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Abstract: An important function of a water distribution system (WDS) is to supply drinking water to
each demand point using a pipe network that has minimal impact on the surroundings. To produce a
reliable WDS, planning usually requires a significant amount of geo-spatial information. Current
planning practices for pipeline systems, which gather geographic information based on maps,
are time-consuming and cumbersome. With the rapid developments in computer and information
technology, it is necessary to propose a new WDS planning method that enhances the current
planning practices and facilitates the decision-making process. The proposed method allows project
information in building information modeling (BIM) to be incorporated into a geographic information
system (GIS) model, using semantic mapping to incorporate WDS project data and geo-spatial
information to facilitate the WDS planning process. Moreover, a 3D visualization model of the
proposed WDS project and its surroundings is provided. In addition, topological rules are set to
identify any conflicts between the WDS project and its surroundings. A real WDS project was used
to validate the method. The proposed method can help project participants better understand the
WDS project and its surroundings and identify any errors in the planning process, thus improving
sustainable development.
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1. Introduction

An underground pipe system contains water, electric power, heating, communication, gas lines,
and other public services [1,2]. Underground pipe systems play an essential role in the operations of
urban areas by enabling diverse public services to be delivered to industries and residences. Among
the different types of pipe systems, water distribution systems (WDSs) are regarded as one of the most
vital [3]. Pipe network planning is a key part of the design process, since it has a significant impact on
pipeline construction and operation and maintenance. The purpose of a water pipeline is to transport
fluid from one point to another through a tunnel, but differences in location, topography, development
strategy, and other factors impact the layout of the pipe system. The surrounding environment is an
important factor, because the natural terrain, existing facilities, and the utilities (both above and below
the ground) can influence construction activities. A project that is to be constructed should fit into
its neighborhood. The project should not be planned in isolation but should always be considered
in the context of its surroundings, including existing facilities, locality, and topography. Hence, pipe
network planning requires consideration of many factors, such as availability of the site area, space
obstructions, coordination with surroundings, and topographic settings. Among these factors, space
obstructions and pipeline layout present the most significant challenges during the planning process.

A WDS project may require multiple types of space, which makes it difficult to manually check
for spatial conflicts between the proposed WDS project and existing structures during the planning
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process. Although many software products and information technologies have been employed in
the Architectural, Engineering and Construction (AEC) industry, minimal improvements have been
made in the planning of water distribution systems (WDSs). Planning of WDSs typically requires
substantial spatial data, due to the complexity of urban surfaces and flow paths [4]. A geographic
information system (GIS) can be used to describe existing facilities in a larger geographic context [5,6].
Building information modeling (BIM) can be used to store, manage, and manipulate project information.
This study provides an integrated BIM and GIS method to incorporate WDS project data into its
surroundings for facilitating the WDS planning process.

It is not an easy task to deliver data from BIM to GIS, due to the differences in data formatting
and meaning [7,8]. The current study integrates BIM and GIS models, using semantic mapping to
facilitate the transformation and sharing of multiple data formats. The proposed method enables
project information in BIM to be incorporated into the GIS model, in order to investigate the spatial
relationships between the proposed WDS project and its surroundings. The proposed method can help
planners with spatial planning in terms of geometry and topology. Geometry refers to the physical
features (e.g., dimension and location) of a project within a given area, whereas topology describes
spatial relationships and constraints. Given the complexity of pipe network planning, topological
rules are established in GIS to check for any conflicts between the WDS project and its surroundings.
The topology tool in GIS can be used to model objects that have spatial relationships with each other,
which supports different types of spatial relationships [9].

The proposed method provides a 3D visualization model of the WDS project and its surroundings,
which helps project participants to better understand the project and avoid misinterpreting project
information. Moreover, the proposed method also helps professionals to identify conflicts between
the WDS project and existing structures. Changes made to the project during the planning stage are
less costly than those made during subsequent construction stages. In addition, previous studies
focused on integration of BIM and GIS that only considered building elements such as walls, windows,
and doors; there are no studies investigating the interoperability of Industry Foundation Classes (IFC)
and City Geography Markup Language (CityGML) for WDS planning. The current study fills a gap in
the literature by introducing a method that incorporates BIM data into a GIS system for WDS planning.
Also, this study informs researchers and industry professionals about potential applications of GIS in
the AEC industry and highlights areas worthy of further investigation.

The remainder of the paper is organized as follows: Section 2 contains a literature review, Section 3
illustrates the proposed method, Section 4 applies the proposed method to an actual WDS project to
validate the method, and the conclusion and contributions of the paper are presented in Section 5.

2. Literature Review

2.1. Integration of BIM and GIS

BIM was developed to model new projects with sufficiently detailed information, while GIS was
designed to describe existing facilities in a larger geographic context [5,6]. BIM provides detailed
project information and GIS contains geographical and spatial territory information about a project’s
surrounding environment. Historically, GIS and BIM were developed in different fields for different
purposes. Although BIM and GIS have certain overlapping functions, key differences still exist between
the two techniques. The data integration of the two models is challenging. For example, geometric
information about a project is an essential aspect of space planning. However, such information is not
easily delivered to the GIS environment for geospatial analysis because of certain barriers including
representation differences between BIM and GIS, poorly defined semantics in BIM, and a lack of tools
capable of representing 3D geospatial information properly [10]. Many studies have been conducted
to create a more efficient and effective way for integrating data from the two models. Three methods
have been adopted: (1) transfer BIM data to GIS; (2) transfer GIS data to BIM; and (3) transfer both
BIM and GIS data to a new platform. This platform can be a web-based platform or a software system.
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Previous studies extracted BIM data to GIS. For example, in [11] the authors developed a semantic
building model by transferring data from BIM to GIS. In [12], BIM data were extracted into a GIS system
to support site selection and the process of fire response management through the development of
software components. In [13], an extension of CityGML, called GeoBIM, was developed to incorporate
semantic IFC data into a GIS system. Also, in [14], to integrate BIM and GIS, 3D building components
were exported from Revit to the ESRI geodatabase format using the data interoperability extension in
ArcGIS. Moreover, in [15], a data integration engine was developed to allow bidirectional conversion
between BIM and GIS schemas. This developed integration engine enabled industry professionals to
extract a BIM model into a GIS system for traffic noise simulation. In [16], a web-based GIS solution
was developed to integrate BIM data into a GIS model. In [17], for indoor–to–outdoor route planning,
a multi-purpose geometric network model (MGNM) was developed to incorporate IFC data into a
GIS system. In [18], an ontology was developed to integrate BIM and GIS for assessing safe routes
to school.

In the studies cited above, integration focused on extracting BIM data to a GIS system. However,
certain studies integrated BIM and GIS by extracting GIS data into BIM. For example, in [19],
an information delivery manual (IDM) was used to connect GIS data to a BIM system for analysis
of the climate adaptation of buildings and their surroundings. In [20], a plug-in interface in BIM
was developed to incorporate GIS data into a BIM model. Furthermore, certain studies focused on
extracting both BIM and GIS data into a new platform. For example, in [21], both BIM and GIS
data were exported to the Autodesk platform for better data storage and sharing. In [22], Autodesk
Infraworks was used to incorporate ArcGIS shapefiles and Revit files for linking BIM and GIS models.
In [23], a data model was developed as a profile of Geographic Markup Language (GML), which
enabled consistent storage of BIM and GIS data.

2.2. Previous Studies of Water Distribution Systems (WDSs)

Over the years, a variety of studies about water distribution systems (WDSs) have been
conducted, ranging from optimization of pipe layout to pipe construction and operation management.
Mathematical techniques were used to optimize pipeline layout. For example, in [24], a method called
ant colony optimization (ACO) was adopted to optimize pipe routing. ACO is a mathematical strategy
that identifies the shortest path in water pipe networks. Certain studies focused on optimizing the
design of a WDS by minimizing cost and maximizing its effectiveness using a genetic algorithm [25],
agent swarm optimization [26], and a heuristic approach [27]. Moreover, certain studies were concerned
with conflicts between pipe systems and existing structures during the construction stage [28,29].

Certain advanced information technology methods have been adopted for WDSs. For example,
in [30], the authors suggested that GIS is a powerful tool for managing WDSs. GIS can be used to
perform certain tasks such as layout and map plotting, demand forecasting, counter-meter installation,
pipe connection, leakage and breakdown controls, planning maintenance operations, and asset
assessment. In [31], a topology model of WDS in a GIS environment was developed for water leakage
management. In [32], a GIS-based method that describes changes in the surrounding soil environment
during pipeline construction was presented. In [33], a hydraulic model using a GIS tool was developed
to acquire information about the water pipeline network. Additionally, certain studies considered GIS
to be a powerful data management tool for WDS [34,35], while others used a GIS model as a decision
support system for the renovation of WDS [36–38]. In [39], a GIS tool was utilized to rank several
potential pipeline routes. In [4], the authors used an approach that integrated GIS and optimization
technologies to provide an optimal pipeline layout for a water pipeline network. In [40], BIM and GIS
were integrated to visualize underground pipelines connected to building utilities.

3. Proposed Method

In this section, the proposed method is illustrated in detail. This study used Revit and ESRI
ArcMap to develop the proposed method. The proposed method mainly consists of three parts. First,
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the integration of BIM and GIS models using semantic mapping is illustrated. Second, the g process of
developing a 3D visualization model of the proposed WDS project and its surroundings is explained.
Finally, the topological rules that can be used to identify conflicts between the proposed WDS project
and its surroundings are established. The process of the proposed method is shown in Figure 1.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 5 of 23 
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3.1. Semantic Mapping

In this study, Industry Foundation Classes (IFC) was chosen as the data schema for BIM, whereas
City Geography Markup Language (CityGML) was selected as the data schema for GIS since they
are neutral file formats and widely accepted in the two domains [15]. They are both widely accepted
semantic models [41].

3.1.1. IFC Schema

The IFC schema, first introduced by buildingSMART in 1994, has been widely used in the Architectural,
Engineering and Construction (AEC) industry for information exchange. IFC is recognized as the most
essential schema for BIM and is well supported by most BIM software products [42,43]. IFC includes a set
of relationships among entire pipe networks, pipe segments, and pipe connections (nodes). The entire
set of relationships is supported by IfcSystem. For example, a pipe network is a system and each element
of the network is a section or part. The IFC spatial structure includes IfcFlowSegment, IfcFlowFitting,
IfcFlowController, and IfcFlowStorageDevice. IfcFlowSegment defines pipe segments, IfcDistributionPort
defines pipe connections (nodes, ports), IfcFlowController defines the device used to regulate water flow
(e.g., valve) in a pipe network, and IfcFlowStorgeDevice defines an element that is used for temporary
storage of water (e.g., tank) in a pipe network. Moreover, the connections between the pipe section
and ports are defined by IfcRelConnectsPortToElement.

3.1.2. CityGML Schema

CityGML is an Open Geospatial Consortium official standard and is supported by many GIS
platforms, such as ArcGIS [44]. To represent a basic structure for various types of pipe networks in
ArcGIS, a core model is developed based on geometric networks [45]. This network can be constructed
as lines, points, and other features. Each object in the real-world pipe network can be represented
as one element in the network, while the same kind of elements can be defined by a class [46–49].
The basic structure of a pipe network consists only of pipe segments (edges) and connections (nodes).
The network can include more feature classes in a pipe system and involve all relationships, attributes,
and rules [45]. A logical network can automatically be developed and stored in ArcGIS when a
geometric network is generated and edited. In order to prevent inappropriate connection of network
elements to each other, certain topological rules are required to be specified.

3.1.3. Mapping IFC Data into CityGML System

According to the above descriptions of IFC and CityGML standards considering pipe networks,
a substantial overlapping of information exists in both standards. The different classes in CityGML
and the corresponding information in IFC are presented. The mapping that describes the classes
in CityGML using IFC are illustrated in this section. Two classes of UtilityNetwork in CityGML
can be used to represent a network: Network and _NetworkFeature [45]. The Network class is a core
component in the UtilityNetwork model. It attempts to describe relationships of entire networks such
as water distribution or gas supply systems. In general, Network class represents the networks, each
network is a collection of _NetworkFeatures. The _NetworkFeatures can provide subclasses for division
of network elements or objects according to their semantics. There are three attributes in the class of
_NetworkFeatures: Unique ID, Description, and name.

The IfcSystem entity in IFC that serves as a subgroup of the IfcGroup entity can be used to represent
a functional network, including a collection of network objects. For example, a system can be a water
distribution network consisting of pipes, connections, a tank, and other related objects. Moreover,
the attributes of a network can also be represented in the IFC entity. The Unique ID can be obtained
from IfcGloballyUniqueID, name can be acquired from IfcLable, and Description can be obtained from
IfcText. The class _NetworkFeature can be produced by the use of the entity IfcDistributionElement in
IFC, as shown in Figure 2. All components of a pipe network can be represented by subtypes of
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IfcDistributionElement. These subtypes, which include IfcFlowSegment, IfcFlowFitting, IfcFlowController,
and IfcFlowStorageDevice, can be used to describe the logical and semantic structure of the model.
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Figure 2. (a) Pipe elements represented in Industry Foundation Classes (IFC) schema; (b) pipe elements
represented in City Geography Markup Language (CityGML) schema.

There are two types of connectivity in a pipe system: physical connectivity and logical connectivity
with ports. Physical connectivity usually represents things that are physically or directly connected.
The concept of logical connectivity is usually associated with things that are logically connected.
The two types of connectivity can be described using the same entities in IFC. IFC describes the
topological relationships in pipe networks by using the concept of connectivity. Moreover, using
physical and logical relationships defined by IfcRelConnectsPortToElement and IfcRel-ConnectsPorts,
a pipe network can be defined and transformed to the edge class in GIS. The topological relationships
of utility networks in CityGML can be described by using NetworkGraph. Each network object can
be indicated using graphic representation. The graph representation can include one node or a
combination where a group of edges and nodes describe a network. Other objects such as the pump,
tank, and reservoir in the network can be represented in the _NetworkFeature class. A pipe with two and
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three nodes was described in a graph, as shown in Figure 3. A graph representation of connectivity of
network elements facilitates topological analysis. The proposed method can provide 3D visualization
of the pipe networks and generate a graph structure for topological analysis, as shown in Figure 4.
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3.2. 3D Visualization Model

The 3D model mainly included the surface model, modeling of existing buildings, and modeling
of pipe systems. All the information was incorporated into different layers and integrated into GIS to
develop the 3D model, as shown in Figure 5. The steps for developing a 3D visualization model are
displayed in Figure 6. The software products used include ArcGIS, AutoCAD, Revit, and SketchUp.
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3.2.1. Surface Model

The site topography can be represented vividly in a 3D surface model. The surface model provides
different heights for valleys and ridges. A triangulated irregular network (TIN) surface model can be
developed in GIS; a TIN surface model can more accurately represent topography than raster. TIN is a
vector-based surface model. The steps for developing the surface model can be described as follows:
First, a topographic survey was conducted on the investigated site to obtain the coordinates including
locations (x, y) and elevations (z) of the control points by using a Total Station. The data from the Total
Station were imported into AutoCAD. Second, the data were exported from AutoCAD to ArcGIS to
form a geodatabase including the locations and elevations of these points. The data in geodatabase
were stored in Shapefile. Third, the elevation values were assigned to corresponding points. Fourth,
the TIN surface model was generated based on the control points and their coordinates. Finally, by
using appropriate ground control points, the TIN surface model was covered by an aerial photograph
of the site to generate a virtual 3D surface model.

3.2.2. Modeling of Existing Buildings

To develop a 3D model of the existing buildings, several steps should be followed. First, based on
the previously developed surface model, the location and footprints of the existing buildings could
be identified. Each type of building (residential, commercial, institutional) was stored in a separate
Shapefile in ArcGIS. Second, the elevation values at footprints obtained from the surface model were
assigned to the footprints. Third, the 2D model of footprints was exported from ArcGIS to SketchUp to
generate a 3D model. Finally, the 3D model of the footprints was generated and transferred back to
ArcGIS. A GIS plug-in was used to facilitate the transfer.

3.2.3. Modeling of Pipe Network Systems

The modeling of the pipe network systems includes existing pipe network systems as well as
the proposed water distribution system. The modeling of the pipe network systems includes several
steps. First, the CAD drawings of the pipe systems were imported to Revit to generate a 3D model
of the systems. The existing pipe network systems were modeled with a minimum level of detail to
represent geometry. Second, the information about the pipe systems was stored in the IFC schema.
Third, based on the previously illustrated integration process of IFC and CityGML, 3D models of the
pipe systems were incorporated into ArcGIS by using the GIS extension of UtilityNetwork. Each type
of pipe network (e.g., electric, gas, water, sewer, rainwater drainage) was stored in a separate layer
in GIS.

3.3. Topological Validation Process

To examine the spatial conflicts between the proposed WDS project and existing structures,
a topological tool was used. Topological analysis is essential for solving spatial problems without
complex calculations. Moreover, the established topological rules can help in examining the consistency
of the pipe network to avoid redundancy of geometric objects. For example, two points with different
identification can be located at the same place without considering topology. In addition, a WDS
project requires working space for equipment, materials, and labor, at the construction stage. Hence,
the width of the pipeline routes was added to indicate the workspace on the construction site.

A WDS can be modeled as a simplified system with edges and demand nodes. A WDS can be
defined as an undirected graph Z(N, E) having a set of N nodes and a set of E edges [50]. In the graph
structure, pipes, control valves, and pumps are denoted as edges in accordance with the general terms
used for WDS, while demand points, revisors, and tanks are denoted as nodes [51]. In such a graph,
nodes and edges can represent a pipe network. Points, lines, and areas (PLAs) corresponding to various
site objects are developed and stored in different layers of the GIS. Then, the nodes can be represented
by points and the edges can be represented by lines. The buildings and grassland can be represented
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by areas. The topology tool in GIS has a set of validation rules for PLAs [9]. Engineers identify and
establish topological rules that govern spatial relationships between PLAs. The topological rules are
set so as to guarantee the spatial relationships of objects on the construction site. The topology tools
in GIS can validate spatial relationships between PLAs, based on the established topological rules.
The procedure for the validation process is displayed in Figure 7. The defined PLAs are saved in
different layers in GIS and the topological analysis can identify the errors that violate the topological
rules, as shown in Figure 8.
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4. Implementation

This study provides an integrated BIM and GIS method, and a case example was used to validate
the feasibility of the proposed method. The pipe network in this study was a water distribution system
(WDS) for a commercial and residential complex community in City Jinan, Shandong province, China.
The network is supplied by a water tank and the total pipe length is 4.6 km. The layout planning of the
WDS project is shown in Figure 9.
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4.1. The Integration of BIM and GIS

Although certain steps require manual tuning during the integration of BIM and GIS, the overall
integration can be made automatically. Pipe layouts can be used in a realistic design. The proposed
method includes harmonizing the semantic data models IFC and CityGML, to enable formal mapping
between BIM and GIS. This study demonstrated that UtilityNetwork in CityGML can provide classes
which can be easily extended to model BIM data. BIM data regarding pipeline networks in IFC schema
can be mapped to UtilityNetwork in GIS without loss of data. Network class in GIS can offer a similar
concept to IfcSystem in IFC. Certain concepts in IfcDistributionFlowElement can also be represented
in GIS through the specialized classes derived from _NetworkFeature in GIS. The graph structure in
UtilityNetwork can be represented by the use of IFC entities. The connectivity, either physical or
logical, can be transformed to UtilityNetwork in GIS. Physical links can be considered as interior nodes
or exterior nodes with ports (e.g., water tank). Logical links can be represented by using sub-class
Edge in UtilityNetwork. During integration, connectivity should be classified and considered to avoid
any problems. Therefore, the BIM data can be incorporated into the GIS model for further analysis
and modeling.
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4.2. 3D Visualization Model

The proposed method can be used to develop a 3D model of the WDS project and its surroundings.
The information about the WDS project and its surroundings was incorporated into GIS to develop
a 3D model. First, the proposed WDS project was planned and designed in BIM to develop a 3D
model. In addition, information about the existing pipe systems was also transferred from AutoCAD
to BIM. Second, the surrounding information, including site location and size, and existing buildings,
was inputted into GIS for further analysis. The surface model was developed in GIS, as displayed in
Figure 10. SketchUp was used to develop a 3D model of existing buildings, as shown in Figure 11.
Third, the information about the proposed WDS project and existing pipe systems were transferred
from BIM to GIS. The 3D model of the pipe systems is shown in Figure 12. Then, the models were
integrated to form the 3D model, as shown in Figure 13. Based on this case study, the development of
the 3D model takes time and effort; however, the impact of topography highs and lows can be identified.
The identified topography highs and lows are quite helpful for locating a new water tank, as locating
the water tank at a higher point facilitates water flow to demand points. Moreover, the developed
model can be used at the construction stage in earthworks planning for the proposed WDS.
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4.3. Establishment of Topological Rules and Topological Analysis for the Proposed WDS Project

Topological rules were set to validate the spatial relationships of objects on site. For topological
analysis, the information was stored as points, lines, and areas (PLAs) in different layers. The detailed
steps of the topological analysis process are listed below:

1. Set PLAs and topological rules. PLAs must be produced to examine spatial relationships.
Moreover, the topological constraints and rules should specify the spatial relationships between
the PLAs. All the PLAs must be organized in the same coordinates.

2. Decide cluster tolerance. The topology tool can assign a default cluster tolerance that is a minimum
possible value based on the precision requirement of a dataset. The cluster tolerance value should
be at least an order of magnitude smaller than the precision of a feature dataset so that close
vertices are snapped together.
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3. Assign topological rules. Topological rules are set to govern the spatial relationships among
PLAs [27]. PLAs in the studied area are topologically related. Points and lines are constrained,
fall inside, are on the edge, or do not cross the edge of a given area. All participating PLAs in the
defined area are to be examined. For example, when the “must not overlap” rule is applied to the
defined and adjacent areas, the topology tool would examine the overlap between them. All the
topological rules used in this study are displayed in Table 1 and the topological rules used in GIS
are shown in Figure 14.

4. Topology validation. During the validation process, the topological rules are checked against the
PLAs to identify any violations so that the PLAs adhere to the defined rules.

5. Error identification. After the validation process, the places where topological rules are violated
are identified and marked as dirty areas (red circle areas), which are stored in the topology
tool [27]. The topology tool reports the errors so that the user is aware of the violations. In this
way, the topology tool helps users to oversee the spatial relationships between the PLAs and the
suitability of the pipe network planning.

6. Topology editing and revalidation Several topology editing tools are provided in ArcGIS to fix the
identified topological errors. After editing, the changes are saved in topology and topological rules
are required to be revalidated. ArcGIS can automatically identify error locations (these locations
violate the topological rules) and only the error locations are revalidated. If the topological rules
are changed, the PLAs need to be revalidated.

Table 1. GIS-based topological rules used in this study.

PLAs Rules Use in Pipeline

Points

a Must be covered by line Demand points must be covered
pipelines

b Must be properly inside areas All distribution points must be inside
the area

c Must be covered by endpoint of Water tank must be covered by end
points of the pipeline

Lines

d Must not intersect Pipelines must not intersect with each
other (water and sewer)

e Endpoints must be covered by Pipelines in area must end at points

f Must not have pseudonodes Pipes can only end at points to prevent
subdivided lines

g Must be inside The pipes must be inside the area

h Must be covered by features class of Underground pipelines must be
covered by roads

Areas

i Must be covered by Residential buildings to be covered by
some part of pipe system area

j Must not have gaps Land usage of the studied area must
form a continuous surface with no gaps

k Must not overlap Footprints of various buildings must
not overlap
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If any space conflicts between the proposed WDS project and the existing pipe networks are
identified, the errors will be corrected in order to fit the topological rules. The errors should be
examined carefully and corrected until no space conflicts exist. Topological analysis significantly
helps in the identification of any conflicts prior to construction, thus saving time and reducing costs.
Topological analysis identified space conflicts between the proposed WDS and an existing rainwater
drainage pipeline, as shown in Figure 15. The features of each object involved in a conflict should
be studied in detail. This can help industry professionals to decide which parts require adjustment.
Adjustments include changes in the existing structures or changes in the proposed WDS project.
The project team decided to remove the drainage system and build a new one, considering where the
existing rainwater drainage system was situated. Hence, the conflict problem was solved.
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5. Conclusions

This study proposed an integrated BIM and GIS method for WDS planning, which was verified
in an actual WDS project. Semantic mapping was used to integrate BIM and GIS without data
loss. The integrated method combines the advantages of both BIM and GIS technologies to facilitate
WDS planning; i.e., BIM provides a comprehensive parametric of the pipelines, while GIS provides
a 3D visualization model that can be used for analysis. Moreover, topological rules in GIS were
applied to obtain an appropriate pipe network layout. The proposed method effectively identified
the conflicts between the WDS project and existing structures. The conflicts were identified prior to
construction, to avoid any errors during the construction process. The results can also help in the
decision-making process by considering the on-site physical constraints and the presence of unrealistic
pipe network layouts.

The contributions of the current study are listed below.

(1) Semantic mapping was used to develop an integrated BIM and GIS model for facilitating the
WDS planning process.

(2) The proposed method developed a virtual 3D model of the WDS project and its surroundings
using the merits of both BIM and GIS. The virtual 3D model has distinct advantages over
2D drawings.

(3) The proposed method was successfully applied to an actual WDS project. It helped to develop
reliable WDS planning without conflicts. In addition, the developed model informs industry
professionals where adjustments are required to solve the scarcity of space on site.

(4) The techniques explored in this study also support urban development-related projects where
project information models do not exist. The information in this study can enrich 3D city models,
extending their usability and functionality.

The proposed method provided a good understanding of the WDS project and its surroundings and
generated a successful WDS plan. Future studies will extend the generated model to the construction
and operation and maintenance stages. Moreover, future studies will focus on extending the usability
and functionality of the GIS tool to the AEC industry.
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