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Abstract: Developers have long used game engines for visualizing virtual worlds for players to 
explore. However, using real-world data in a game engine is always a challenging task, since most 
game engines have very little support for geospatial data. This paper presents our findings from 
exploring the Unity3D game engine for visualizing large-scale topographic data from mixed sources 
of terrestrial laser scanner models and topographic map data. Level of detail (LOD) 3 3D models of 
two buildings of the Universitas Gadjah Mada campus were obtained using a terrestrial laser 
scanner converted into the FBX format. Mapbox for Unity was used to provide georeferencing 
support for the 3D model. Unity3D also used road and place name layers via Mapbox for Unity 
based on OpenStreetMap (OSM) data. LOD1 buildings were modeled from topographic map data 
using Mapbox, and 3D models from the terrestrial laser scanner replaced two of these buildings. 
Building information and attributes, as well as visual appearances, were added to 3D features. The 
Unity3D game engine provides a rich set of libraries and assets for user interactions, and custom C# 
scripts were used to provide a bird’s-eye-view mode of 3D zoom, pan, and orbital display. In 
addition to basic 3D navigation tools, a first-person view of the scene was utilized to enable users 
to gain a walk-through experience while virtually inspecting the objects on the ground. For a fly-
through experience, a drone view was offered to help users inspect objects from the air. The result 
was a multiplatform 3D visualization capable of displaying 3D models in LOD3, as well as 
providing user interfaces for exploring the scene using “on the ground” and “from the air” types of 
first person view interactions. Using the Unity3D game engine to visualize mixed sources of 
topographic data creates many opportunities to optimize large-scale topographic data use. 

Keywords: LOD3; first-person view; drone view; Unity3D; game engine; Mapbox 
 

1. Introduction 

Three-dimensional representations of the real-world on computers and mobile phones have 
been widely used in both virtual globes and games. Virtual globes, which include a wide range of 
graphical computer applications presenting the earth’s surface as a globe (e.g., Google Earth [1,2]) 
and open-source application programming interfaces (APIs) known as World Wind [3] and Cesium 
[4] were launched initially to enable 3D geospatial data dissemination and visualization [5]. Since 
their introduction, virtual globes have opened up many possibilities for experts and users to exchange 
and disseminate 3D world data for many application domains (e.g., environmental protection and 
disaster response [6]) and as a platform for collaboration [7,8]. In contrast, 3D representations of earth 
in games were initially used to provide realistic scenes, but advanced developments in computer 
game engines have allowed developers to use them as a multiplatform for creating interactive 
visualizations [9]. Recent literature has demonstrated the use of game engines for visualizing 
geospatial data for many applications, such as building information modeling and archaeology [10–
12]. 
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Compared with virtual globes, game engines provide more functions to enrich user interactions 
and experiences. An important built-in feature of game engines is the first-person view (FPV), which 
is the ability of the user of a video game or a drone to see from a particular visual perspective other 
than one's actual location. FPV enables game engine users to control their movement and even move 
skillfully or perform a set of extreme actions such as rolling and acrobatic movements while 
interacting with real-world models. Game engines’ support of various 3D data formats also affords 
the use of diverse topographic data. This potential should be realized as high user interaction with 
large-scale topographic databases derived from different data sources, which can be useful for 
supporting human analytical reasoning and communication as shown, for example, in Ref. [6] for 
crisis management and Ref. [13,14] for interactive geodesign. The challenge that was addressed in 
this work was the utilization of mixed sources of large-scale topographic data both from regular (e.g., 
OpenStreetMap) and professional (e.g., terrestrial laser scanner data) users into a game engine for 
more meaningful 3D visualizations.  

Game engines have long been known to provide a user experience similar to real-world 
situations. Serious games, that is, games used for purposes other than pure entertainment, have been 
used in different cases for education, simulation, and game-based learning [15], examples of which 
include disaster education [16], military simulations, city visualizations, and various other 
applications. Gamification strategies have been employed for developing game applications with 
serious purposes, such as data collection and information dissemination for environmental protection 
[17]. 

Games are an effective way to provide simulated environments to players and, thus, are an 
advantageous media for visualization. A game engine, as a platform for developing games, could be 
used to provide user experiences for exploring virtual or ancient cities. Game developers could also 
utilize the ability of game engines to design user interactions strategy for the purpose of visualizing 
data. With these advantages, game engines can be used to create real-world models. Previous works 
have utilized game engines to visualize real-world terrain [18], create a 3D city model [12], or simulate 
an environment [19]. However, most geovisualizations using game engines lack the ability to provide 
georeferenced models and, thus, do not serve as an ideal platform for visualizing topographic data. 

The objective of this paper is to present our findings from exploring the Unity3D game engine 
for visualizing large-scale topographic data of the Universitas Gadjah Mada (UGM) campus from 
mixed sources of terrestrial laser scanner models and topographic map data. All campus building 
footprints, campus roads, and terrains were taken from a topographic map at a scale of 1:2500 and 
were represented as level of detail (LOD) 1 models. A digital topographic dataset was created from 
terrestrial survey activities done by the UGM office. Two LOD3 models of campus buildings were 
generated from laser scanner data. Building information and attributes, as well as visual appearance, 
were added to 3D features. User interactions and environment simulations were built utilizing the 
Unity3D game engine’s scripting.  

Section 2 presents related work on the use of game engines for visualizing geographic data and 
providing user interactions. Section 3 provides the methods used to develop 3D visualizations of 
topographic data. Section 4 presents the results from the application development, and Section 5 
discusses the lessons learned regarding the 3D map visualizations and user interactions. 

2. Related Works  

2.1. 3D Geospatial Data Visualization 

Meaningful 3D geospatial visualization of large volumes of data has challenged map producers 
and cartographers to create usable visualization methods. Three-dimensional interactivity is an 
essential user experience that has become a standard feature for most 3D visualization platforms (e.g., 
Google Earth and Cesium), such as 3D zoom, pan, and orbital display, that were commonly applied 
utilizing the WebGL framework. Animation and motion effects were also added to 3D visualization 
platforms [20]. Three-dimensional geospatial data visualization can be delivered by map producers 
to a large audience in more captivating and intuitive ways using an interactive storytelling approach 
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[21]. User interactions, animation, and motion effects, first person view capability, and possibilities 
of for use as a platform for interactive storytelling 3D visualization can be realized using game 
engines.  

2.2. Unity Game Engine 

Research into the development of geospatial-related applications based on a game engine has 
seen growth across multiple disciplines in recent years [12,22–25]. Use of game engines as a platform 
for 3D city visualization as alternatives to 3D Geographic Information Systems/Computer-Aided 
Design (GIS/CAD) systems and virtual globes in the six largest cities in Finland have been assessed 
by Virtanen et al. [26]. Powerful 3D city visualization and interactions that offer “immersive 
experiences” (e.g., Virtual Reality/Augmented Reality (VR/AR) applications) or user engagement 
(e.g., applications for public participation) on multiple computing platforms (e.g., mobile, desktop, 
VR/AR etc.) have benefitted greatly from game engine technology. The Unity3D (www.unity3d.com) 
is one of the well-known multiplatform game engines for building 2D and 3D games and simulations 
[27]. Unity could also be used to provide VR and AR games on platforms such as consoles or 
handheld mobile devices using a single codebase. Unity supports C# as its default language for 
scripting game logic, including user interactions, Non-Playable Characters (NPCs), artificial 
intelligence, and game environments. Game design in Unity could also utilize “Assets”, i.e., game 
components developed by other game developers.  

As a game engine, Unity3D could be used to develop a simulation of a real-world environment. 
Geospatial data obtained from real-world measurement could be converted to Unity-ready 3D 
formats for visualization in the Unity3D game engine. Previous works such as Ref. [28] have provided 
use cases on using geospatial data (i.e., terrain data from LiDAR and 3D buildings) for visualization 
in Unity. However, this approach is lacking in terms of real-world coordinates, making it more 
difficult to integrate different geo-related data from multiple sources. 

Mapbox Unity SDK (www.mapbox.com/unity) is an extension of the Unity3D game engine 
capable of handling geospatial data in a Unity3D environment. Mapbox enables Unity to provide 
“slippy map” tiles from a Mapbox server for underlying terrain in setting the environment in 
Unity3D. Thus, any georeferenced data could be overlain on Unity based on its real-world 
coordinates and integrated into a single game environment together with other game elements such 
as players, NPCs, and 3D virtual environments. Based on this rationale, it is possible to utilize the 
Mapbox Unity SDK for developing 3D city simulations based on geospatial data obtained from 
multiple sources. This paper presents our findings in developing 3D visualization with the Unity 
Game Engine based on topographic map data of the UGM campus in Yogyakarta. Mapbox for Unity 
SDK was used to provide a platform for integrating the data, and user interactions were developed 
using Unity C# scripting capability. 

3. Methods 

3.1. Data Integration 

The dataset utilized in this research was a combination of a campus topographic map at a 1:2500 
scale, created from terrestrial survey activities, and two LOD3 3D models representing two UGM 
buildings obtained from terrestrial laser scanner (TLS) measurements. Unity3D only accepts several 
3D formats to be consumed as a game object, e.g., OBJ and FBX. Thus, in order to import 3D models 
and topographic maps from the GIS format, it was necessary to conduct data editing and conversion 
prior to development in the Unity Game Engine. The data preparation workflow for Unity3D 
development is shown in Figure 1. 
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Figure 1. Data preparation workflow for Mapbox with Unity. 

Three-dimensional models of two buildings on the campus were obtained from two different 
TLS measurements. The first building modeled, The Department of Geodetic Engineering Building 
created from TLS measurements using the Topcon GLS-2000 instrument, resulted in 170,951,903 
points with a derived registration accuracy of 0.003 meters. The second building model, the 
University’s Main Building, surveyed using a Faro Focus X33 instrument, resulted in 73,594,371 
points with a registration accuracy of 0.015 meters. The first building had more points as the survey 
measured all corridors and interior rooms. However, the corresponding model did not consider all 
corridors and rooms. 

Topographic data was obtained as AutoCAD DXF data, which was converted to shapefile for 
editing in QGIS open-source software. Mapbox for Unity accepts only the Tileset format stored in the 
Mapbox Cloud; thus, each layer was edited separately, and additional attributes such as height and 
name were aggregated into each layer. QGIS was used for editing topographic data from the DXF 
format to shapefile and also for editing its attributes (Figure 2). Resulting layers from 2D topographic 
data were (1) buildings, (2) roads, (3) parks, (4) city forests, (5) fields, and (6) contours. These layers 
were further converted to the Mapbox Tileset format, resulting in each layer’s Map ID ingestion into 
Mapbox for Unity. Tileset was the data format used in Mapbox Studio to serve raster or vector layers 
that were divided into several tiles for each zoom level. Mapbox for Unity consumed these layers and 
translated each layer into a Unity Game Component.  



ISPRS Int. J. Geo-Inf. 2019, 8, 361 5 of 23 

 

 
Figure 2. Editing topographic data in QGIS. 

Three-dimensional models were converted to AutoCAD 3D DXF format. For this 3D file to be 
available in Unity, conversion to a Unity-ready format was performed. Blender (Figure 3) was 
utilized to convert the 3D model into FBX format. Further processing in Blender was required to 
simplify the model. The Blender Decimation operation was used to reduce the number of faces in the 
3D model for visualizing in Unity. Decimation in Blender works by collapsing the model, i.e., by 
reducing the number of vertices. For this conversion, a decimation ratio of 0.5 was used to reduce the 
number of vertices from 497.654 to 284.802 and faces from 848.392 to 424.196. The resulting 3D model 
was then imported into Unity as a game component, which was processed using Mapbox for Unity 
and overlain with topographic data from Mapbox Tilesets. 

 

Figure 3. Blender for 3D model conversion. 

3.2. Visual Appearances and Attributes Information 

With topographic data and the 3D model ready, Mapbox for Unity was used to overlay both 
datasets into Unity3D. Mapbox for Unity used three different layers as additional game components 



ISPRS Int. J. Geo-Inf. 2019, 8, 361 6 of 23 

 

in Unity3D. The three layers composed the basic structure of Mapbox Unity3D world with additional 
data and custom scripts (i.e., “modifiers”) overlain on top of them. The three layers were Imagery 
Layer, Terrain layer, and Vector layer. Imagery and Terrain layers were provided by Mapbox slippy 
maps (i.e., Mapbox Dark) and Mapbox Terrain. OpenStreetMap tile was used in the Mapbox slippy 
maps. Vector layers were composed of Mapbox Tilesets that were obtained from the 2D topographic 
map. Map layer abstraction setup as configured in Mapbox for Unity is shown in Figure 4. 

 

Figure 4. Map abstraction for Mapbox Unity3D. 

Each vector layer from Mapbox Tileset was configured with different symbols and properties. 
The building layer (called “Bangunan” in Figure 4), for example, was configured based on its height 
attribute, while top and side textures of the buildings were customized from Mapbox’s provided 
textures. Three-dimensional models from this layer were obtained as an extrusion from the terrain 
elevation. Other layers were given symbols based on textures available on Unity. Table 1 provides 
the different configurations and symbols applied for each layer in Unity3D. Roads, parks, city forests, 
fields, and contours in Table 1 were called “Jalan”, “Taman”, “Hutanj”, “Lapangan”, and “Kontur” 
in Figure 4, respectively. 

Table 1. Configurations for each Mapbox Tileset layer. 

Layer Texture Custom Modifiers 

Buildings 1 Mapbox top and side material 

Highlight building on mouse-over 
Display building’s attributes 

Replace building with 3D model 
Set colliders 

Roads Mapbox light color with transparency Remove colliders 
Parks Custom color (light green) Remove colliders 

City Forests Custom color (green) Spawn 3D tree model 
Set collider for trees 

Fields Custom color (brown) Remove colliders 
Contours Custom color (light brown) Remove colliders 

1. 3D models from the TLS replaced the extruded model in building layer. 
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Custom C# scripts (i.e., “modifiers”) were applied for each layer in the Mapbox map to provide 
custom interactions and experiences of the game components in the layer. For instance, modifiers 
were used to setup colliders, i.e., a condition wherein game players should collide instead of walking 
through an object. Colliders were set for building and city forest layers, while for roads, parks, fields, 
and contours, colliders were removed. Modifiers could also be used to set up custom scripts for 
certain conditions in the layer, such as spreading the 3D tree model in the forest area based on the 
city forest layer. Environments were also set utilizing Unity’s functionality, e.g., Skybox [29] for 
providing a sky atmosphere. 

  
(a) Before model replacement (b) After model replacement 

Figure 5. Replace model modifiers: before replacement (a) and after replacement (b). 

One of the most important uses of Modifier is to place the LOD3 3D model obtained from TLS 
into its real-world position. The FBX model was rescaled and rotated to match its real-world 
condition, while Mapbox’s Replace Feature Modifier was used to place the model into the correct 
position based on its corresponding extruded 3D model from the topographic map. Figure 5 shows 
the 3D model in the building layer before and after model replacement using Replace Feature 
Modifier. The LOD3 model from TLS could be positioned correctly and overlaid with other 
topographic data from Mapbox Tileset. 

3.3. Map Interactions 

With all the data in place, user interface and interaction logic were built into the Unity Game 
Engine. Custom scripts using C# were utilized for camera navigation, player movements, and user 
interface. Unity provides a set of basic navigations for setting camera position dynamically. However, 
custom scripts were developed to better suit navigation in the 3D map environment. Camera 
navigations were divided into the following: 
• Bird Eye View. Users control the camera movements on the map, i.e., panning, rotating/tilting, 

look-around, and zoom in/out.  
• FPV. Camera is attached to the player, where users control their movement freely. 
• Drone View. The user controls a quadcopter drone to explore the scene. 

Bird Eye View navigation was obtained using the raycasting method, where camera position 
was deduced based on intersecting rays and the ground surface [30]. Different functions were 
assigned to each button in a mouse for providing user interactions. Figure 6 shows functions assigned 
to each mouse button on the custom C# script for Bird Eye View. 
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Figure 6. Mouse interactions built using a custom C# script for Bird Eye View navigation. 

FPV utilized the Unity Standard Asset for the first-person shooter (FPS) controller [31]. This asset 
comprises game components to deliver user navigation strategies, including a FPV. The first-person 
controller used keyboard (W-A-S-D, shift, and arrow buttons) for controlling the movements of the 
player, while the mouse pointer was used for the viewing direction of the camera. A similar 
configuration was used for the drone controller. 

User interface was provided using buttons to access each function. The menu consisted of 
buttons to toggle Minimap, switch to FPV, Explore by Drone, Reset Camera Position, and show the 
“help” menu. The Minimap was built using C# scripting to provide visual cues as a top-down-looking 
map to assist in navigating the scene during Bird Eye, First-Person, or Drone View. The menu was 
built using Unity UI components and was controlled using C# scripts for their interactions. Figure 7 
shows the logical flow designed for the application interface. 

 

Figure 7. Logical flow of the application interface. 

Several scripts combined with game components and assets were used to control the user 
interface. The C# scripts captured user interaction and provided functions related to user input. These 
scripts watched mouse movements, displayed information, converted the user screen to coordinates, 
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showed/disabled interface components, and loaded attribute information based on user interaction. 
Interactions between the scripts and game components allowed the interactions to be designed for 
adaptation to various visualizations required for 3D exploration of spatial data. Figure 8 shows an 
example of a script used for handling mouse interactions for panning, tilting, zooming, and rotating 
the camera in the Bird Eye View navigation (See Appendix B).  

 
Figure 8. Sample C# script for handling mouse interactions. 

4. Results 

The online version of the interactive 3D Viewer could be accessed by users from the resulting 
website (please see supplementary materials). The web version was obtained from Unity as built into 
the WebGL platform, which was further deployed to an Apache webserver. The multiplatform nature 
of Unity3D was used to build different versions on a Windows desktop computer and Android using 
the same codebase. The WebGL version was the easiest to disseminate to users since no requirements 
other than web browsers were needed to open the 3D visualization. The WebGL version worked 
inside the web browser, providing user interactions built into Unity3D. Users navigate the scene 
using a mouse and keyboard on the ground with FPV and from the air with Bird Eye View (i.e., 
defined as FPS or drone mode in the interface). Mapbox for Unity provided slippy maps and layers 
to integrate topographic data and a 3D model from a TLS into a game environment. Bird Eye View 
and FPV could be used to navigate the scene, using a mouse and keyboard for interactions. 
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Figure 9. Main interface of the 3D geovisualization application. 

Figure 9 shows the main interface for interacting with the 3D scene. The main menu is shown in 
the bottom-left part of the screen, showing buttons for interacting and controlling the camera to 
explore the scene. The main scene adapts to the user’s selection of navigation mode, whether Bird 
Eye View, First Person View, or Drone Explorer. Latitudinal and longitudinal coordinates shown on 
the bottom-right part of the screen also adapt to each navigation mode. In Bird View mode, the 
coordinates represent the world coordinates of the mouse; hence, moving the mouse should give the 
coordinates of the mouse pointer projected to the ground plane. In First-Person and Drone Explorer 
view, coordinates represent those of the center of the screen; hence, moving the player or drone 
should give different coordinates. The Minimap in the top-right corner helps in navigating the scene 
by providing a top view of the current camera position, which could be especially helpful during 
First-Person or Drone View navigation. 

First-Person character mode can be activated using the FPV button on the Unity screen. Users 
can use keyboard buttons W-A-S-D to move forward and backward as well as to move right and left 
following the space between objects. Users can gain a walk-through experience since the 3D model is 
representing the building at a high level of detail (LOD3). As the other campus buildings represented 
in this study were built from topographic LOD1 models, the FPV can only help users navigate along 
streets and outer parts of the buildings. Simple attributes are offered to let users know the name of 
the structures. As discussed in the works related to the 3D map display in comparison to the 2D map 
display for navigational purposes [32–34], 3D map display provides superiority in helping users’ 
navigational processes. Navigational processes here refer to activities of self-orientation, spatial 
knowledge development, and navigational decision-making. The FPV mode in the Unity platform 
arguably helps users to better develop spatial knowledge and self-orientation. FPV mode in Unity 
supports a responsive, interactive 3D cartography that offers possibilities for users to navigate their 
movements freely (e.g., colliding or walking through objects) while inspecting the built environment 
models. Figure 10 shows the FPV mode used for inspecting the model of the University Main 
Building obtained from the TLS (see also Figures C1 and C2). 

Hint Panel 
Minimap 

Mouse/Player Coordinate 

Main Menu

Main Scene 
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Figure 10. FPV mode for inspecting the LOD3 building. 

Drone View is similar to FPV in that both navigation modes are focused on the player. This mode 
also shows the strength of the game engine for 3D visualization of geospatial data. The drone could 
be controlled to explore the scene by hovering above the buildings or performing quick inspection 
from the air. Utilizing the three navigational modes (i.e., Bird View, First-Person, and Drone View), 
users are provided with a free exploration, first-person (“walking view”) or flying view of the scene. 
Combined with highly detailed 3D buildings obtained from ground surveys, an interactive 
visualization could be built to obtain better user perception of the modeled scene either on the ground 
or from the air. Figure 11 shows the utilization of the drone for inspecting building attributes by 
flying above the ground (see also Figures C3 and C4). 
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Figure 11. Drone view for air-based inspection. 

5. Discussion 

Mapbox for Unity was used to develop an interactive 3D visualization of topographic data 
integrated with a 3D building from TLS. The LOD3 3D models were imported into Unity and placed 
according to locations of the building models in the topographic map. Previous attempts at 
incorporating geospatial data into Unity [19,28,35] have been restricted due to the unavailability of 
projection and coordinate systems in the game engine. Mapbox for Unity tackled this problem by 
providing a basic platform for geospatial data as tiled layers, thus enabling multiple sources of 
geospatial data to be overlaid based on real-world coordinates. However, for the case of presenting 
a 3D model from other sources, the 3D model only replaces extruded buildings from the topographic 
map with its rotation and scale manually set to match orientation and size of the building. This 
approach, while correctly placing the model location, still has the limitation of presenting the 
buildings to their true scale and location.  

 
Figure 12. Chrome Dev Tools analysis of the WebGL performances. 
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Another potential issue was the performance of 3D visualization. Though most browsers 
nowadays already support WebGL [20], the performance of presenting a 3D environment from Unity 
depended on the users’ computer hardware and internet capabilities [36]. On a poor internet 
connection, loading time for the 3D visualization is quite significant, since most of the data, including 
Mapbox Tileset, was loaded from the Apache webserver or Mapbox Cloud. This was evident by 
looking at the loading time for each component of the web visualization. Figure 12 shows the loading 
time for each component generated from the Unity WebGL converter, which was obtained from 
Chrome Developers Tools of https://geoinsight.ugm.ac.id/ugm3d. From the figure, it can be seen that 
loading time for the Unity data component is highest compared to Unity Framework and Unity Code. 
The compiled Unity data contained the 3D model, which caused the initial loading time of the page 
to be very slow (39.86 seconds for downloading a 42.7 MB file in this case). Furthermore, it could be 
seen that using Mapbox Tiles (vector.pbf from the above picture) could reduce the initial loading time 
of the page. Currently, mesh decimation is done to the 3D model using Blender in order to increase 
the performance of the 3D visualization, which results in a smaller file size and faster loading time. 
In the future, tilings of the 3D model should also be used inside a game engine for presenting larger 
and more complex buildings. More investigations are needed to discover the trade-offs between 
detailed 3D geospatial data and visualization performance, especially on a game engine such as 
Unity3D. 

 

Figure 13. Misplaced 3D trees outside of forest area. 

Another issue occurred when using Mapbox for Unity for spreading 3D models inside a 
polygonal area. 3D models of trees were spawned on top of the City Forest layer using Mapbox 
Spawn Inside Modifier. However, the 3D trees were placed not only inside the forest polygon but 
also outside of the layer (see Figure 13). Thus, in order to properly visualize 3D geospatial models, 
further efforts should be made by developing custom scripts on top of the currently available Mapbox 
for Unity functions. This also highlights the problem of integrating multiple-sourced spatial data in 
a game engine. This paper presents a pipeline for integrating a 3D model acquired from a TLS with 
2D topographic maps where the datasets have different levels of accuracy. Different levels of 
accuracy apparently cause problems where spatial relationships between the datasets are considered, 
as pointed out by Ref. [37]. This is especially true in the case of replacing an extruded building from 
a topographic map with a 3D model from a TLS using Mapbox for Unity. 

Further usability assessments of the implementation of FPV of 3D topographic data visualization 
is required to investigate the potential use of FPV and Drone View in support of more effective and 
engaging 3D visualizations. Potential uses of 3D topographic visualization beyond its basic ability to 
support navigation and orientation applications, as suggested in Ref. [21] with a game engine 
platform, could be further exploited to support storytelling and narrative cartography in order to 
“ground stories in real places” [38] or to map “real-life” stories [39].  
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6. Conclusions  

This paper presents our findings in developing a 3D visualization system for an integrated 
topographic map and 3D model using a game engine. Unity3D was utilized to develop a user 
interface for exploring the 3D environment built from a topographic map. Mapbox for Unity was 
employed to enable Unity to utilize geospatial data. Layers from topographic maps were converted 
into Mapbox Tilesets, which were then converted to a game object inside Unity3D. A LOD3 3D model 
from TLS was overlaid onto the map by replacing the extruded model from the topographic map 
with a converted 3D model from TLS. Custom scripts based on Unity C# scripting were developed 
to provide a user interface for exploring the scene. The resulting 3D visualization was built into 
WebGL and deployed to an Apache webserver and could be accessed from 
https://geoinsight.ugm.ac.id/ugm3d. 

While most game engines cannot utilize geospatial data in its entirety, the Mapbox extension for 
Unity could be employed to enable the presentation of geospatial data as a game object in its real-
world coordinates. This approach could further benefit the incorporation of geospatial data into a 
game engine to simulate real-world situations. However, the current scheme for presenting 3D 
buildings from high density and high accuracy topographic models using Mapbox in Unity still 
possesses a limitation. This work presents two 3D buildings by replacing the existing 3D models that 
have lower resolution (such as LOD1 models of extruded building footprints) with 3D models 
acquired from TLS measurements. With this method, the 3D model acts as a 3D point symbol that 
requires manual scaling and rotation to match the real characteristics of the building. Future 
investigations are needed to utilize 3D geospatial data as a game object in Unity, with attention given 
to its performance and capabilities for handling geospatial data formats.  
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Abbreviations Full text Descriptions 

API 
Application 

Programming 
Interface 

A set of routines which specifies how specific function of 
a software is being used 

DXF AutoCAD Drawing 
Exchange Format 

A binary or an ASCII representation of a drawing file. It 
is often used to share drawing data between other CAD 

programs 

FBX Autodesk FilmBoX 
A 3D asset exchange format that facilitates higher-

fidelity 3D data exchange 

FPV First-Person View 
An interactive visualization where the player experience 

virtual world through the eye of a character 

LiDAR 
Light Detection and 

Ranging 

A remote sensing method that uses light in the form of a 
pulsed laser to measure ranges (variable distances) to the 

Earth 

LOD Level of Detail 
A number which specifies level of 3D model 

representation detail [40] 

SDK 
Software 

Development Kit 
A set of software creation tools to build application 

package based on certain framework 

TLS 
Terrestrial Laser 

Scanner 

A terrestrial survey method that uses laser scanning 
technology to scan the object and record the 3D point-

clouds, also known as topographic LiDAR  

UGM Universitas Gadjah 
Mada 

University Campus in Yogyakarta, Indonesia 

   

Appendix B 

Bird Eye View navigation script was developed using C# in Unity. This script serves Bird View 
navigation using mouse and keyboard for panning, tilting, rotating, and zooming using mouse 
buttons.  

// Bird View Navigation in Unity  

// for Mapbox Unity 2.0 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

public class WorldNavigation: MonoBehavior { 

      public Camera cam; 

      private bool isPanning; 

      private bool isRotating; 

      private bool isTilting; 

      private bool isZooming; 

      private Vector3 touchStart; 

      public float groundZ = 0; 
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      //rotation params 

      public float speedH = 2.0f; 

      public float speedV = 2.0f; 

      private float yaw; 

      private float pitch; 

      //tilting variables 

      private Vector3 pivot; 

      private Vector3 rotationAxis; 

      private float y_rotate; 

      private float x_rotate; 

      public float rotationSpeed = 10f; 

      // Update is called once per frame 

      void Update () { 

           // --GETTING INPUT-- 

           // Left mouse button: Panning 

           if (Input.GetMouseButtonDown (0)) { 

               touchStart = mouseWorldPosition (groundZ); 

               isPanning = true; 

           }; 

           if (Input.GetMouseButton (0)) { 

               Vector3 direction = touchStart - mouseWorldPosition (groundZ); 

               cam.transform.position + = direction; 

           } 

 

           // Right mouse button: Rotating 

           if (Input.GetMouseButtonDown (1)) { 

               Vector3 angles = cam.transform.eulerAngles; 

               yaw = angles.y; 

               pitch = angles.x; 

               isRotating = true; 
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           } 

 

           // Middle mouse button: Tilting 

           float currentCamX = cam.transform.position.x; 

           float currentCamZ = cam.transform.position.z; 

           if (cam.transform.position.y < 0.5f) { 

               cam.transform.position = new Vector3 (currentCamX, 0.5f, currentCamZ); 

           } 

        if (Input.GetMouseButtonDown (2)) { 

               pivot = centerScreenPosition (groundZ); 

               isTilting = true; 

           } 

 

           // Middle Mouse Scroll 

           if (Input.GetAxis (“Mouse ScrollWheel”) != 0) { 

               isZooming = true; 

           } 

 

           // canceling all functions 

           if (!Input.GetMouseButton (0)) isPanning = false; 

           if (!Input.GetMouseButton (1)) isRotating = false; 

           if (!Input.GetMouseButton (2)) isTilting = false; 

           if (Input.GetAxis (“Mouse ScrollWheel”) == 0) isZooming = false; 

      } 

     // LATE UPDATE 

      void LateUpdate () { 

 

           //Right Button: Camera Rotation 

           if (isRotating) { 

               yaw += speedH * Input.GetAxis (“Mouse X”); 
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               pitch -= speedV * Input.GetAxis (“Mouse Y”); 

               // Clamp pitch: 

               pitch = Mathf.Clamp (pitch, −90f, 90f); 

               Quaternion rotation = Quaternion.Euler (pitch, yaw, 0); 

               cam.transform.rotation = rotation; 

           } 

 

           //middle mouse: tilting 

           if (isTilting) { 

               y_rotate = Input.GetAxis (“Mouse X”) * rotationSpeed; 

               x_rotate = Input.GetAxis (“Mouse Y”) * rotationSpeed; 

               //cam.transform.RotateAround (pivot, Vector3.left, rotationAngleOnX); 

               OrbitCamera (cam, pivot, y_rotate, x_rotate); 

           } 

 

           // mouse scrollwheel: zooming 

           if (isZooming) { 

               Vector3 desiredPosition; 

               desiredPosition = mouseWorldPosition (groundZ); 

               float distance = Vector3.Distance (desiredPosition, transform.position); 

               Vector3 direction = Vector3.Normalize (desiredPosition - transform.position) * (distance * 
Input.GetAxis (“Mouse ScrollWheel”)); 

               transform.position + = direction; 

           } 

    } 

 

      // Raycasting Mouse Position for Panning 

      private Vector3 mouseWorldPosition (float z) { 

           Ray mousePos = cam.ScreenPointToRay (Input.mousePosition); 

           Plane ground = new Plane (Vector3.forward, new Vector3 (0, 0, z)); 
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           float distance; 

           ground.Raycast (mousePos, out distance); 

           return mousePos.GetPoint (distance); 

      } 

 

      // Raycasting center of screen for Tilting 

      private Vector3 centerScreenPosition (float z) { 

           //Ray mousePos = cam.ScreenPointToRay(Input.mousePosition); 

           Ray centerScreen = cam.ViewportPointToRay (new Vector3 (0.5f, 0.5f, 0f)); 

           Plane ground = new Plane (Vector3.forward, new Vector3 (0, 0, z)); 

           float distance; 

           //ground.Raycast(mousePos, out distance); 

           ground.Raycast (centerScreen, out distance); 

           //return mousePos.GetPoint(distance); 

           return centerScreen.GetPoint (distance); 

      } 

 

      // calculating orbit camera 

      public void OrbitCamera (Camera cam, Vector3 target, float y_rotate, float x_rotate) { 

           Vector3 angles = transform.eulerAngles; 

           angles.z = 0; 

           cam.transform.eulerAngles = angles; 

           cam.transform.RotateAround (target, Vector3.up, y_rotate); 

           cam.transform.RotateAround (target, Vector3.left, x_rotate); 

           cam.transform.LookAt (target); 

      } 

} 
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Appendix C 

 

Figure C1. Screenshot of First-Person View (FPV) navigation. 

 
Figure C2. Screenshot of FPV navigation. 
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Figure C3. Screenshot of Bird Eye View navigation. 

 
Figure C4. Screenshot of Drone View navigation. 
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