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Abstract: The rental housing market plays a critical role in the United States real estate market.
In addition, rent changes are also indicators of urban transformation and social phenomena. However,
traditional data sources for market rent prediction are often inaccurate or inadequate at covering large
geographies. With the development of housing information exchange platforms such as Craigslist,
user-generated rental listings now provide big data that cover wide geographies and are rich in
textual information. Given the importance of rent prediction in urban studies, this study aims to
develop and evaluate models of rental market dynamics using deep learning approaches on spatial
and textual data from Craigslist rental listings. We tested a number of machine learning and deep
learning models (e.g., convolutional neural network, recurrent neural network) for the prediction of
rental prices based on data collected from Atlanta, GA, USA. With textual information alone, deep
learning models achieved an average root mean square error (RMSE) of 288.4 and mean absolute
error (MAE) of 196.8. When combining textual information with location and housing attributes,
the integrated model achieved an average RMSE of 227.9 and MAE of 145.4. These approaches can
be applied to assess the market value of rental properties, and the prediction results can be used
as indicators of a variety of urban phenomena and provide practical references for home owners
and renters.
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1. Introduction

The rental housing market is a very important real estate market in the United States.
Renter-occupied housing accounted for 35 percent of all US households in 2012, and a total of
43 million households by 2013 [1,2]. Based on information from Zillow, the total rent in the US has
increased over recent years, reaching a record high of $485.6 billion in 2017 [3]. Investigation of trends
in rental prices has great value for both practitioners and academicians. For rental property owners,
it is critical to set appropriate prices in order to attract interest from potential renters, while for renters,
it is most cost-effective to identify reasonable prices based on expected location and house condition.

For urban researchers, rent is a good indicator of urban structure and social phenomena. The classic
bid rent theory in urban geography explains how land use and land price change as a function of distance
away from the central business district (CBD) [4]. Based on this theory, a number of approaches have
been developed to model urban land use process. The bid-rent land use model (BLUM) was proposed
to consider spatial competition and utility curves of willingness to pay to solve the spatial competition
problem [5]. Furthermore, observing rent changes over time facilitates greater understanding of the
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impacts of urban planning and land development projects on socio-spatial processes. For example,
Immergluck (2009) examined how the planning and development of the Atlanta Beltline project
corresponded with changes in price premiums and rents for locations in various geographical buffers
around the Beltline [6]. In short, rents and housing prices were sensitive to the large redevelopment
project, especially in lower-income neighborhoods; this resulted in high possibilities of gentrification.
Lopez-Morales (2011) analyzed the gentrification process through ground rent based on the rent
gap theory [7,8], and found that social capitalization of the ground rent was emphasized during the
peri-central urban renewal process.

A number of methods have been used to model rent prices. Because rental values are determined
by a variety of factors such as location, neighborhood characteristics, market conditions, and
property-specific factors [9], assessing the rental values of residential properties is a complex and
challenging process [10]. Among currently available methods, the hedonic pricing model is one of the
most popular approaches. Many previous studies have used hedonic models to estimate the effects
of environmental amenities or disamenities on rental prices [11]. For instance, Donovan and Butry
(2011) investigated the effect of urban trees on the rental price of single-family homes in Portland,
Oregon [12]. They found that an additional tree on a house’s lot increased the monthly rent by
$5.62, while a tree in the public right of way increased rent by around $21. Baranzini et al. (2010)
used hedonic models to estimate the influence of measured and perceived noise levels on property
prices [13]. In addition, different interpolation approaches have been used to estimate property prices,
such as inverse distance weighting, 2-D shape functions for triangles, kriging, and the fractal filtering
method [14,15]. Meanwhile, spatial econometrics approaches such as spatial autoregressive (SAR)
models have been used to account for spatial autocorrelation in house/rental prices. For example,
Anselin and Le Gallo (2006) investigated the sensitivity of house prices to the spatial interpolation of
air quality using spatial lag models [16]. Under conditions of spatial non-stationarity, geographically
weighted regression (GWR) is a preferred method that considers local varying influences on dependent
variables; it has been widely used in modeling house prices. Lu et al. (2011) used a GWR model to
explore spatially-varying relationships between house prices and floor areas in London [17]. Huang et
al. (2010) incorporated temporal effects into the GWR model to account for both spatial and temporal
factors when modeling the real estate market [18]. Spatial models, such as kriging or Gaussian process
regression (GPR), are important models that make predictions based on underlying spatial covariance;
these generally work better than basic linear regression or other deterministic models.

Despite the popularity of regression models for analyzing house/rental price and its determinants,
their usage is criticized because of limitations associated with fundamental model assumptions, feature
selection, and the use of unstructured data [19,20]. In recent years, machine learning has introduced
alternative econometric approaches for fitting and predicting house/rental prices [21]. Chen et al.
(2016) summarized two main advantages of machine learning methods over traditional statistical
methods [20]. First, statistical methods usually make strong assumptions concerning the randomness
of measure errors of data (e.g., normal distribution), which may not always follow the real-world
situation. Second, machine learning methods are able to capture high-order interactions among features
and non-linear relationships between dependent and independent variables. Recent developments in
deep learning additionally provide ways to better utilize unstructured data such as texts, images, and
audio [22].

When predicting house rent, variables traditionally used include the square footage and number
of bedrooms; additional features that make a difference to rental prices include interior design and
decoration, floor plan, amenities, and unique upgrades. These features are usually documented in
text form. It is challenging to capture such features using numeric variables. Deep learning learns
through multiple layers of representations or features and produces state-of-the-art results based on
both structured and unstructured data [23-25]. Accordingly, deep learning techniques have been
successfully used for mining textual information in many fields; nonetheless, their application in rental
market modeling and prediction is still limited. With the recent rapid development of house/rental
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information exchange platforms such as Craigslist, user-generated rental listings provide big data that
cover wide geographies and are rich in textual information. Integrating both spatial variables and
textual information in rent modeling may advance understanding of the dynamics of rental markets.
In addition, such a model can facilitate greater understanding of different housing submarkets. Hence,
in this study, we aim to develop and evaluate models of rental market dynamics using deep learning
approaches that incorporate spatial and textual data.

2. Method

2.1. Study Area

Atlanta is the capital of, and also the biggest city in Georgia, US. Its metropolitan area is the
ninth largest in the nation, with a resident population of around 5.9 million in 2017 [26]. The average
rent in metropolitan Atlanta increased by 4.4 percent in 2017, ranked as the fifth fastest increase
nationwide [27]. In the past few years, a number of large-scale developments occurred in the city,
which significantly impacted residential property value and rental prices [6].

2.2. Data

The data used in this study was collected from Craigslist, a classified advertisement website for
information posting and sharing. In recent years, Craigslist data have become important sources
for urban studies. As pointed out in Boeing and Waddell (2017), a researcher can scrape publicly
available data such as Craigslist listings for non-commercial uses that neither repackage nor relist the
data [1]. Accordingly, they used nationwide Craigslist rental housing lists to analyze rental housing
markets across the US. Hu et al. (2018) used Craigslist housing advertisements to extract local place
names [28]. In this study, we crawled posts related to the apartment/houses for rent in Atlanta from
April to December 2018. Information such as the date of posting, latitude and longitude, bedroom
number and square footage, short and long descriptions of the property, and links to figures were
collected. The raw data was stored as comma-separated text and only used for research purposes.

2.3. Data Cleaning

The raw dataset contained a lot of information noise. For one, duplicated posts are very common
on Craigslist, as people tend to repost advertisements to move them to the top of the list and therefore
receive more attention. Accordingly, we first removed duplicated posts. In addition, we filtered posts
with no geographic location. Another characteristic of Craigslist posts is that a number of posts include
unreasonably low or high prices (e.g., spam, deliberate mislabeling to attract attention, or mis-posted
information). To remove these records, we calculated a threshold for defining outliers based on local
average rental prices, then removed identified outliers from the dataset. For posts missing either
square footage or bedroom number, the missing value was imputed based on the correlation between
these two variables. Posts lacking both square footage and bedroom number were discarded. In the
cleaned dataset, each data entry was expressed as a tuple (ft2, bd, lon, lat, sd, Id, p), where lon and
lat were the longitude and latitude coordinates of the property, ft2 and bd were square footage and
bedroom number respectively, sd and Id represented short descriptions and long descriptions, and
p was the rental price. Short descriptions usually consisted of the post title, while long descriptions
contained the main text the property owner used to describe the property.

2.4. Experiment Design

For the evaluation of model performance, we designed a three-experiment framework that
assessed model fit.
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2.4.1. Exp. I: Single Model without Textual Information

In this experiment, we first modeled rental prices using common interpolation methods, including
inverse distance weighting and kriging (Gaussian process regression). Spatial interpolation algorithms
follow Tobler’s First Law of Geography [29]; thus, the value at a point of interest is estimated as
the weighted sum of values at surrounding data points such that closer neighbors contribute larger
weights. Inverse distance weighting (IDW) explicitly relies on the First Law of Geography by setting
the weight as the inverse of the distance (Equation (1)).

Y (1/d)"
Z(x) = AirZ(xi), Ai = ——"—— 1

(*) l;z(l) s v (1)
where Z(x) represents the unmeasured value to be calculated at the data point of interest x, d; is the
spatial Euclidean distance between x; and x, p is an exponent that influences the weighting of Z(x;),
and N is the number of nearest neighbors that contribute to the point of interest. In this experiment,
we tested three p-values, i.e., the first, second, and third orders, in order to evaluate the influence of the
exponent on modeling outcomes. When making predictions, we considered the 12 nearest neighbors.
Kriging or Gaussian process regression is modeled by a Gaussian process governed by prior
covariance functions. Kriging is named after the South African mining engineer D. G. Krige [30], who
first presented this method to improve the precision of predictions of gold concentration in ore bodies,
and is known to be the optimal or best linear unbiased prediction. The main idea of kriging is to
analyze the correlations among the residuals of data points. In this method, Z(x) can be decomposed

into a deterministic trend function p(x) and a real-valued residual random function R(x). That is,

Z(x) = p(x)+R() @

Similar to IDW, kriging also estimates the residual at x as the weighted sum of residuals at
N
surrounding data points, that is Z(x) = L Ai-Z(x;). The weight A; is derived from a covariance

function or variogram, which is utilized ’lco characterize the residual component. There are three
classical versions of kriging, each employing different assumptions: Simple kriging, ordinary kriging,
and universal kriging. Simple kriging assumes the stationarity of the first moment over the entire
domain with a known mean p = E{Z(x)}; ordinary kriging assumes a constant unknown mean only
over the search neighborhood; and universal kriging assumes a general polynomial trend model, such

k
as the linear trend model E{Z(x)} = ¥ B;fi(x).
j=0

In this study, we tested the ability of both ordinary and universal kriging to estimate rental prices.
When using universal kriging, we adopted a linear trend model with f(x) = x. In addition, we used
Gaussian process regression to simultaneously model four variables: Latitude, longitude, bedroom
number, and square footage. The covariance functions or kernels considered in our experiments are all
Gaussian, i.e., squared exponential covariance functions. Because kriging and GPR are computationally
intensive, we sampled 1600 feature points for training the models. These models were trained and
validated on the same data splits to make sure their outcomes were comparable.

Next, we selected popular linear, nonlinear (not ensemble), and ensemble algorithms to model
rental price based on location, square footage, and bedroom number. Each algorithm has its own
advantages. For problems that are inherently linear, linear models are fast and simple. Nonlinear
algorithms can handle problems that are linearly inseparable. The performance of nonlinear algorithms
may vary depending on the nonlinear characteristics of the feature space. Ensemble models combine
several base algorithms to achieve an optimal predictive model. We tested a few different algorithms
from each category. The linear algorithms tested in this study consisted of linear, lasso, ridge, elastic net,
and stochastic gradient descent regressions. Lasso, ridge, and elastic net models provide approaches
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for regularizing models so as not to overfit the training dataset. Ridge regression penalizes the sum of
squared coefficients while lasso regression penalizes the sum of absolute values. Elastic net is a convex
combination of ridge and lasso.

The nonlinear algorithms (not ensembles) applied in this study included K-nearest neighbor
algorithm (k-NN), regression tree (RT), multilayer perceptron (MLP), and support vector regression
(SVR). k-NN is a very useful non-parametric model that does not assume any underlying data
distribution; its prediction is based on the most similar k-neighbors in the training set. RT splits
samples into relatively homogeneous sets based on the most significant splitter for input variables,
with the terminal nodes containing the predicted output values. MLP is an artificial neural network
composed of an input layer that receives feature signals, an output layer that makes a prediction, and
several hidden layers. MLP is a powerful supervised learning model. SVR is based on a support vector
machine, using the concept of maximal margin to make predictions.

Finally, the ensemble models tested in this project include AdaBoost, bagged decision trees,
random forest, extra trees, and gradient boosting machines. Ensemble models combine decisions from
multiple models to improve final performance. These models usually include two general approaches,
bagging and boosting. Random forest and bagged decision trees are considered bagging approaches.
Bagging usually samples the training data set with replacement, then creates a model for each sample.
The results of those multiple models are combined and the average is used for final predictions.
AdaBoost and gradient boosting machines are considered to use the boosting approach. Boosting
is a sequential approach in which a first model is trained on the entire dataset, and the subsequent
models are built by fitting the residuals of previous models. Such iterations allocate higher weights to
observations that were poorly predicted by the previous model [31].

In this project, the top-performing algorithms were recorded and reported. To fine-tune
performance, we also conducted a grid search for the top ten models. We conducted two groups of
tests: One using the same training and validation split as with the IDW and kriging models, the other
using the full dataset, which is consistent with the experiments described below.

2.4.2. Exp. II: Single Model Based on Textual Information

Textual information embedded in the short and long descriptions is critical when modeling rents.
For instance, factors such as decorations, neighborhood, amenities and unique upgrades, and interior
design cannot be reflected in square footage and bedroom number, yet contribute significantly to rental
price. To capture information about room quality for the purpose of predicting price, we used three
types of models: Latent semantic analysis (LSA), recurrent neural network (RNN), and convolutional
neural network (CNN).

LSA is a technique for creating a vector representation of textual information. We first convert
the property descriptions D to a matrix of word counts T, with rows being individual properties and
columns being all possible words in the descriptions. Then, the matrix T is transformed based on tf-idf
equations as below:

tf —idf(t,d, D) = tf(t,d) idf(t, D) 3)

) N

Term frequency (ff) counts the number of times a word ¢ occurs in a property description d.
The inverse document frequency (idf) is an indicator of how much information the word ¢ provides,
measured as the frequency of word t across all documents D.

Next, we apply singular value decomposition (SVD) to the transformed matrix T to lower its
dimensionality. Specifically, we decomposed the matrix T7 into three matrices T = UX;V* where U
and V are orthogonal and % is a diagonal matrix containing k singular values. In this study, we used
ks<<k to approximate Tr =~ UX, V* = T”. The new matrix T” was used to predict prices.

RNN. Traditional neural networks treat input words independently. However, when modeling
textual information, spatial adjacency such as ‘close to downtown’ or ‘five minutes away from airport’
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is meaningful; this adjacency cannot be captured by traditional neural networks. RNN, however, can
make use of the sequential information. It trains a model for every input word sequentially, with the
output from the current input word depending on previous computational results. Such a process can
be expressed as:

B = F(Wai + M) 5)

where I is the hidden state at time ¢. It is a function of the current word input x;, multiplied by a
weight matrix W, and the hidden state derived from previous words at time #;_1, multiplied by its
hidden state weight matrix M. By maintaining the internal hidden state /; and sharing this parameter
across all time steps, an RNN is able to remember past information and repeatedly occurring patterns.

In this study, we first converted each word from the property descriptions into vector spaces using
Global Vectors for Word Representation (GloVe) [32]. This step maps words with similar meanings
(e.g., house and apartment) to similar vector representation. Next, because RNN requires each input
batch to have the same length, we padded each description with zeros so that the resultant vectors had
the same length. We respectively used 15 and 200 vector lengths to pad short descriptions and long
descriptions. Then, vector spaces for short and long descriptions were connected to two long-short
term memory networks (LSTM). LSTM is a particular architecture of RNN designed to minimize the
vanishing gradients problem, which is caused by the fading memory of past learned patterns over
time [33]. Outputs from the two LSTM models were concatenated and sent to a densely connected
network for final predictions. The detailed scheme of the model is provided in Figure 1.

Final
Property Brand New Apartment in Downtown  Padding Output
Descriptions ——  —— — *
2‘?!.!; Fully
Word .I.m.x. Connected
Embedding 3 : : : : VP Layer
Vectors ’»}:}“,‘5‘%@?@?
— R G
Flattened
g @ @ @ @ @ ﬁ Output
LSTM
Qutput
Layers @ P

Figure 1. Visual representation of the long-short term memory networks (LSTM) structure used in
this study.

CNN. The convolutional neural network (CNN) is inspired by biological processes in the visual
cortex of animals, and thus commonly applied to image recognition. Since a one-dimensional-CNN
scans data in a one-dimensional and sequential manner, it can also be used to capture sequential textual
information. We tested a 1D-CNN for capturing relationships between adjacent words. A typical
CNN network usually contains a convolutional layer, a pooling layer, and a fully-connected layer.
We created our network following this paradigm. First, as with LSTM-RNN, we converted the words in
property descriptions into vector spaces using GloVe. Similarly, word sequences were padded to form
a homogeneous vector space. We then employed a 1D convolution layer to slide the filter over each
vector space. As the core building block of a CNN, the convolution layer partitions input into partially
overlapping regions and utilizes convolution operations to explore these regions, which emulates the
response of an individual cortical neuron to visual stimulus. We also applied the activation function
ReLU (defined as f(x) = max(0,x)) to introduce non-linearity into the network (Figure 2).
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2 -1 1 2
Figure 2. A visualization of the ReLU function f(x) = max(0, x).

Next, we applied a max pooling layer, which takes the maximum value in each one-dimensional
window as the output. This process decreases the number of features while retaining the most important
information. Finally, we flattened the combined outputs from pooling layers and concatenated layers
from both short descriptions and long descriptions to construct a fully-connected network (Figure 3).

Property Padding Brand New Apartment in Downtown Padding
Descriptions —— — e — N

] —1 —1 1 1 ] Final
Qutput
Word o . . . .
Embedding : : : :
Vectors
S S W S S S () T Fully
Connected
3 = Layer
Convolution | <
- I | Flattened
Qutput
H : H H -
Pooling
1 [ 1 [ Layers

Figure 3. Visual representation of the 1D-convolutional neural network structure used in this study.

For both RNN and CNN, we used Adadelta as the optimizer and mean absolute error (MAE) as
the loss function. Adadelta is a robust optimizer, which adapts the learning rates used in stochastic
gradient descent [34]. Model performance was evaluated by cross-validation. In addition, for both
RNN and CNN, we used Leaky ReLU (Equation (6)) at the second-to-last layer rather than the common
ReLU activation function. Leaky ReLU allows a small, non-zero gradient when the neurons are not
active. This change helped to maintain a small fraction rather than zero when the input was negative,
which was helpful in Exp. IIIl when we fed outputs from the second-to-last layers into other machine
learning models (e.g., random forest).

x, if x > 0;
0.01 - x, otherwise.

o = { ©

2.4.3. Exp. llI: Combined Models Using both Numeric and Textual Information

We combined numeric information (e.g., location, bedrooms, and square footage) and textual
information (short and long property descriptions) derived from Exp. II to jointly model rental prices.
We first kept the weights trained in Exp. II, transferring them directly to Exp. III. Notably, the
second-to-last outputs of LSTM and 1D-CNN are 32-dimensional vectors that embed the information
derived from apartment descriptions. In order to reduce the dimensionality of these vectors, we
extracted the major components using principal component analysis (PCA). All features were trained
on a number of models in order to evaluate model performance.
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We used multiple indicators to assess the models; specifically, the mean absolute error (MAE),
root-mean-square error (RMSE), and mean absolute percentage error (MAPE). Both MAE and RMSE
evaluate absolute error, while MAPE measures relative error [35].

1 n
MAE = N;wi .y @)
1 n
RMSE = NZ(OI«—P,«)Z ®)
i=1
1y O;—P;
APE = — L
M NL o, ©)

where O; denotes the observed property price, P; denotes the estimated property price, and N denotes
the number of samples.

3. Results

A total of 351,230 raw records were collected from Craigslist for the Atlanta Metropolitan Area.
After preprocessing as described in the methods section, we obtained 76,487 observations in total.
Table 1 shows descriptive statistics for rental properties listed in the top ten counties as ranked by
average listing price. Fulton, Dekalb, and Gwinnett are the most expensive areas, with average rental
prices of $1509, $1301, and $1238, respectively. In all counties, properties with two bedrooms are the
most common rental housing type on the market. Most of the rental properties are located in Fulton
and Dekalb counties. Figure 4 shows the spatial distribution of rental price. In general, areas in central
and northern Atlanta, such as Midtown, Buckhead, and Downtown, show higher rental prices than the
rest of the metropolitan area.

Table 1. Descriptive statistics (price, bedroom number, and square footage) for the top ten counties (in
terms of average prices) in the Atlanta Metropolitan Area.

Price ($) Bedroom (#) Square Footage

County Mean Std Median Mean Std Median Mean Std Median  Count
Clayton 975.7 1955 953.0 2.1 0.9 2 11140 3385 1059.5 3728
Rockdale  1043.7 206.7  1000.0 2.1 0.9 2 11702 3551 1156.0 853
Coweta 1099.0 2426 1050.0 2.1 0.9 2 11763 3675 1154.0 1046
Henry 11189  240.1 1074.0 21 0.9 2 1247.6 386.7 1204.0 2260
Paulding 11235 2218 1106.0 2.2 1.0 2 1307.9 461.6 1210.0 1033
Cherokee 12055 254.3 1189.0 2.1 0.9 2 12174 3854 1160.0 1321
Cobb 1217.4 3224 1182.0 2.0 0.9 2 11339  404.8 1100.0 9722
Gwinnett 1238.0 3125 1190.0 2.1 1.0 2 1266.1 476.6 1196.0 8873
Dekalb 1301.8  420.1 1243.0 1.8 0.8 2 1093.7 3726 1072.0 14188
Fulton 1509.1  495.2 1433.0 1.7 0.8 2 1059.6  348.6 1046.0 30261
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Figure 4. Spatial distribution of housing rental prices in the Atlanta Metropolitan Area.

Table 2 shows interpolation results from the IDW and kriging methods. We compared model
performances for six models, i.e., three IDW methods, two kriging models based on only locational
information, and one kriging (or Gaussian process regression) model incorporating location, bedroom
number, and square footage. The Gaussian process regression (GPR) achieved the best accuracy, while
ordinary kriging and universal kriging worked better than IDWs. Of the three IDW models, the first
order IDW performed better than the second and third orders.

Table 2. Interpolation results from inverse distance weighting (IDW) and kriging methods. IDW_{1,2,3}
means IDW with 1st, 2nd, and 3rd order. KG_{ORD,UNIV} means ordinary and universal kriging.
KG_FULL_VARIABLES means Gaussian process regression based on location, bedrooms, and
square footage.

idw_1 idw_2 idw_3 kg Ord kg Univ  kg_Full Variables

MAE 264.702 284.214 293.514 256.261 255.491 219.004
MAPE (%) 20.742 22.072 22.658 20.172 20.138 17.749
RMSE 370.853 397.315 411.412 359.853 359.027 325.607

In addition, we evaluated model performance based on two groups of training-validation splits.
The first group was a 10%-90% split for training and validation out of 16,000 randomly sampled
data points, while the second group was an 80%—20% split for training and validation out of the full
dataset. The reason we used two groups is because kriging, especially four-variable GPR, is a very
computationally intensive method; sampling a small fraction of feature points for training reduces
that burden. To ensure the kriging and machine learning models were comparable, we use the same
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training-validation splits for the common machine learning models. For the proposed deep neural
network for review texts, we used a more traditional split proportion (i.e., 80% of observations in the
training set) to include more data for training. Exp. Il and Exp. III are all based on this 80%—-20% split.

When comparing interpolation methods with machine learning approaches, the ensemble methods
such as random forest, bagging, and gradient boost regression showed better performances. Nearest
neighbor approaches were also slightly better than the interpolation methods. Comparing the small
and large training sets revealed that, as we expected, the larger training set produces better accuracy
(Table 3).

Table 3. Performance metrics from models based on numeric predictors. RF: Random forest, BAG:
Bagging, ET: Extra tree, KNN-{5,10}: 5(10) Nearest neighbors, GBM: Gradient boost regression, CART
decision trees, ADA: Ada boost, MLP-20: neural network (20 hidden units).

Small Training Large Training
MAE MAPE (%) RMSE MAE MAPE (%) RMSE
RF 194.925 15.846 300.877 151.587 12.425 255.293
BAG 194.767 15.849 301.457 151.237 12.402 255.191
ET 197.246 15.934 312.839 153.146 12.531 263.026
KNN-5 223.442 18.196 334.660 175.726 14.499 287.57
KNN-10 226.884 18.575 334.697 182.711 15.067 289.153
GBM 214.492 17.662 312.705 205.166 17.025 300.727
CART 245.931 19.389 393.507 180.132 14.407 323.132
EXTRA 254.196 20.137 411.971 182.634 14.619 326.941
ADA 281.724 24.656 369.236 250.227 21.551 344.863
MLP-20 312.400 25.380 419.337 278.284 23.023 381.732

Similarly, we evaluated performances of the models from Exp. IL. Figures 5 and 6 show model
structures and tensor dimensions for each layer in the CNN and RNN models respectively. In the
CNN model, when conducting the 1D-convolution, we chose different lengths for the 1D convolution
windows (i.e., kernel sizes) for short descriptions (four and six kernels) and long descriptions (four and
eight kernels), respectively. In Figure 5, the layers Conv_1D, Conv_2D, Conv_3D, and Conv_4D have
four, six, four, and eight kernels, respectively. After convolution and max-pooling, four layers were
concatenated and connected with two densely-connected layers before the final output. In the RNN
model, the short descriptions and long descriptions were connected with LSTM layers. Outputs from
the LSTMs were concatenated and connected with two densely-connected layers before generating the
final output. For both LSTM and 1D-CNN models, the final output was the predicted rental price,
while the second-to-last layer was a 32-dimensional vector consisting of numerical information derived
from textual descriptions.

Table 4 shows the results of Exp. II. Although the performance of models based on textual
information was weaker than that of models based on numeric predictors, relatively good fits were
achieved with textual information alone (without latitude and longitude, bedroom, and square footage).
For latent semantic analysis (LSA), the MAE was 211.7 and the RMSE was 311.7. The RNN-LSTM and
1D-CNN models showed better performance than LSA, with MAE values of 196.8 and 208.9, respectively.
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Figure 5. Inputs, outputs, structural flows, and intermediate matrix dimensions of convolutional neural
network (CNN) models. Each box represents a layer. Each layer has an input and an output. Within
the parentheses in each box are the dimensions of the matrix.
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Figure 6. Inputs, outputs, structural flows, and intermediate matrix dimensions of recurrent neural
network (RNN) models. Each box represents a layer. Each layer has an input and an output. Within
the parentheses in each box are the dimensions of the matrix.
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Table 4. Performance metrics for models based on textual information. RNN: Recurrent neural network
based on LSTM. CNN: 1D-convolutional neural network. LSA: Latent semantic analysis.

MAE MAPE (%) RMSE

LSTM 196.760 15.452 288.370
CNN 208.886 17.030 300.103
LSA 211.701 15.655 311.688

We tested whether the model prediction results were sensitive to the presence of keywords
describing important characteristics of the property. Namely, we extracted certain keywords from the
datasets and simulated records having the same long descriptions but different short descriptions
(Table 5). We used the RNN model to predict prices. The model successfully captured textual
information about bedroom numbers and important local destinations. The model also reflected that
descriptive phrases such as “luxury apartment” tended to predict higher rent than phrases such as
“good condition”.

Table 5. Rental price predictions based on representative short descriptions.

ShortDesc Predicted Price
1 BEDROOM APARTMENT AVAILABLE! 1093.51
2 BEDROOM APARTMENT AVAILABLE! 1210.22
APARTMENTS WITH GOOD CONDITION FOR RENT 1159.77
LUXURY APARTMENTS FOR RENT, DO NOT MISS 1318.34
LUXURY APARTMENTS FOR RENT, CLOSE TO BUCKHEAD 1351.13

In Exp. III, we considered textual information together with numeric variables. Specifically, we
extracted model outputs from the second-to-last densely-connected layer as latent representations of
property descriptions and concatenated these latent variables with the numeric variables. We then
tested the ability of several models to predict rental prices from the concatenated variables (Table 6).
Overall, the joint models with integration of textual and numeric information demonstrated better
performance. The MAE of the best model was reduced to 145.4, and the average RMSE dropped to
227.967. Similarly, once we introduced textual information and extracted the top principal components,
the performance of linear models increased significantly. This suggests that textual information played
an important role in joint models.

Table 6. Performance of models utilizing both numeric and textual information. RF: Random forest,
BAG: Bagging, ET: Extra tree, KNN_{10,20}: 10(20) Nearest neighbors, GBM: Gradient boost regression,
MLP-20: Neural network (20 hidden units), LR: Linear model, LASSO: Lasso regression, RIDGE:
Ridge regression.

MAE MAPE (%) RMSE

bag 145.358 11.703 227.967
rf 145.4 11.702 227.945

et 150.648 12.119 234.685
gbm 159.673 12.833 237.805
knn-20 156.105 12.653 238.597
knn-10 154.66 12.472 239.211
mlp-20 172.668 13.859 254.023
Ir 176.686 14.044 260.452
lasso 176.686 14.044 260.452

ridge 176.686 14.044 260.452
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4. Discussion and conclusion

The rental housing market is a very important part of the real estate market, and has received
considerable attention from scholars. Many previous studies focused on identifying the driving factors
of rental prices rather than modeling, predicting, and mapping the spatial distribution of prices [36].
Practically, models that accurately predict rental price can help property owners’ better price their rental
properties and assist tenants in finding places to live with reasonable prices. In this study, we modeled
rental prices in Atlanta based on Craigslist data. Craigslist is an important rental listings platform that
has become increasingly popular for exchanging information related to rental housing; it provides
rich rental information covering wide geographies, which makes the fine-scaled spatial-temporal
assessment of rental value possible.

In summary, in this study, we tested a number of common machine learning approaches and
developed deep learning models to predict rental prices. We utilized locations, house attributes,
and textual descriptions in these predictions. Our experiments demonstrated that machine learning
approaches can achieve good accuracy in estimating rental price solely based on Craigslist data.
In particular, ensemble models achieve better accuracy than common interpolation methods. Deep
learning approaches have advantages in handling textural information along with numeric information.
Using only advertisement titles and descriptions, our models achieved an average MAE of 196.760.
Another important lesson learned in the course of this study is to fuse different types of features
through feature concatenation. Namely, by fusing textual data with numeric information, we effectively
reduced the overall errors of our models.

In this study, some ensemble methods (random forest, bagged decision trees) performed better
than the kriging, while other approaches (KNN, CART) were not as good. Kriging estimates the
residual at a point of interest as the weighted sum of residuals at surrounding data points, and is
based on the variogram technique. The main idea of the variogram relies on the assumption that
the spatial relation of two sample points does not depend on their absolute geographic location, but
only on their relative locations. However, real-world data may not follow this assumption. Such
results are consistent with previous research comparing common machine learning approaches for
interpolation tasks. Appelhans et al. (2015) found that machine learning approaches such as stochastic
gradient boosting, random forest, and neural networks perform better than kriging in quantitative
evaluations [37].

For the processing of textual information, we compared three methods, i.e., latent semantic
analysis (LSA), recurrent neural network based on LSTM, and 1D-convolutional neural network
(ID-CNN). The matrix decomposition method LSA achieved moderate accuracy, whereas the deep
learning models LSTM and 1D-CNN achieved better results. The superior performance of deep
learning models can be ascribed to their ability to capture sequential information. LSTM and 1D-CNN
showed similar performance, with LSTM being slightly better. In addition, both LSTM and 1D-CNN
tended to overfit the training model. Dropouts significantly improved the performance of both models.

There are a few limitations inherent in this study. First, the model was trained and tested based on
data from the city of Atlanta. Patterns learned from this data may not be applicable to other contexts.
Future studies can explore additional geographic areas and apply the model transferable learning
capabilities to other cities. Second, most Craigslist rental posts also include images of the property,
which were not used in our models. Images may provide valuable information concerning room/house
condition and that otherwise predicts the rental price. In our future work, we will test whether adding
such graphical information can improve the model fit.

In this study, we used data from Craigslist rental listings in Atlanta to predict rental prices.
When constructing the models, we combined information including location, house attributes, and
textual descriptions. Our experiments demonstrate that machine learning approaches can achieve high
accuracy in estimating rental prices solely based on Craigslist data. In particular, textual information
contributes to lower overall errors. LSTM and 1D-CNN performed better than LSA at modeling
textual information. As a result, we used the model outcomes from LSTM together with numerical
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attributes to construct the final model. The final model achieved a mean absolute error of 145.358.
Although the established model can effectively predict rental prices, its performance can be further
improved by including data from multiple cities, such that the constructed model would be applicable
to other geographic areas. In our future work, we will also consider using photo inputs and test if such
information helps to further improve model performance. The results of this study can be used to
model rental prices, assist research in housing dynamics, and provide practical references for home
owners and renters to list and find properties at a reasonable price.
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