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Abstract: Pick-up and drop-off events of taxi trajectory data contain rich information about residents’
travel activities and road traffic. Such data have been widely applied in urban hotspot detection in
recent years. However, few studies have attempted to delimitate the urban hotspot scope using taxi
trajectory data. On this basis, the current study firstly introduces a network-based spatiotemporal
field (NSF) clustering approach to discover and identify hotspots. Our proposed method expands the
notion from spatial to space–time dimension and from Euclidean to network space by comparing
with traditional spatial clustering analyses. In addition, a concentration index of hotspot areas is
presented to refine the surface of centredness to delimitate the hotspot scope further. This index
supports the quantitative depiction of hotspot areas by generating two standard deviation isolines.
In the case study, we analyze the spatiotemporal dynamic patterns of hotspots at different days and
times of day using the NSF method. Meanwhile, we also validate the effectiveness of the proposed
method in identifying hotspots to evaluate the delimitating results. Experimental results reveal that
the proposed approach can not only help detect detailed microscale characteristics of urban hotspots
but also identify high-concentration patterns of pick-up incidents in specific places.

Keywords: taxi trajectory; urban hotspot; network-based spatiotemporal field; space–time dynamic
patterns; concentration index

1. Introduction

Urban hotspots refer to regions with frequent human mobility, heavy traffic flow and prosperous
economic activities. They can also reflect the characteristics and regularity of people’s travel intensity
in different areas [1,2]. Obtaining massive, consecutive sequences and highly accurate real-time
trajectories has become increasingly possible with the increasing application of various location-based
technologies [3,4]. In particular, taxi trajectory data provide a deep understanding of people’s daily trip
behavior and discover the mobile patterns of passengers and their underlying dynamics. Taxis’ pick-up
and drop-off events are the origin-and-destination (OD) pairs of taxis [5]. Such events mirror passengers’
travel demands and various patterns of human mobility. Hence, pick-up and drop-off events have
been widely applied to urban hotspot identification and detection. However, the typical techniques for
measuring the distribution of hotspot intensity are over a 2D planar space. These approaches ignore
many urban geographical phenomena associated with human activities that occur on or along the road
network (e.g., points of interest, traffic crashes and street crime). In the real world, the movement in
urban space is usually constrained by a dense network and the characteristic of street centrality has
a large influence on the urban environment [6–8]. Thus, refining the scope of pick-up events’ hotspot
patterns to a 1D network space is necessary.

Spatial clustering is a major spatial data mining technique, which is used broadly for discovering
hotspots in trajectory data [2,5,9,10]. In accordance with Tobler’s first law of geography, closer objectives
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are more related to each other. The purpose of spatial clustering analysis is to group similar objects
based on their distance, connectivity and density in space [11]. This analysis commonly measures
similarity among spatial objects using Euclidean distance. As mentioned previously, the pick-up and
drop-off positions of passengers are normally constrained by the topology of the street network. Recent
studies have focused on detecting mobile patterns of people’s daily travel under the context of the urban
road network. Compared with other urban data sources, GPS-enabled taxi trajectory is an important
kind of spatiotemporal data. It can effectively reflect the spatiotemporal patterns of urban residents’
travel behavior. Therefore, spatiotemporal clustering methods are more appropriate for urban hotspot
detection. Considering the above issues, it is significant to develop a kind of spatiotemporal clustering
method based on network distance to improve the accuracy of urban hotspot detection.

Existing clustering analysis approaches that use taxi trajectory data are concerned about urban
hotspot detection and identification. However, studies on the delineation of urban hotspots using
quantitative analysis are limited. An urban hotspot, described as the ‘heart of urban activities’,
is usually located at the city centre and near some typical urban landmarks (e.g., main commercial
street, central business district (CBD) and city square) [12]. If several high-intensity hotspots are close
to each other, then there is a ‘hotspot core’, which can be delimitated through a continuous surface.
Accordingly, the statistical aggregation analysis conducted on the surface realizes the quantitative
depiction of the borderline of an urban hotspot with high-density values. The present research aims to
develop a method for the delimitation of urban hotspots based on spatial statistical analysis.

The current study attempts to present a systemic methodology framework for identifying and
delimitating urban hotspots from taxi trajectory data. Hence, our work involves four steps. Firstly,
a network-based spatiotemporal field (NSF) clustering approach is proposed to identify hotspots using
the pick-up and drop-off events from GPS trajectories. The NSF calculates the spatiotemporal potential
value for each pick-up point. Secondly, pick-up events in an urban environment are usually constrained
by street network structures. Thus the resulting values are assigned to the links based on the network
segmentation algorithm. Thirdly, a continuous surface potential value can be produced by a local
kriging interpolation process after obtaining the potential value of each network-based quadrat. Finally,
a concentration index is presented to delimitate the urban hotspot on network-constrained centredness
surface to capture the true ‘hotspot core’. This index enables the clear identification of high-intensity
pick-up events based on the derivation of a key isoline model. The proposed method is then tested
using the taxis’ pick-up events in Nanjing City, China. We explore and analyze the spatial and
temporal dynamic patterns of urban hotspots based on the output results. Furthermore, we evaluate
the effectiveness of our proposed NSF method in delimitating urban hotspots. The delineated hotspots
based on the NSF method are more effective and reasonable than the planar-based kernel density
estimation (KDE) method.

The remainder of this paper is as follows: Section 2 reviews the related work. Section 3 describes
the theoretical basis of spatiotemporal data field. In Section 4 we introduce the proposed method and
illustrate the detailed calculation procedure. Section 5 presents the experiment results from a case
study. In Section 6 we develop an approach to delimitate urban hotspot centredness. Finally, Section 7
concludes the paper and outlines further research work.

2. Related Work

The latest literature has demonstrated a growing interest in applying trajectory data to detect
urban hotspots. Yue et al. [9] analysed time-dependent attractive regions and mobile patterns based
on pick-up data. Li et al. [13] defined hotspots as areas where the pick-up and drop-off points are
clustered and discovered the spatiotemporal dynamic patterns of dwellers in these areas. Shen et
al. [14] presented a grid-adaptive DBSCAN algorithm to help drivers find passengers’ loading and
unloading hotspots using short-dated taxi GPS traces. Inspired by the 2D Fourier transform, Pei et
al. [15] proposed a density-based method for identifying two-component clusters. The clustering
algorithm was applied to identify clusters of taxi trip OD data in Beijing. Zhao et al. [5] proposed
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a trajectory clustering approach based on decision graphs and data fields to detect trajectory cluster
centres. However, these studies mainly focus on the densely distributed areas of taxi OD points and
neglect the restrictions of the street network. Hence, hotspot detection methods are currently being
developed and investigated in a network space. For example, Okabe et al. [16] developed a network
version of kernel density estimation (NKDE) to analyse point agglomerations in a network space and
applied it to identify ‘hotspots’ of vehicle crashes. Rui et al. [17] used network K-function to investigate
the spatial clustering patterns of local retail hotspots in Nanjing. Tang et al. [18] defined taxis’ pick-up
and drop-off events as linear events, and presented a novel network KDE method for linear features
(NKDE-L) to explore the space–time dynamics of linear features using taxi trajectory data and real
street roads in Wuhan. Based on such linear representation, Zhao et al. [5] investigated a new network
distance and graph partitioning-based clustering method to detect urban hotspots within the network
space using GPS trajectory data, and the clustered results indicated that the proposed method can
effectively identify urban hotspots. Based on the above research, urban hotspots can be defined as the
cluster intensity of taxis’ pick-up and drop-off events in this study.

In a spatial and temporal analysis of human activities, recent advances in using taxi trajectory data
to the dynamic movement detection of residents and vehicles in cities were mostly developed.
Recently, Pang et al. [19] revealed a fine-grained spatial pattern based on taxi GPS data by
decomposing the regularity and the disparity from point intensities. Werabhat et al. [20] constructed
a spatiotemporal-varying taxi OD matrix with adaptive zoning schemes for reflecting the changing
demands for taxis. While scholars have realized the importance of spatial and temporal dimensions
in identifying potential ‘hotspots’ (clusters) along the network, the two are often checked separately
among limited research. Therefore, network-based spatiotemporal clustering analysis can be applied
to identify whether events that are close in space are also close in time. This analysis is useful in
understanding the patterns and processes of various spatiotemporal point events.

3. Theoretical Basis

3.1. Spatial Data Field

In physical space, mutual interactions among particles generate various fields. Enlightened by
the field of physics, Li and Du [21] extended the field description method to abstract data objects and
presented the concept of the data field. They treated an object depicted by data as a mass particle and
described the mutual interaction between objects without touching each other through the aid of a data
field. In the data field, each data object is regarded as a mass particle, which radiates its potential energy
and is affected by others simultaneously [22,23]. When such an interaction is used, data fields can be
applied to characterize the interaction among objects and mine valuable information [24]. Generally,
a data field takes the following properties:

Interactivity: Each data object point is centred on itself and radiates outward and is then radiated
by others. Figure 1 shows that data points A and B radiate data energy around themselves and interact
with each other in the whole data space.ISPRS Int. J. Geo-Inf. 2019, 8, 344 4 of 20 
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Superposition: The potential value of each data object point is equal to the sum of energy generated
at their own point in the space. Figure 1 shows that the potential value in locations 1 and 2 is the
superposition sum of data objects A and B, respectively.

Distance decay: The potential value decreases rapidly with increasing distance, and the potential
value is greater if it is closer to the field source.

Motivated by the concept of field in physics, interacting particles generate various fields. Li and
Du introduced data field to describe the mutual correlation among data objects [21]. Field strength
is often expressed by a potential function, which is used to calculate the potential value in arbitrary
positions from data space. The specific value can quantitatively describe the spatial interactions of its
neighbourhoods. In a given data space Ω, suppose that there is a dataset D = {x1, x2, · · · , xn} . For each
data object xi ∈ Ω(i = 1, 2, · · · , n), the potential function of data field on xi can be calculated as [25]:

ϕ(x) =
n∑

j=1

m j ×K
(xi − x j

σ

)
(1)

where xi − x j is the distance between one point i and the other point j, m j is the mass of data object
j, the impact factor σ ∈ (0, +∞) controls the range of interaction among objects [22], K(x) is a unit
potential function to express the law of how a data object radiates its data energy in the data field,
and the Gaussian kernel function is commonly employed [26].

The data field theory has been broadly applied to image classification and clustering algorithm
methods. For instance, Tao et al. [27] introduced the data field method to image feature extraction.
The classification of remote sensing images was conducted through steps, such as feature space
construction, potential value calculation and potential image segmentation. Liu et al. [28] presented
a new clustering method based on the data field in complex networks and divided network structures
through the aid of the nodes’ potential values.

3.2. Extension from Spatial to the Spatiotemporal Data Field

Space–time data refer to data that are spatial and time-varying in nature [29]. The acquisition
of spatiotemporal data has become widely available due to the rapid development of positioning
technology, mobile communication network and online social media. Trajectory data of taxis, especially
the pick-up and drop-off points, contain substantial space and time information about the travel
behavior of passengers. In the traditional data field, the distribution of field strength depends on
their relative position and internal structure amongst the objects interacted with. For a series of
pick-up or drop-off events, field strength is strongest when all event points in a region in space occur
precisely at the same moment, and the energy decays over time. Regarding the space–time data,
the intensity of the interaction between two points requires considering the time range. Figure 2
presents an illustrative example of a spatial and spatiotemporal data field. As shown in Figure 2,
O is a field source centre and A and B are two referenced points and are affected by field source
O. Hence, the potential value of O in space corresponds to data object mass and the interacted
distance from its field source. However, space–time geographic events contain temporal behavior.
The conventional potential function is none of the time dimension. For spatiotemporal data point
O =

{
xO, yO, tO

}
, A =

{
xA, yA, tA

}
, B =

{
xB, yB, tB

}
in the data space, the field strength from O to B is

stronger than O to A because of the shorter spatiotemporal distance [30] (shown in Figure 2b). Thus,
we must establish a spatiotemporal data field model to estimate the potential value.



ISPRS Int. J. Geo-Inf. 2019, 8, 344 5 of 18

ISPRS Int. J. Geo-Inf. 2019, 8, 344 5 of 20 

 

stronger than O to A because of the shorter spatiotemporal distance [30] (shown in Figure 2b). Thus, 
we must establish a spatiotemporal data field model to estimate the potential value. 

 
Figure 2. Illustration of spatial field and spatiotemporal field. (a) The neighbourhood in spatial data 
field and (b) The neighbourhood in spatiotemporal data field. 

3.3. Network-Based Spatiotemporal Field (NSF) Clustering Method 

Taxi trajectory data are considered important spatiotemporal data sources that record the 
running state of taxis at some intervals. Passengers’ pick-up (the status from ‘0’ to ‘1’) and drop-off 
(the status from ‘1’ to ‘0’) points can be extracted on the basis of the status change information. Taxis’ 
pick-up events reflect the mobile patterns of human behavior and urban hotspots. Therefore, the data 
field theory can be further introduced into the trajectory data to measure taxi passengers’ activity 
hotspots of potential distribution. 

Enlightened by the previous studies on data field and spatiotemporal clustering analysis [16–
18,22–25], we improve the conventional data field potential function by incorporating additional 

temporal weight [31]. }{ 1 2, , , kP P P P=   is the taxi passengers’ pick-up incident dataset, where 

}{ , , ,i i i i iP x y t s= , and K  is the total number of events. Each event iP  is seen as a particle with 

mass im ; in this study we assume that each activity incident has the same mass, iP  radiates its data 
energy and is affected by others and a virtual field surrounding it is observed. In the data space Ω , 
each data point iP  is influenced by the fields from different points and is finally overlapped to 

obtain a superposed field. Hence, the potential value of the point iP  in the entire spatiotemporal 
data field Ω  can be quantitatively defined as [32]: 

2

1

1( )
ijd

n R
i jj

ij

P m e
t

ϕ
 

−  
 

=

 
 = × ×
 Δ
  

  (2) 

where jm  represents the mass of the point jP , the mass of each event  is set as 1 for convenient 

calculation, ijd  denotes the path distance between iP  and jP , radiant radius R  determines the 
span of distance threshold, generally it is set through the empirical experience. For instance, put the 
distance ijd   in ascending order and take the first 2% as the threshold value [25]. 1 / ijtΔ   is a 
normalized temporal weight coefficient and is calculated by [32]: 

min

max min

ij
ij

t t
t

t t
Δ − Δ

Δ =
Δ − Δ  (3) 

where 1 / ijtΔ  is the time difference between iP  and jP , and mintΔ and maxtΔ are for the 
minimum and the maximum time difference in the dataset. 

While the spatial data field has been widely studied, most of them compute neighbourhood 
based on Euclidean distance. This process tends to overestimate the clustering tendency of network-

iP

Figure 2. Illustration of spatial field and spatiotemporal field. (a) The neighbourhood in spatial data
field and (b) The neighbourhood in spatiotemporal data field.

3.3. Network-Based Spatiotemporal Field (NSF) Clustering Method

Taxi trajectory data are considered important spatiotemporal data sources that record the running
state of taxis at some intervals. Passengers’ pick-up (the status from ‘0’ to ‘1’) and drop-off (the status
from ‘1’ to ‘0’) points can be extracted on the basis of the status change information. Taxis’ pick-up
events reflect the mobile patterns of human behavior and urban hotspots. Therefore, the data field
theory can be further introduced into the trajectory data to measure taxi passengers’ activity hotspots
of potential distribution.

Enlightened by the previous studies on data field and spatiotemporal clustering
analysis [16–18,22–25], we improve the conventional data field potential function by incorporating
additional temporal weight [31]. P = {P1, P2, · · · , Pk} is the taxi passengers’ pick-up incident dataset,
where Pi =

{
xi, yi, ti, si

}
, and K is the total number of events. Each event Pi is seen as a particle with

mass mi; in this study we assume that each activity incident has the same mass, Pi radiates its data
energy and is affected by others and a virtual field surrounding it is observed. In the data space Ω,
each data point Pi is influenced by the fields from different points and is finally overlapped to obtain
a superposed field. Hence, the potential value of the point Pi in the entire spatiotemporal data field Ω
can be quantitatively defined as [32]:

ϕ(Pi) =
n∑

j=1

[
m j × e−(

dij
R )

2

×
1

∆ti j

]
(2)

where m j represents the mass of the point P j, the mass of each event Pi is set as 1 for convenient
calculation, di j denotes the path distance between Pi and P j, radiant radius R determines the span of
distance threshold, generally it is set through the empirical experience. For instance, put the distance
di j in ascending order and take the first 2% as the threshold value [25].1/∆ti j is a normalized temporal
weight coefficient and is calculated by [32]:

∆ti j =
∆ti j − ∆tmin

∆tmax − ∆tmin
(3)

where 1/∆ti j is the time difference between Pi and P j, and ∆tmin and ∆tmax are for the minimum and
the maximum time difference in the dataset.

While the spatial data field has been widely studied, most of them compute neighbourhood
based on Euclidean distance. This process tends to overestimate the clustering tendency of
network-constrained events [33,34]. Figure 3 illustrates that the search region with the Euclidean
neighbourhood overestimates the number of clusters within the search radius compared with the
results using network distance. Based on this concept, our work aims to improve the clustering
accuracy of the traditional algorithms by using path distance.
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4. Methodology

4.1. Framework

In this section, we propose a systemic methodology framework and detailed process (Figure 4) for
identifying and delimitating urban hotspots based on taxi trajectory data. The proposed framework
includes four steps: Calculation of a spatiotemporal potential value for each pick-up point, assignment
of resulting values to links, generation of regularly spaced contours in a wide range of potential values
and delimitation of the centredness surfaces of the urban hotspot.

4.2. Calculation of Spatiotemporal Potential Value for Each Pick-Up Point

A spatiotemporal potential value for each pick-up event with the given space–time potential
function is calculated (see Equation (2)). Next, pick-up points with the spatiotemporal potential
attribute are achieved for expressing the intensity distribution of events.

4.3. Assignment of Resulting Values to Links

For taxis’ pick-up events, the Euclidean distance assumption is not appropriate because the
operation of taxis depends on the layout of the street network. In a 2D geographic space, geospatial
data usually can be treated either as point features (e.g., traffic accidents, street robberies or service
sites) or spatial units (e.g., administrative divisions, geographic boundaries or grid units) attaching
some attributes (e.g., population density or car accident incidence) [35]. Similarly, network-constrained
events can be considered a set of points alongside or located close to the links of the road, and their
related attribute values are assigned to the links [36–38]. Moreover, the links are usually split into
short segments using a network segmentation algorithm [33,38]. In this study, the methodology is
used to calculate the spatiotemporal potential values of pick-up events that are expressed as line
attribute-based data.

The specific implementation process is presented as follows (see Figure 5): (1) Road section
segmentation. The links are divided into short segments called basic linear units (BLUs). Meanwhile,
pick-up points are projected onto BLUs via nearest distance search. (2) Point feature processing.
A search threshold R measured by the shortest path network distance is defined. For an arbitrary
point event in a source BLU, all its neighbouring point objects within the search range R are searched
(based on network distance). Then, the space–time potential value in the data space is computed
with Equation (2). (3) Spatiotemporal field function calculation. For each source BLU, the space–time
potential values are counted from different point events belonging to the corresponding source BLU,
and finally, the resulting values are assigned to the BLUs as new attributes.
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After calculating the potential value of each BLU, regularly spaced contours can be generated by
a wide range of potential values. Firstly, the midpoint in each network-based quadrat (e.g., BLU) is
produced. Secondly, a local kriging interpolation is conducted on the network-based quadrats with
spatiotemporal potential values. Through such processes, a continuous surface potential value can be
depicted. Thirdly, regularly spaced isolines are captured by creating a digital elevation model (DEM)
based on the contour line to facilitate the manifestation of high-value characteristics.
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4.4. Delimitation of Centredness Surfaces of Urban Hotspot

The distribution of spatiotemporal potential values based on contours is only available for
capturing the fuzzy boundary of hotspots. However, delineating the true ‘hotspot core’ is difficult.
A concentration index is presented to delimitate the urban hotspot on the network-constrained
centredness surface. This index enables the clear identification of high-intensity pick-up events based
on the derivation of a key isoline model. Specifically, we use a specified value of two standard deviation
isolines to encircle hotspot regions because numerous resident travel activities are concentrated within
the range.

5. Case Study: Exploring Spatiotemporal Clustering Pattern from Taxis’ Pick-up Events

5.1. Data Description and Processing

In this work, the study area is selected from the downtown areas of Nanjing City, China, and the
taxi trajectory data are acquired from local taxi companies in Nanjing. The data collection time
was between the 7th and 13th of September 2015 (00:00–24:00), recording the operating of a week’s
trajectories of 2927 taxicabs. Further data processing is essential to ensure data validity and achieve
the goals of the main work: (1) GPS trace points are matched to road sections using the map-matching
method, and (2) OD points in the trajectory are extracted in accordance with the status information
(changed from ‘empty’ to ‘occupied’ or vice versa). Invalid records (noisy points or missing values)
are removed from the raw data through preprocessing. A total of 2,923,198 passenger pick-up and
drop-off points are extracted (as displayed in Figure 6). The road network dataset is downloaded from
the OpenStreetMap website.
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5.2. Experiment Settings

The proposed method requires the conversion of point-based pick-up events into link-based
attribute data. To reveal the significant clusters of pick-up events at a relatively fine scale [39], 50 m
as a basic linear unit length is enough. Similarly, neighbourhood threshold is a key parameter in
structuring the pattern of network-based hotspots, which control the smoothness of the estimated
output surface. An appropriate neighbourhood threshold should consider the overall distribution
characteristic over the whole space and the local effects at small scales. However, few fixed rules
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for threshold selection have been implemented in urban areas, and existing studies have suggested
a trial-and-error process to determine the optimal one [16,36]. In view of the previous literature [39–41],
scholars suggested that a 200–300 m distance is appropriate for analyzing local effects at an urban scale.
Thus, a 300 m neighbourhood threshold is used in the present study.

5.3. Analysis of Spatiotemporal Dynamics of Urban Hotspots

Residents generally have different travel purposes on different days or times of day. Hence,
passengers’ pick-up events are affected by certain periods (e.g., peak or off-peak time) or different
days (e.g., workdays or weekends) [2]. We investigate and compare the dynamic changes of hotspots
during different periods of the day and during the same time on different days to further explore the
space–time patterns of pick-up events. Two peak periods (7:00–9:00 and 16:00–18:00) and two low peak
periods (20:00–22:00 and 23:00–1:00) are selected to express the temporal distribution of hotspots based
on the changing regularity of dwellers’ travel activities [42]. In addition, two types of days, workdays
(8–9 September) and weekends (12–13 September), are applied to reflect the activity law of people on
different days.

Figure 7 demonstrates that the potential value distribution of pick-up events exhibits a marked
periodicity during the day whether on workdays or weekends. The potential value of pick-up
events is relatively high in the daytime and slowly declines as the night comes. During 7:00–9:00 on
a weekday, hotspots are mainly distributed in working places, business centres and administrative
organs. For example, Taiping North Road is home to local government organs and administrative
agencies, and Zhujiang Road is the biggest CBD of Nanjing with numerous enterprises. Therefore,
urgent travel demand appears near these places. Some typical hotspots are mainly concentrated in
commercial and leisure districts, such as Xinjiekou, Huann Road. This special distribution is closely
related to shopping and leisure activities, which generally occur during the daytime and become
more frequent on weekends. Furthermore, some pattern differences in the dynamics of hotspots
on workdays and weekends from Figure 7 are noteworthy. During rush hours, the potential value
of pick-up events in urban arterial roads (e.g., Zhongshan Road and Hongwu Road) on workdays
(8–9 September) is lower than that on weekends (12–13 September). The observation is consistent with
the conclusion drawn by Tang et al. [18]. Two reasons can account for this phenomenon. One is the
heavy traffic conditions, which can be identified by referring to Baidu map real-time traffic information
(http://map.baidu.com/fwmap/zt/traffic/?city=nanjing). The other factor is the subway line set along
these main roads. Dwellers prefer to take the subway during this period to avoid congested traffic.
These dynamic patterns also reflect the travel rules of most residents on different days and at different
times of a day.
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Figure 7. Spatiotemporal dynamic patterns of hotspots during different periods of the day and during
the same time on different days: (a–d) workdays (8–9 September); (e–h) weekends (12–13 September).

6. Delimitation of Urban Hotspot Centredness

In this section, a hotspot concentration index is presented to generate the isolines of hotspot
centredness through 3D visualization and spatial interpolation technologies. The enclosed regions
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captured by the isolines of two standard deviation values contain the highest concentration of urban
activities. Hence, we use a specified value of two standard deviations to depict the centredness surface
of hotspots and illustrate such effects in detail.

6.1. 3D Visualization of Potential Surface

To better understand the hotspot patterns of pick-up events in a 3D space, we apply a smoothed
3D potential surface to represent the calculated hotspot intensity distribution. As mentioned above,
pick-up events are abstracted as the points over a defined linear unit rather than over an area unit.
Hence, in our method, the intensity value of an event is represented by an attribute of the divided linear
unit. The detailed procedures for this method are as follows. The potential value of a pick-up event is
firstly assigned to each BLU, and the midpoint of each BLU is generated. Then, a kriging interpolation
processing is conducted on the basis of the midpoints with a BLU attribute (i.e., spatiotemporal potential
value). The potential value as a height attribute is extruded into a 3D mountain shape to visualize
the 2D potential surface. ‘Peaks’ indicate the presence of hotspots or clusters in the distribution of
potential values. Figure 8 shows the 3D visualization of the potential intensity surface of hotspots
in (a) the whole study area and (b) a local region. Urban hotspots manifest ‘core characteristics’.
Such concentration can be utilized to delineate urban hotspot shape because hotspots are usually
located in the downtown area of a city.
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6.2. Delimitation of the Hotspot Centredness Surfaces Using an Isoline Model

Existing studies are basicallly concerned with urban hotspot detection, though few pay attention
to the delimitation of the urban hotspot scope. In response to the issue, in this study we propose
a concentration index to delimitate hotspot centredness quantitatively. From Figure 8, the ‘peaks’
of the potential surface support the clear identification of hotspot centredness. On the basis of this
consideration, contour maps can be generated from the potential attribute of each cell. Figure 9
shows the isolines of the hotspot concentration index produced by the NSF approach: (a) 3D and
(b) 2D centredness surfaces. The rough scope of the urban hotspot can be captured by producing
regularly spaced contours within the wide scope of potential surfaces. By producing regularly spaced
contours within the wide scope of potential surfaces, the rough scope of urban hotspots can be
captured. By a simple observation in Figure 9b, we can infer that the more internal contours within the
enclosed area tend to have a higher concentration of traveling activities. For further examination of
true hotspot ‘core’, we apply a standard deviation classification indicator to delimitate the potential
surface. In view of previous research on delimitating CBD, a value of three standard deviations is
commonly used [43,44]. Accordingly, in the study the standard deviation results are computed using
the NSF and KDE methods to compare the delimitation differences in the network and planar spaces,
respectively. As presented in Figure 10, three standard deviation isolines are generated by the network
and planar methods and the output at 50 m BLU and 300 m neighbourhood threshold. Figure 10a
shows the three standard deviation results of NSF. Compared with the KDE method, the aggregating
results yielded from the NSF method display a network-constrained pattern (i.e., along main roads or
streets). These results conform well to the distribution of pick-up events. Furthermore, the enclosed
area identified by NSF can express the centredness of urban hotspots well by generating a small area
according to the captured hotspot scope. By comparision, we can find that a value of a three standard
deviations isolines can only capture the local ‘hotspots’ in the distribution. After several simulations,
we consider that a two standard deviations isoline is most suitable for our case. Hence, we select
a value of two standard deviations isolines for delimitating the hotspot scope. Figure 11 shows the
shapes of the final computed urban hotspots using two different methods.
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6.3. Validation of the Proposed Method

We further compare the overlapping results between delimitating scopes and the reference point
of interest (POI) hotspots to investigate the effectiveness and reasonability of our proposed method.
POI data include multiple categories of urban facilities, such as residential zones, restaurants, banks,
entertainment venues, hospitals, hotels, stores, parks, schools and other scenic spots. These POIs reflect
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the user characteristics and basic activities of urban residents (e.g., commuting, working, living and
playing) [45,46]. In this manner, high-density POI areas can be understood as one of the most dominant
urban centres. Therefore, we consider the high-density POI regions as the object of the comparative
study. The POI data used in this work are obtained from Baidu Map API (http://lbsyun.baidu.com/),
and all POIs are categorised in accordance with Baidu’s POI standards. Data are aggregated to the
appropriate spatial analysis unit in the study area to reveal the spatial characteristics of POI density.
As suggested by urban geographers [47–49], a grid size of 200–300 m is suitable for a balance of fine
spatial resolution in urban centres. A granular grid cell (200 m × 200 m) is selected to generate the
POI density output. Figure 12a shows the distribution of POI density in the study area. Some of the
identified POI hotspots can be detected by an arbitrary threshold based on the POI density results.
Given the scope size of our research, we define the cells of the top 5% high-density values as identified
POI hotspots (see Figure 12b).ISPRS Int. J. Geo-Inf. 2019, 8, 344 16 of 20 
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Figure 13 presents the delimited boundaries using two different methods and the reference POI
hotspot scopes. Analysis of the cluster results in Figure 13 reveals that Nanjing’s hotspots are mainly
concentrated in Hunan Road, Gulou CBD, Ming Palace, Xinjiekou and Fuzimiao. These areas represent
a series of urban activity centres, such as commercial streets, residential zones and scenic spots. It can
be noted that the planar KDE tends to overestimate the extent of high-density pick-up events and
generates a larger area for delimitation of urban hotspots compared to the network method. Based on
the results, we further compare the delimitating results and evaluate the differences between the NSF
and KDE methods by calculating a precision indicator as follows:

Precision =
Areaidentical

Areadelimitated
× 100% (4)

where Areadelimitated are the hotspot areas computed by the NSF and KDE methods, and Areaidentical is
the identical hotspot area between the delineated results and the reference POI hotspots. The precision
index is used to calculate the ratio of the delineated hotspot areas located within the reference POI
hotspots boundaries.

http://lbsyun.baidu.com/
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Table 1 shows the evaluation results. We can find that the precision indicator for our proposed NSF
(59.21%) is larger than that for KDE (32.24%). From this point, our method can refine the centredness
surface of ‘hotspots’. The KDE method takes a larger space (i.e., 11.982 km2) for delimitating hotspots
compared with the NSF method. However, a large hotspot area leads to small precision. In this respect,
our proposed approach is more effective and accurate than the KDE method in quantifying urban
hotspot centredness. By comparing the results in Figure 13 and Table 1, we can draw the following
conclusions: (1) The computed urban hotspot boundaries based on our proposed NSF method can better
refine the centredness surface of ‘hotspots’ compared to the area-based KDE method. (2) Considering
that taxis’ pick-up points are closely associated with road networks in urban spaces, our proposed
method emphasizes the constraints of road network configuration on clustering analysis. In this sense,
the network-based method is more suitable for studying network-constrained urban phenomena.

Table 1. The evaluation of the NSF and KDE methods in terms of a precision indicator.

Statistics NSF KDE

Delimitated hotspot area (km2) 4.097 11.982
Identical hotspot area (km2) 2.426 3.864

Precision (%) 59.21 32.24

7. Conclusions

Spatial cluster analysis is an important approach for identifying hotspots in various fields (e.g.,
transport engineering, criminology and urban planning). GPS trajectory data of pick-up and drop-off

locations of taxis provide a new perspective for studying urban spatial structure and individual
behavior. In addition, such data have been extensively used for detecting urban hotspots. However,
the previous works in this domain are mainly conducted on a 2D plane without considering the
structure of the urban road network. Hence, the present study develops NSF, which extends the
notion from the spatial to the space–time dimension and from 2D planar to network spaces. This work
proposes a systemic methodology framework for identifying and delimitating urban hotspots based
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on taxi trajectory data. The present study first calculates a spatiotemporal potential value for each
pick-up point using the NSF approach. Then, the resulting values are assigned to links. Next, regularly
spaced contours are generated in a wide range of potential values, and finally, the centredness surfaces
of the urban hotspot are delimitated.

In the case study, the proposed method is utilized to identify city hotspots from taxis’ pick-up
events in Nanjing. We first analyze the spatiotemporal dynamic pattern of pick-up events during
different days and times of day. For a close investigation on the centredness of hotspot distribution,
a concentration index of hotspot areas is presented to refine the surface of centredness. This index
supports the quantitative delimitation of hotspot areas by generating two standard deviation isolines.
We then compare the overlap results between delimiting scopes and reference POI hotspot boundaries
using the NSF and KDE methods, respectively. Such comparison is performed to verify the accuracy
and validity of our proposed method. The precision result illustrates that the concentration ratio of
NSF is larger than that of KDE in terms of the delimitation of urban hotspot centredness.

Some limitations should be considered in future research. Firstly, the experimental outputs
depend strongly on the urban road network, whereas the road configuration (e.g., restricted turns,
one-way roads and sidewalks) and traffic states (e.g., speed limits and road congestion) are largely
simplified in this study. For example, timely transportation conditions and road attributes should
be considered in a real urban environment. Secondly, the space–time distribution of urban hotspots
cannot be detected completely using only taxi passengers’ activity due to the complexity of urban
human mobility; other urban multisensory detectors, such as web-based or smartphone apps, have not
been studied yet.
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