
spatio-temporal dependence. On the other hand, LOO-CV in spatial domain is an accuracy estimation
considering a very small number of observations: n− 1 where n is the number of observatories, and
all the data corresponding to the same day.

RF with OK of the residuals obtained the most accurate results with R2 = 0.888, NSE = 0.805,
RMSE = 3.009 and PBIAS = 6.258. The last result indicates that it is the only method that produces
a slight temperature underestimation, whereas the rest of the methods overestimate temperature to
a greater or lesser degree. The maps obtained with RF do not show the extreme values usually present
in other regression methods, and that also appear in this study.
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The introduction of environmental information related with temperature and easy to obtain from
a DEM improves the prediction capability of the model. In particular, potential radiation, distance to
the coast and elevation turned to be selected variables in both feature selection strategies.

K-block-CV produced a higher accuracy estimation than LOO-CV in the spatial domain. Probably
because in k-block-CV calibrated models used quite more data than LOO-CV in the spatial domain,
so the space of variables are more thoroughly sampled. The purpose of LOO-CV in the spatial domain
is not really to obtain a a global accuracy measurement, but to obtain the accuracy in specific days.
However, the ranking of methods was similar.

The variable selection based on k-block-CV produced a smaller set of predictors (6) than the
variable selection based on LOO-CV in the spatial domain (10). All the predictors not included by the
first one turned to be of scarce importance in the RF model. The most important predictors are LST,
cdayt and potential radiation. This three predictors are physically quite correlated with air temperature.
The satellite passage time, distance to the coast and elevation are less important. The last two predictors
have a quite clear and physically sound effect on air temperature time. It is evident in the case of
elevation, and in the case of distance to the coast, due to the high temperatures in the study area, the
sea acts as a cooling factor more than a warmer factor. It is less clear the effect of the satellite passage
time that should be analysed in further research.
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