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Abstract: Quantitative assessments and dynamic monitoring of indicators based on fine-scale
population data are necessary to support the implementation of the United Nations (UN) 2030
Agenda and to comprehensively achieve its 17 Sustainable Development Goals (SDGs). However,
most population data are collected by administrative units, and it is difficult to reflect true distribution
and uniformity in space. To solve this problem, based on fine building information, a geospatial
disaggregation method of population data for supporting SDG assessments is presented in this
paper. First, Deqing County in China, which was divided into residential areas and nonresidential
areas according to the idea of dasymetric mapping, was selected as the study area. Then, the town
administrative areas were taken as control units, building area and number of floors were used as
weighting factors to establish the disaggregation model, and population data with a resolution of
30 m in Deqing County in 2016 were obtained. After analyzing the statistical population of 160
villages and the disaggregation results, we found that the global average accuracy was 87.08%. Finally,
by using the disaggregation population data, indicators 3.8.1, 4.a.1, and 9.1.1 were selected to conduct
an accessibility analysis and a buffer analysis in a quantitative assessment of the SDGs. The results
showed that the SDG measurement and assessment results based on the disaggregated population
data were more accurate and effective than the results obtained using the traditional method.
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1. Introduction

In order to promote the coordinated development of the economy, society, and environment,
leaders around the world adopted the 2030 Agenda for Sustainable Development at the United Nations
(UN) Summit in September 2015 [1], which covers 17 Sustainable Development Goals (SDGs) with 169
targets and 342 indicators. Quantitative assessment and dynamic monitoring of SDGs are important
measures in implementing the UN 2030 Agenda for Sustainable Development [2]. The calculation
of SDG indicators requires a large amount of social and economic statistical data, but most data
are collected by administrative units (e.g., province boundaries and county boundaries). They can
only represent the average status of statistical objects in spatial regions, and it is difficult to reflect
the true distribution in space [3,4]. The results of SDG assessments based on statistical information
make it difficult to characterize the specific spatial location, so follow-up planning measures are
not easy to implement or operate. Evidently, existing and available statistical data cannot meet the
practical needs of quantitative assessments and continuous monitoring of SDGs. In the SDGs Global
Indicator Framework (SGIF), the calculation of up to 98 indicators needs population data [5]. Therefore,
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the geospatial disaggregation of population data at a fine scale is of great significance to support the
measurement and monitoring of the SDGs.

To date, many studies and applied practices have focused on measuring and monitoring
development goals or relevant topics (e.g., public health and climate change) in accordance with
geospatial disaggregation of population data [6–10]. For example, the WorldPop project, launched
in October 2013, aims to provide an open spatial population dataset for Africa, Asia, Central
America, and South America to support development and health applications [11]. In March
2018, the Geo-Referenced Infrastructure and Demographic Data for Development (GRID3) initiative,
aiming to facilitate the production and use of high-resolution population and other reference data,
was launched to support government decision-making and the assessment of SDGs [12]. Tenerelli et
al. [13] applied population distribution data to disaster risk analysis to provide a scientific basis for the
government to deal with climate change and natural disasters. Alegana et al. [14] used a Bayesian
hierarchical spatiotemporal model to estimate the proportion of the under-five population per 1 × 1-km
grid cell in Nigeria in 2010. Golding et al. [15] calculated under-five and neonatal mortality (SDG target
3.2) at a 5 × 5-km resolution in Africa for 2000, 2005, 2010, and 2015 based on the Bayesian geostatistical
analytical method. These results showed that detailed population data were conducive to improving
the accuracy of development and health metrics assessments and optimizing interventions. Based on
OpenStreetMap, statistical data, and WorldPop datasets, Esquivel et al. [16] mapped disparities in
access to safe, timely, and essential surgical care in Zambia and found that 65.9% of the population
could not reach a surgical facility that met the World Health Organization’s minimum surgical safety
standards within two hours. Using WorldPop datasets, the census, and other data, Tatem et al. [17]
revealed the distribution of the number of pregnancies, women of childbearing age, and live births at
a 100-m resolution in Bangladesh, Afghanistan, Tanzania, and Ethiopia, to provide denominators for the
quantitative assessment of the subnational Millennium Development Goals. From the High Resolution
Settlement Layer (HRSL), population data at a resolution of 1 arc-second have been generated for 33
countries for infrastructure development and disaster response [18]. Linard et al. [19] mapped the
population distribution at a resolution of 100 m and analyzed population aggregation, settlement
patterns, and spatial accessibility in Africa to make recommendations on healthcare, resource allocation,
and economic development. Zagatti et al. [20] used an unsupervised learning algorithm to identify
individual locations based on Call Detail Record data and analyzed day and night population densities
and commuting patterns. It was found that Haiti’s labor markets were fragmented. In summary,
detailed population distribution data are of great significance for measuring development goals
and finding existing problems and solutions. However, most existing studies have been based on
population data at 100-m or 1-km resolutions to reflect actual problems at the national or subnational
level and have lacked an exploration of county-level measurement and monitoring of SDGs based on
fine-scale population data.

Spatial disaggregation is the process by which information on a coarse spatial scale is transformed
into finer scales [3], and it is widely used in population spatialization. There are several mainstream
methods for the geospatial disaggregation of population data that have been developed, from simple
grid models (e.g., the areal interpolation method) to spatial models that take into account natural
and economic factors. Early studies assumed that population density decreases from the inner city to
the outer suburbs in urban geography, and a distance decay function has been used to simulate the
spatial distribution of population [21]. However, the urban extent of modern cities tends to be irregular,
which brings indeterminacy to the model establishment [22]. In 1993, Goodchild et al. [23] proposed
areal interpolation method to realize the spatialization of social and economic data. Areal interpolation
methods can be divided into two categories according to whether auxiliary information used [24].
For areal interpolation methods without ancillary information, there are point-based methods and
area-based methods. Some example studies include Fisher et al. [25], Fan et al. [26], and Martin [27].
This method is simple and suitable for depicting the patterns of population distribution on a large
scale but cannot meet the needs of high-resolution mapping.
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With the development of earth observation technology, the data available for the geospatial
disaggregation of population data are becoming more and more abundant and accurate [28]. Therefore,
more and more factors can be taken into account in the establishment of a population disaggregation
model, the most common of which are economic and natural factors. The complex population
disaggregation model (relative to the simple grid model) can be divided into three categories according
to the main principles, namely dasymetric mapping, multifactor fusion, and intelligent modeling.

The principle of the dasymetric mapping method is to subdivide the population distribution space
into small areas that can reflect the spatial variation with the aid of auxiliary information and apply
the interpolation technique to generate fine-scale population distribution data. Some example studies
include Dmowska et al. [29], Gallego [30], and Langford [31]. Essentially, the dasymetric mapping
method is an extension of the areal interpolation with ancillary information. At present, there are three
region classification methods, namely the binary dasymetric method [32], the three-class dasymetric
method [33], and the multilayer and multiclass dasymetric method [34]. The advantages of dasymetric
mapping are that it is simple and easy to work and can ensure the invariance of the total population
in source regions. Dasymetric mapping is suitable for fine-scale population spatialization. However,
with increases in the number of classifications, they can become quite complex and are limited to
some applications.

Another popular method is the multifactor fusion method [35–37]. The main steps are (i) analyzing
the relationship between impact factors and population data, (ii) selecting the main factors to establish
a model through a weighted or regression method, and (iii) correcting the initial simulation results
based on the statistical population of sub-administrative regions. The most frequently used factors
(i.e., parameters) are roads, population density, land use and land cover, elevation, nighttime light,
populated points, etc. This method takes into account the indicative effect of multifactors on the
spatial distribution of a population. The results obtained by this method are convincing. However,
the determination of the fusion weight is subjective, and many factors are involved in modeling,
which leads to model complexity and information redundancy.

The intelligent modeling method, which is characterized by a high automation and flexible model
structure, applies a decision tree [38], genetic algorithm [39], and random forest [40] method to the
disaggregation of population data. The disadvantages of this method are that the results are poorly
controllable and the parameter settings are complex. Now, the intelligent modeling method is mainly
combined with classical methods such as the dasymetric mapping method and the multifactor fusion
method to improve the accuracy of the population disaggregation model.

There is a growing need for detailed population distribution data to measure and monitor progress
toward SDGs, which aim to ensure that no one is left behind. In order to avoid concealing local
heterogeneities, the perspective of SDG assessments is being turned from the national and subnational
levels to regional and local levels, particularly fine-scale assessments in small regions [41]. In this
paper, we selected Deqing County, China, as the study area. In order to reduce or eliminate the error
when assessing SDGs, it is necessary to ensure that the statistical population value is equal to the
total population after disaggregation. After fully considering the characteristics of the study area,
the data availability, and the advantages and disadvantages of the population disaggregation methods,
the dasymetric mapping method, which can ensure invariance in the total population, was selected
to realize the spatialization of the population data. Three-dimensional building information (i.e.,
the building area and the number of floors) and other auxiliary data were used to establish the
population disaggregation model. Finally, we used the disaggregated population data with a resolution
of 30 m to support the quantitative, qualitative, and positional assessment of Deqing’s progress toward
achieving the SDGs.
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2. Materials and Methods

2.1. Study Area

Deqing County, adjacent to the north of Hangzhou City and the west of Shanghai Municipality, is
located in northern Zhejiang Province, China, and belongs to the Yangtze River Delta (Figure 1). Deqing
County, with an area of 937.95 km2, has a 55.95-km distance from east to west and is 29.92 km from
south to north. There are 12 towns under its jurisdiction, including 166 villages. In 2016, the resident
population exceeded 320,000. Deqing County belongs to the humid subtropical monsoon climate and
thus has four distinct seasons with warm and humid weather. The western part of Deqing County is
a branch of Tianmu Mountain, the eastern part is a plain, and the central part is a hill.
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2.2. Data Source and Processing

Table 1 lists all data used in this case study, including vector data, remote sensing images,
and statistical data from 2016. All data used the Transverse Mercator projection with WGS-84 datum.
In Section 4, roads at all levels (i.e., freeways, national highways, provincial highways, and county
and town roads) were used to calculate accessibility. The design speed of highways at all levels
was obtained from the “Technical Standards for Highway Engineering of the People’s Republic of
China (JTGB01-2014)”. Because of road conditions, weather, and traffic flow, it was multiplied by the
reduction factor as the actual speed to be used for the accessibility analysis. In accord with relevant
research results [42], the reduction factor was set at 0.75.

Table 1. Data used in this case study.

Data Format Description Source

Statistical population
data Table Town and village level Statistical Bureau of

Deqing County

Three-dimensional
building information Polygon features Including the building area and the

number of floors
Geomatics Center of

Deqing County

Aerial images Raster Resolution: 0.5 m; acquired time:
October 2016; bands: red, green, blue

Geomatics Center of
Deqing County

National
geoinformation

survey data

Vector layer
(point, line,

polygon features)

Including infrastructure location (e.g.,
medical and health and education

facilities), boundaries, roads, buildings

Geomatics Center of
Deqing County
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2.3. Methods

After analyzing the advantages and disadvantages of the current spatial disaggregation methods
of population data, and considering work requirements and data availability, in order to ensure that
the statistical population value was equal to the total population after disaggregation, the dasymetric
mapping method was selected to achieve fine-scale population spatialization. Figure 2 shows
a flowchart of the geospatial disaggregation of population data. First, the study area was divided into
residential areas and nonresidential areas using auxiliary data. Then, taking the town administrative
area as the control unit, the building area and the number of floors were used as weighting factors to
establish the disaggregation model, and the population data on a building scale were obtained. Finally,
in order to facilitate the subsequent spatial analysis and visualization, the above population data were
converted into raster data using the grid method, and the population data with a resolution of 30 m in
Deqing County in 2016 were obtained.
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2.3.1. Determination of Residential and Nonresidential Areas

In a broad sense, residential areas refer to life settlements surrounded by urban streets or natural
boundaries at a certain population scale that are equipped with public service facilities. In this
study, we used the building layer of the national geo-information survey data, which records the
location and category information of buildings, to distinguish between residential and nonresidential
areas. Logically, there are no residents in green spaces, industrial areas, public buildings (e.g.,
libraries, gymnasiums, and administrative offices), etc. In this study, residential land use was
regarded as buildings in residential areas, and the others (including commercial and business facilities,
administration and public services, and industrial areas) were regarded as nonresidential areas.
Furthermore, high-resolution aerial images, land use, land type, and other auxiliary data were also
used to check the residential areas. The residential area layer was linked with the three-dimensional
building layer as the input data for the population disaggregation model.

2.3.2. Establishment of Population Disaggregation Model

Three-dimensional information from buildings (e.g., area and height of a building) is conducive
to population estimation on a fine scale [43,44]. Building height could not objectively reflect the
distribution of the population because of the influence of building types and building characteristics.
Building floor was more suitable for the establishment of the model than building height was. Dong et
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al. [45] found that there was a strong linear relationship between population data and the product
of building area and floors. Therefore, we used building area and floors for the establishment of
a population disaggregation model in this study.

The administrative region was defined as the source area, and the building unit was defined as
the target area. The ratio of the product of the area of the target area and its number of floors to the
sum of products in the source area was calculated as the population weight coefficient to estimate the
population in the target area. The formula is as follows:

POPi j =
Si jFi j

n∑
j=1

Si jFi j

POPi (1)

where POPij is the population of building unit j (j = 1, . . . , n) in town i (i = 1, . . . , 12), POPi is the
population of town i, Sij is the area of a building unit j in town i, and Fij is the number of floors in
building unit j in town i.

2.3.3. Gridded Population

The grid method [26] was used to convert population data on the scale of the building into the
population distribution form with the grid unit. In accord with regional characteristics, data sources,
and project requirements [46], a 30-m grid was used to study the spatial characteristics of the population
distribution. The sum of the estimated population for each building unit found in each grid was the
population number in the corresponding grid.

3. Results and Analyses

The population distribution at a 30-m resolution in Deqing County in 2016 is shown in Figure 3a.
Overall, it shows characteristics of “more in the central and eastern regions, less in the western
regions”. The maximal grid value (referring to the population number) was 79. The blank areas within
the boundaries of Deqing County were nonresidential areas such as water bodies, cultivated land,
mountains, industrial regions, etc. The actual grid value was 0. The grids with 1–4 people accounted
for 71.96% of all nonzero grids and were the most widely distributed. The grids with 5–6 people and
7–8 people accounted for 15.90% and 7.74%, respectively, and were located in the central and eastern
part of Deqing County: the latter were less dispersed than the former. The grids with 9–79 people
accounted for 4.40% of all nonzero grids (with the agglomeration distribution) and were mainly located
in the central area of Wukang Town, Qianyuan Town, and Xinshi Town.

As shown in Figure 3b, the population distribution map was overlaid with geographic elements
such as digital elevation model (DEM), roads, and water bodies. Three typical areas, namely the
central urban area, western mountainous area, and eastern water villages (a region of rivers and
lakes), were selected to analyze population distribution characteristics and details on a fine scale.
The map in the left of Figure 3b is a partial enlarged drawing of the population distribution in the
central urban area of Deqing County. This area is the political, economic, and cultural center of
Deqing County. The dense distribution of industrial and road infrastructure plays an important
role in population aggregation. The grid value ranged from 1 to 79, and the population number
gradually decreased from the urban center to the periphery. The map in the middle of Figure 3b shows
a partial enlarged drawing of the population distribution in the west of Deqing County. This area
is located on Mogan Mountain, and the population is mainly distributed in strips along the valley
bottom and on both sides of the road. The value in the grid unit was mainly 1–6. The map in the
right of Figure 3b is an enlarged population distribution of the local area in Xin’an Town, eastern
Deqing County. The area belongs to a typical water village plain in the south of the Yangtze River with
a developed water system and numerous lakes. The population is distributed in strips along the sides
of the road and on both sides of the river or is distributed in clusters in the plain. The value of the
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grid units was mainly between 1 and 8. The results show that the geospatial disaggregation results of
population data based on three-dimensional building information can plausibly reflect the differences
in population distribution within regions and effectively eliminate the impact of nonresidential areas
such as mountains, water bodies, and vegetation on population spatialization.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 7 of 17 
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of the central urban area (left), the western mountainous area (middle), and the eastern water
villages (right).
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In this study, town-level statistical population data were used to realize the population
spatialization. A method of accuracy validation is to aggregate disaggregated population data
at lower administrative levels (i.e., the village level) and compare them to the statistical population
data of the corresponding administrative region. Deqing County has a total of 166 villages, of which
Songcun Village, Wulong Village, Huibei Village, Yangbei Village, Qiubai Village, and Fengqiao Village
are involved in land expropriation and do not participate in error analysis. Since the people in this area
relocated and settled into their new community, the statistical population value was zero. We obtained
accuracy independently for each village, and Figure 4 shows the absolute value of the relative error
between the disaggregated population data and the statistical data in 160 villages. Furthermore,
we considered the population sizes across villages and calculated the global weighted mean relative
error, which was 12.92%, that is, the global average accuracy was 87.08%. The absolute relative error
of 85 villages was less than 10%, the error of 46 villages was between 10% and 20%, the error of 16
villages was between 20% and 30%, and the error of 13 villages was more than 30%. In order to explain
the reasons for the large errors in some villages, we carried out field investigations and found that the
error mainly came from the following four aspects: (1) The urbanization process had accelerated in
Deqing County [47], and new residential land expanded rapidly. There was a phenomenon where the
houses that were built were not sold. For example, Xinfeng Village was affected by the vacancy of
built residential land, resulting in an absolute error of 242.41%. (2) Due to the reformation of rural
settlements within the central urban area, a number of villages in the city and natural villages were
being withdrawn and clustered into new communities, and some old houses were not demolished but
had no one living in them. For instance, the population estimates of Qiushan and Qianqiu villages
were significantly higher than the statistical values, and the absolute relative errors were 114.89%
and 508.28%, respectively. (3) In addition to residential functions, some buildings were used for
commercial purpose at the same time, such as commercial–residential land in the central urban areas
and guest houses around the Mogan Mountain scenic areas and the Xiazhuhu Wetlands. (4) The
types of residential buildings distributed in the urban–rural junction were complex and diverse and
gradually transitioned from high-density multifloor buildings to low-density low-floor buildings.
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4. Disaggregated Population Data for Assessing SDGs: Examples

Based on an understanding of the UN 2030 Sustainable Development Agenda, the China’s National
Plan on Implementation of the 2030 Agenda for Sustainable Development (hereinafter referred to as the
National Plan) [48], and the regional characteristics of Deqing County, the 244 indicators of the SGIF
were screened and adjusted. A set of SDG indicators suitable for Deqing County was proposed that
contained 102 indicators [49]. In accord with the SDG Index and Dashboard [50], the National Plan,
and other references, these indicators were further quantified and assessed to represent the condition
of sustainable development in Deqing County.
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The indicators 3.8.1, 4.a.1, and 9.1.1, which could not be accurately quantified based on the
population data (tabular form) and other metadata, were selected from the 102 indicators for a discussion
of the application of the geospatial disaggregation of population data in the assessment of SDGs.

4.1. Example 1: SDG Indicator 3.8.1

Deqing rationally optimized the allocation and layout of medical resources, actively carried
out disease prevention and control, and vigorously promoted comprehensive health management
and all-around health services to effectively improve residents’ health and well-being. Deqing
focused on family doctor contracting services, highlighting key populations such as maternal, elderly,
and chronically ill patients, and strengthened the management of basic public health service projects.
The average coverage of basic services is high. At present, Deqing is more concerned about the time
spent by residents to reach the nearest medical institution. The original indicator, 3.8.1, is not suitable
for the actual situation of Deqing County. Based on an understanding of the UN 2030 Sustainable
Development Agenda, the National Plan, and the regional characteristics of Deqing County, indicator
3.8.1 was revised to “coverage of essential health services” after localization.

By the end of 2016, there were three general hospitals, 12 health centers (seven branches), and 133
health service stations in Deqing County. Taking these as targets, the accessibility analysis method
was used to calculate the time required to reach the nearest medical facility in the county, and the
time was classified at 5-min intervals. As shown in Figure 5, the accessibility of medical and health
facilities was characterized by an annular distribution centered on targets and spreading outward
along roads. Here, the difference in accessibility was measured by the time taken to reach medical and
health facilities. The areas with good accessibility (i.e., those that required less time to reach medical
and health facilities) were concentrated in the central (urban) and eastern parts of Deqing County,
and the accessibility was poor (i.e., it took more time to reach medical and health facilities) in the
western mountainous areas.

According to the traditional method, we only used census data in towns (i.e., where the population
was evenly distributed) to carry out the accessibility calculations. The results are presented in Table 2
and show that within 10 min, 13.37% of residents could reach the nearest general hospital, 72.74% could
reach the nearest health center, and 92.92% could reach the nearest health service station. In addition,
it took more time to reach medical and health facilities in western mountainous areas, and there was
an evident difference in medical services in urban and rural areas.

For comparative analysis, we used the disaggregated population data to do the accessibility
calculations again. The results are provided in Table 3 and show that within 10 min, 26.66% of residents
could reach the nearest general hospital, 90.26% could reach the nearest health center, and 99.84%
could reach the nearest health service station. Clearly, the results calculated by using census data and
the disaggregated population data were different. In fact, it is well-known that there are no residents
in water bodies, on roads, on cultivated lands, or in most mountainous areas (shown as the map in the
middle of Figure 3b. Compared to traditional methods, the results of the SDGs assessment based on
the 30-m disaggregation of population data were more accurate and effective.

In conclusion, more than 99% residents in Deqing County could reach the nearest village health
service station within 10 min, the nearest health center within 20 min, and the nearest general hospital
within 40 min. Therefore, the accessibility of medical service facilities was good in Deqing County,
the coverage of medical and health services was relatively balanced, and medical service facilities
could meet the diversified and multilevel medical service needs of urban and rural residents.
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Table 2. Percentage and cumulative percentage of population who could reach medical and health
facilities within each time interval based on the traditional method.

Time
(min)

Percentage
(General
Hospital)

Cumulative
Percentage

(General Hospital)

Percentage
(Health
Center)

Cumulative
Percentage

(Health Center)

Percentage
(Health Service

Station)

Cumulative
Percentage (Health

Service Station)

0–5 3.52 3.52 23.32 23.32 67.02 67.02
5–10 9.84 13.37 49.42 72.74 25.90 92.92

10–15 15.39 28.76 19.34 92.07 5.75 98.67
15–20 20.37 49.12 5.66 97.73 1.17 99.85
20–25 23.34 72.46 1.90 99.63 0.14 99.99
25–30 18.14 90.61 0.33 99.97 0.01 100
30–35 6.23 96.84 0.03 100
35–40 1.67 98.51
40–45 0.91 99.42
45–50 0.50 99.92
50–55 0.08 100

Notes: In the process of calculation, the percentage and cumulative percentage were accurate to six decimal places.
For convenience of display, they are presented here with two decimal places. The other tables are the same.

Table 3. Percentage and cumulative percentage of population who could reach medical and health
facilities within each time interval based on disaggregated population data.

Time
(min)

Percentage
(General
Hospital)

Cumulative
Percentage

(General Hospital)

Percentage
(Health
Center)

Cumulative
Percentage

(Health Center)

Percentage
(Health Service

Station)

Cumulative
Percentage (Health

Service Station)

0–5 14.21 14.21 46.16 46.16 92.64 92.64
5–10 12.45 26.66 44.10 90.26 7.20 99.84

10–15 12.25 38.91 8.68 98.94 0.15 99.99
15–20 17.36 56.27 0.96 99.90 0.01 100
20–25 19.84 76.10 0.10 100
25–30 17.06 93.16
30–35 5.14 98.30
35–40 1.04 99.34
40–45 0.53 99.87
45–50 0.13 100

4.2. Example 2: SDG Indicator 4.a.1

Indicator 4.a.1 is the “proportion of schools with access to (a) electricity; (b) the Internet for
pedagogical purposes; (c) computers for pedagogical purposes; (d) adapted infrastructure and
materials for students with disabilities; (e) basic drinking water; (f) single-sex basic sanitation
facilities; and (g) basic handwashing facilities (as per the WASH indicator definitions)” (WaSH - water,
sanitation, and hygiene). According to the statistical data provided by the Deqing Education Bureau,
each proportion was 100%, which indicates that the schools in Deqing County were of the same
good quality. To provide every child with an equal right to education, China implemented a nearby
enrollment policy (i.e., adolescents receive access to education in the school where their permanent
residence is registered). Deqing was more concerned about the time spent by residents to the nearest
education facilities. In order to further improve the quality of education and the level of service,
this indicator needs to provide a quantitative and positioning assessment from the perspective of
statistics and geographic information. By combining an accessibility analysis with the disaggregated
population data, the results could be used to describe the educational service level and the quality of
Deqing County and to accurately find the areas that need to be improved.

By the end of 2016, there were 31 primary schools, 21 junior high schools, and five senior high
schools in Deqing County. Similarly, as in example 1, we used census data from towns to carry out the
accessibility calculations. The results are shown in Table 4, and the influence of roads, water bodies,
and other factors could not be avoided. Then, the disaggregated population data were combined
with the accessibility analysis to assist in the assessment of educational services in Deqing County.
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The results are shown in Figure 6 and Table 5. Evidently, within 15 min, 97.23% and 96.59% of residents
could reach the nearest primary school and the junior high school, respectively, and within 30 min,
94.97% of residents could reach the nearest senior high school. We found that the accessibility of primary
schools and senior high schools was good and that the spatial distribution was rational. However,
the accessibility of the senior high school was relatively poor, and its distribution needs to be optimized.

4.3. Example 3: SDG indicator 9.1.1

The indicator 9.1.1 is defined as “the proportion of the rural population who live within 2 km of
an all-season road”. According to the tier classification for global SDG indicators [51], indicator 9.1.1.a belongs
to Tier 3 (i.e., no internationally recognized methodology or metadata are yet available for the indicator).

Road buffers were created around a road feature at 500-m, 1000-m, 1500-m, and 2000-m distances
from the feature. In 2016, the 500-m road buffer covered 99.53% of the county’s land, and the 1000-m,
1500-m, and 2000-m road buffers covered all of the areas of the county. Figure 7 shows that the 500-m
road buffer was overlaid over the 30-m population data. It was found that there was no population
in the area uncovered by the 500-m road buffer, that is, the proportion of the rural population who
lived within 500 m of an all-season road was 100%. This example again shows that disaggregated
population data can well support quantitative assessments of SDG indicators, even in the absence of
recognized methodologies and metadata.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 12 of 17 

 

of residents could reach the nearest primary school and the junior high school, respectively, and 
within 30 min, 94.97% of residents could reach the nearest senior high school. We found that the 
accessibility of primary schools and senior high schools was good and that the spatial distribution 
was rational. However, the accessibility of the senior high school was relatively poor, and its 
distribution needs to be optimized. 

4.3. Example 3: SDG indicator 9.1.1 

The indicator 9.1.1 is defined as “the proportion of the rural population who live within 2 km of 
an all-season road”. According to the tier classification for global SDG indicators [51], indicator 9.1.1.a 
belongs to Tier 3 (i.e., no internationally recognized methodology or metadata are yet available for 
the indicator). 

Road buffers were created around a road feature at 500-m, 1000-m, 1500-m, and 2000-m 
distances from the feature. In 2016, the 500-m road buffer covered 99.53% of the county’s land, and 
the 1000-m, 1500-m, and 2000-m road buffers covered all of the areas of the county. Figure 7 shows 
that the 500-m road buffer was overlaid over the 30-m population data. It was found that there was 
no population in the area uncovered by the 500-m road buffer, that is, the proportion of the rural 
population who lived within 500 m of an all-season road was 100%. This example again shows that 
disaggregated population data can well support quantitative assessments of SDG indicators, even in 
the absence of recognized methodologies and metadata. 

 
(a) 

 
(b) 

Figure 6. Cont.



ISPRS Int. J. Geo-Inf. 2019, 8, 356 13 of 17

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 13 of 17 

 

 
(c) 

Figure 6. Accessibility of education facilities in Deqing County. (a) Accessibility of primary schools; 
(b) accessibility of junior high schools; (c) accessibility of senior high schools. 

Table 4. Percentage and cumulative percentage of population who could reach education facilities 
within each time interval based on the traditional method. 

Time 
(min) 

Percentage 
(Primary 
School) 

Cumulative 
Percentage 

(Primary School) 

Percentage 
(Junior High 

School) 

Cumulative 
Percentage (Junior 

High School) 

Percentage 
(Senior High 

School) 

Cumulative 
Percentage (Senior 

High School) 
0–5 27.67 27.67 19.68 19.68 4.94 4.94 
5–10 49.12 76.80 48.35 68.03 13.16 18.10 
10–15 15.88 92.68 21.24 89.27 21.04 39.14 
15–20 4.42 97.09 6.31 95.58 21.33 60.47 
20–25 1.47 98.56 2.79 98.38 20.58 81.05 
25–30 0.93 99.49 1.10 99.48 12.35 93.40 
30–35 0.45 99.94 0.46 99.94 3.43 96.84 
35–40 0.06 100 0.06 100 1.52 98.36 
40–45     1.00 99.36 
45–50     0.54 99.91 
50–55     0.09 100 

Table 5. Percentage and cumulative percentage of population who could reach education facilities 
within each time interval. 

Time 
(min) 

Percentage 
(Primary 
School) 

Cumulative 
Percentage 

(Primary School) 

Percentage 
(Junior High 

School) 

Cumulative 
Percentage (Junior 

High School) 

Percentage 
(Senior High 

School) 

Cumulative 
Percentage (Senior 

High School) 
0–5 51.32 51.32 42.48 42.48 18.20 18.20 
5–10 39.47 90.80 43.23 85.72 13.63 31.82 
10–15 6.43 97.23 10.88 96.59 18.44 50.26 
15–20 1.62 98.86 2.24 98.83 19.66 69.92 
20–25 0.51 99.37 0.54 99.37 13.57 83.49 
25–30 0.53 99.90 0.53 99.90 11.49 94.97 
30–35 0.10 100 0.10 100 3.11 98.08 
35–40     1.22 99.30 
40–45     0.54 99.84 
45–50     0.16 100 

Figure 6. Accessibility of education facilities in Deqing County. (a) Accessibility of primary schools;
(b) accessibility of junior high schools; (c) accessibility of senior high schools.

Table 4. Percentage and cumulative percentage of population who could reach education facilities
within each time interval based on the traditional method.

Time
(min)

Percentage
(Primary
School)

Cumulative
Percentage

(Primary School)

Percentage
(Junior High

School)

Cumulative
Percentage (Junior

High School)

Percentage
(Senior High

School)

Cumulative
Percentage (Senior

High School)

0–5 27.67 27.67 19.68 19.68 4.94 4.94
5–10 49.12 76.80 48.35 68.03 13.16 18.10

10–15 15.88 92.68 21.24 89.27 21.04 39.14
15–20 4.42 97.09 6.31 95.58 21.33 60.47
20–25 1.47 98.56 2.79 98.38 20.58 81.05
25–30 0.93 99.49 1.10 99.48 12.35 93.40
30–35 0.45 99.94 0.46 99.94 3.43 96.84
35–40 0.06 100 0.06 100 1.52 98.36
40–45 1.00 99.36
45–50 0.54 99.91
50–55 0.09 100

Table 5. Percentage and cumulative percentage of population who could reach education facilities
within each time interval.

Time
(min)

Percentage
(Primary
School)

Cumulative
Percentage

(Primary School)

Percentage
(Junior High

School)

Cumulative
Percentage (Junior

High School)

Percentage
(Senior High

School)

Cumulative
Percentage (Senior

High School)

0–5 51.32 51.32 42.48 42.48 18.20 18.20
5–10 39.47 90.80 43.23 85.72 13.63 31.82

10–15 6.43 97.23 10.88 96.59 18.44 50.26
15–20 1.62 98.86 2.24 98.83 19.66 69.92
20–25 0.51 99.37 0.54 99.37 13.57 83.49
25–30 0.53 99.90 0.53 99.90 11.49 94.97
30–35 0.10 100 0.10 100 3.11 98.08
35–40 1.22 99.30
40–45 0.54 99.84
45–50 0.16 100



ISPRS Int. J. Geo-Inf. 2019, 8, 356 14 of 17

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 14 of 17 

 

 
Figure 7. The 500-m road buffer after overlapping geographical elements and a 30-m spatial 
distribution of the population. 

5. Discussion and Conclusions 

Quantitative assessments of the SDG indicators based on fine-scale population data are 
necessary to support implementation of the “2030 Agenda”. However, most population data are 
collected by administrative units, and it is difficult to reflect true distribution or uniformity in space. 
In this paper, a geospatial disaggregation method of population data was developed based on 
geographic information. Based on the idea of dasymetric mapping, the study area was divided into 
residential areas and nonresidential areas by high-resolution images and other ancillary data. One 
contribution in this paper was using the building area and the number of floors as the weighting 
factors of a corresponding grid to establish a 30-m geospatial disaggregation model. After analyzing 
the statistical population of 160 villages and the disaggregation results comparatively, we found that 
the global average accuracy was 87.08%. 

Another contribution was to apply these disaggregated population data to a quantitative 
assessment of SDG indicators (e.g., indicator 3.8.1, indicator 4.a.1, and indicator 9.1.1) in an 
accessibility and buffer analysis. Taking indicator 3.8.1 as an example, this paper illustrated in detail 
the differences between the results of an accessibility analysis with the traditional method and the 
results using the spatial disaggregation method. The results calculated by the traditional method 
demonstrate that residents took more time to reach medical and health facilities in the western 
mountainous areas, and there was a clear difference in the spatial distribution of medical services 
between urban and rural areas in Deqing County. However, combining the accessibility analysis with 
the disaggregated population data, it was found that the accessibility of medical and health facilities 
was good and that the spatial distribution of medical resources was relatively reasonable. Despite 
poor accessibility in the western mountainous areas, high-resolution images showed that there were 
almost no buildings in this area, and thus there were almost no residents. The traditional method 
ignores population heterogeneity within regions. In contrast, the disaggregation method could avoid 
this problem and show the population number and distribution on a fine scale, which could render 
the assessment results more accurate and reliable. Similarly, based on accessibility, a buffer analysis, 
and disaggregated population data, we assessed indicator 4.a.1 and indicator 9.1.1 and analyzed the 
state of sustainable development in education and traffic. In conclusion, the geospatial 
disaggregation of population data was of great significance for the quantitative assessment of the 
progress of SDGs. 

Significantly, many problems still exist in the current research on the geospatial disaggregation 
of population data. At present, the grid size used for the spatialization of population data varies 
widely at home and abroad. For the same research problem, choosing different scales of data 

Figure 7. The 500-m road buffer after overlapping geographical elements and a 30-m spatial distribution
of the population.

5. Discussion and Conclusions

Quantitative assessments of the SDG indicators based on fine-scale population data are necessary
to support implementation of the “2030 Agenda”. However, most population data are collected
by administrative units, and it is difficult to reflect true distribution or uniformity in space. In this
paper, a geospatial disaggregation method of population data was developed based on geographic
information. Based on the idea of dasymetric mapping, the study area was divided into residential areas
and nonresidential areas by high-resolution images and other ancillary data. One contribution in this
paper was using the building area and the number of floors as the weighting factors of a corresponding
grid to establish a 30-m geospatial disaggregation model. After analyzing the statistical population of
160 villages and the disaggregation results comparatively, we found that the global average accuracy
was 87.08%.

Another contribution was to apply these disaggregated population data to a quantitative
assessment of SDG indicators (e.g., indicator 3.8.1, indicator 4.a.1, and indicator 9.1.1) in an accessibility
and buffer analysis. Taking indicator 3.8.1 as an example, this paper illustrated in detail the differences
between the results of an accessibility analysis with the traditional method and the results using the
spatial disaggregation method. The results calculated by the traditional method demonstrate that
residents took more time to reach medical and health facilities in the western mountainous areas,
and there was a clear difference in the spatial distribution of medical services between urban and
rural areas in Deqing County. However, combining the accessibility analysis with the disaggregated
population data, it was found that the accessibility of medical and health facilities was good and that
the spatial distribution of medical resources was relatively reasonable. Despite poor accessibility in
the western mountainous areas, high-resolution images showed that there were almost no buildings
in this area, and thus there were almost no residents. The traditional method ignores population
heterogeneity within regions. In contrast, the disaggregation method could avoid this problem and
show the population number and distribution on a fine scale, which could render the assessment
results more accurate and reliable. Similarly, based on accessibility, a buffer analysis, and disaggregated
population data, we assessed indicator 4.a.1 and indicator 9.1.1 and analyzed the state of sustainable
development in education and traffic. In conclusion, the geospatial disaggregation of population data
was of great significance for the quantitative assessment of the progress of SDGs.

Significantly, many problems still exist in the current research on the geospatial disaggregation of
population data. At present, the grid size used for the spatialization of population data varies widely
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at home and abroad. For the same research problem, choosing different scales of data products may
lead to different conclusions [52]. To date, few studies have been conducted on scale effects. Limited by
factors such as the time mismatching of data, poor quality of basic geographic data, and inconsistency
of statistical methods, spatialization results do present uncertainty [8]. As the main input data of the
dasymetric mapping method, statistical population data may have problems with statistical methods
and caliber inconsistencies, thus reducing the quality of the output data and restricting the application
of the results. Some population spatialization models that consider many factors could improve
accuracy, but at the same time, they could bring about problems, such as difficulties in determining
the weight of each factor and an unclear mechanism. With the methods described in this study,
future works include determining an optimal grid scale in data disaggregation for a research area
with different scales of spatial and statistical data products and optimizing the weight coefficients of
a disaggregation model with many factors by using geographic or digital data, such as night-light
images, intelligent phone data, hotspot data, etc. In addition, it is necessary to establish a perfect
and reasonable results verification system to further improve the accuracy and practicability of the
geospatial disaggregation of population data.
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