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Abstract: High-resolution population grids built from historical census data can ease the analyses of
geographical population changes, at the same time also facilitating the combination of population
data with other GIS layers to perform analyses on a wide range of topics. This article reports on
experiments with a hybrid spatial disaggregation technique that combines the ideas of dasymetric
mapping and pycnophylactic interpolation, using modern machine learning methods to combine
different types of ancillary variables, in order to disaggregate historical census data into a 200 m
resolution grid. We specifically report on experiments related to the disaggregation of historical
population counts from three different national censuses which took place around 1900, respectively in
Great Britain, Belgium, and the Netherlands. The obtained results indicate that the proposed method
is indeed highly accurate, outperforming simpler disaggregation schemes based on mass-preserving
areal weighting or pycnophylactic interpolation. The best results were obtained using modern
regression methods (i.e., gradient tree boosting or convolutional neural networks, depending on the
case study), which previously have only seldom been used for spatial disaggregation.
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1. Introduction

Accurate information about the human population distribution is essential for formulating
informed hypothesis in the context of population-related social, economic, and environmental
issues. For geographers, historians, and social scientists, it is important to have access to population
information at specific temporal snapshots, and often also across long periods of time. An authoritative
source of population data are government instigated national censuses, which subdivide the
geographical space into discrete areas (e.g., fixed national administrative units) and provide multiple
snapshots of society at regular intervals, typically every 10 years. Many research institutions or
national statistical offices have developed historical geographical information systems, which contain
statistical data from previous censuses together with the administrative boundaries (i.e., records of
administrative boundary changes over time) used to publish them over long periods of time. However,
using these data when looking at changes over time remains quite challenging, for the most part due
to difficulties in handling the boundaries of the administrative units that were used for publishing
the data.

There are several applications where population data aggregated to fixed administrative units is
not an ideal form of information about population counts and/or density. First, these representations
are more sensitive to modifiable areal unit problems, in the sense that the results of an analysis based
on data aggregated by administrative units may depend on the scale, shape, and arrangement of the
units, rather than capturing the theoretically continuous variation in the underlying population [1,2].
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Although raster-based representations are also affected by these problems, they offer regularly sized
units, and considering a high resolution we can better handle scale issues [2]. Secondly, the spatial
detail of aggregated data is variable and usually low, particularly in the context of historical data. In a
highly-aggregated form these data are useful for broad-scale assessments, but using aggregated data
can mask important local hotspots, and overall tends to smooth out spatial variations. Third, there is
often a spatial mismatch between census areal units and the user-desired units that are required for
particular types of analysis. Finally, the boundaries of census aggregation units may change over time
from one census to another, making the analysis of population change, in the context of longitudinal
studies dealing with high spatial resolutions somewhat difficult.

Given the aforementioned limitations, high-resolution population grids (i.e., geographically
referenced lattices of square cells, with each cell carrying a population count or the value of population
density at its location) are often used as an alternative format to deliver population data [3]. All cells in
a population grid have the same size and the cells are stable in time. There are no spatial mismatches
as study areas can be rasterized to be co-registered with a population grid.

Population grids can be built from national census data through spatial disaggregation methods,
which range in complexity from simple mass-preserving areal weighting [4], to intelligent dasymetric
weighting schemes that leverage regression analysis to combine multiple sources of ancillary
data [3,5]. Nowadays, there are for instance many well-known gridded datasets that describe modern
population distribution, created using a variety of disaggregation techniques. These include the
Gridded Population of the World [6], LandScan [7], Global Human Settlement [8–11], GRUMP [12],
SocScape [13], and the WorldPop [14–17] databases. However, despite the rapid progress in terms of
spatial disaggregation techniques, population grids have not been widely adopted in the context of
historical data. Studies looking at population changes over long temporal periods manipulate the
data for the sake of spatio-temporal consistency, but the typical procedures involve harmonizing the
data to standard boundaries (e.g., using areal interpolation methods to transform the historical data
into modern administrative units, allowing contemporary population patterns to be understood
in the light of the historical changes [18,19]), instead of relying on disaggregation methods for
producing raster representations. We argue that the availability of high-resolution population grids
within historical geographical information systems (GIS) has the potential to improve the analyses
of long-term geographical population changes and, more importantly, to facilitate the combination
of population data with other GIS layers to perform analyses on a wide range of topics, such as the
development of the transport network [19–21], or the formation of urban agglomerations.

In this article, we report on experiments with a hybrid spatial disaggregation technique that
combines the ideas of dasymetric mapping and pycnophylactic interpolation, using machine learning
methods (e.g., ensembles of decision trees [22] or deep learning methods based on convolutional
neural networks [23,24]) to combine different types of ancillary data, in order to disaggregate historical
census data into a 200 m resolution grid. Apart from few exceptions related to the use of areal
interpolation for integrating historical census data [18,25–29], most previous studies concerning with
spatial disaggregation have focused on modern datasets.

We specifically report on experiments related to the disaggregation of historical population
counts from three different national censuses which took place around 1900, respectively in Great
Britain, Belgium, and the Netherlands. All three statistical datasets, together with the corresponding
boundaries for the regions at which the data were collected (i.e., parishes or municipalities),
are presently available in digital formats within national historical GIS projects. This historical
period (i.e., the changeover from the 19th to the 20th century, often referred to as the Belle Epoque)
is also particularly interesting, being for instance characterized by strong urbanization and a rising
factory proletariat (e.g., we can expect different terrain characteristics to be able to inform estimates of
population distribution).

The rest of this document is organized as follows: Section 2 briefly overviews related work
in the area. Section 3 presents the general spatial disaggregation method that was used in our



ISPRS Int. J. Geo-Inf. 2019, 8, 327 3 of 22

study, together with the sources of ancillary information that have been explored. Section 4 presents
experimental results obtained from the application of the proposed method to the aforementioned three
different historical datasets, related to the territories of Great Britain, Belgium, and the Netherlands.
Finally, Section 5 summarizes our conclusions and presents possible directions for future work.

2. Fundamental Concepts and Related Work

Spatial disaggregation and the creation of high-resolution grids with the human population
distribution have been studied for decades [3]. Nowadays, there are, for instance, many well-known
gridded datasets that describe the modern human population distribution, created using a variety of
spatial disaggregation techniques [6,7,14–17].

The simplest spatial disaggregation method is perhaps mass-preserving areal weighting, whereby
the known population of source administrative regions is divided uniformly across their area, in order
to estimate population at target regions of higher spatial resolution [4]. The process usually relies
on a discretized grid over the administrative regions, where each cell in the grid is assigned a value
equal to the total population over the number of cells that cover the corresponding administrative
region. Pycnophylactic interpolation is a refinement of mass-preserving areal weighting that assumes
a degree of spatial auto-correlation in the population distribution [30]. This method starts by applying
the mass-preserving areal weighting procedure, afterward smoothing the values for the resulting
grid cells by replacing them with the average of their neighbors. The aggregation of the predicted
values for all cells within a source region is then compared with the actual value, and adjusted to keep
the consistency within the source regions. The method continues iteratively until there is either no
significant difference between predicted values and actual values within the source regions, or until
there have been no significant changes from the previous iteration.

Dasymetric weighting schemes are instead based on creating a weighted surface to distribute
the known population, instead of considering a uniform distribution as in mass-preserving areal
weighting. Dasymetric weighting schemes are usually determined by combining different spatial
layers (e.g., terrain elevation and/or slope, land versus water masks, etc.) according to rules that
relate the ancillary variables to expected population counts. While some weighting schemes use
simple binary masks built from land-coverage data, other approaches rely on expert knowledge
and manually-defined rules, and more recent methods leverage machine learning to improve upon
the heuristic definition of weights/rules [5,17,31,32], often combining many different sources of
ancillary information (e.g., satellite imagery of night-time lights [17,33], LIDAR-derived building
volumes [34,35], or even density maps derived from geo-referenced tweets [4], from OpenStreetMap
points-of-interest [36], or from mobile phone usage data [37]).

Although several previous dasymetric mapping methods have explored machine learning
approaches for defining the weights, only a few of these previous studies have explored the use
of deep learning approaches. The study from Tiecke et al. [38] is one of these exceptions, describing
a spatial desegregation method for producing population maps (i.e., the authors described the
production of maps depicting population counts for 18 countries at a resolution of approximately 30 m)
that first leverages a convolutional neural network for detecting/delimiting individual buildings in
high-resolution satellite imagery, and then uses the building estimates as a mask for proportionally
allocating population counts (i.e., census counts are distributed proportionally through a dasymetric
approach, using the fraction of built-up area within each 30 m grid cell). Image patches of 64× 64 pixels
are first extracted from satellite imagery around straight lines, using a conventional edge detector.
Limiting the analysis to these patches significantly reduces the amount of data for classification.
A portion of the patches was sampled and labeled by human-experts, in order to support the training
of the methods for detecting building footprints. A combination of two CNN models, based on the
previously proposed SegNet [39] and FeedbackNet [40] architectures, is used at this stage, and the
results are finally used for population redistribution.
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The previous studies concerned with spatial disaggregation that are perhaps most similar to
the present work are those from Monteiro et al. [5], in which a general machine learning method
that combines pycnophylactic interpolation and dasymetric weighting is presented, and from
Robinson et al. [41] and Doupe et al. [42], which also use deep learning models for estimating
population from satellite imagery. The present article extends on the work reported by Monteiro
et al., applying a hybrid disaggregation procedure to historical data, and evaluating the effectiveness
of different machine learning methods, including state-of-the-art approaches based on ensembles
of decision trees or deep convolutional neural networks. Given that we address the generation of
high-resolution raster representations covering large geographical extents, the present study also
explores high-performance computing methods, so that results can be produced in a useful amount
of time. Our efforts in terms of computational efficiency include the parallel implementation of
pycnophylactic interpolation, which is used for the initialization of our full approach, and the parallel
inference and application of machine learning models. Besides parallelization, we also considered the
use of secondary memory, in order to process raster datasets that do not fit entirely in memory.

Spatial disaggregation and areal interpolation methods have also been previously explored
in the context of historical data, for instance to estimate population in one census year (i.e., the
source regions) within the units of another year (i.e., the target regions), in order to construct
temporally consistent small census units [18,19,25–29]. However, most previous studies have only
considered simple approaches that do not rely on machine learning for inferring dasymetric weights
(e.g., most modern approaches involve the use of satellite imagery not available in historical contexts,
although other sources of information can perhaps be used instead). For instance, in the context of
the Great Britain Historical Geographical Information Systems (GBHGIS), Gregory described an areal
interpolation method based on the expectation-maximization (EM) algorithm, aiming to standardize
19th and 20th century census data by converting the regions from all dates onto a single set of regions
corresponding to registration districts in the U.K., to allow long-term comparisons [25]. The proposed
approach involves first dividing the study area into control regions (i.e., parishes), initially having
the same population density. In the expectation step of the EM algorithm, the population of each
zone of intersection between the source regions and the control regions is estimated according to
mass-preserving areal weighting. Then, the Maximization step uses maximum likelihood to estimate
the population densities of each control region, based on the results of the E step. The resulting
information is then fed back to the E step, where the populations of the zones of intersection are
re-estimated. The algorithm is repeated until convergence.

In summary, the present study extends previous efforts related to spatial disaggregation, focusing
on the application to historical datasets. We describe methods for the creation of high-resolution
population grids (i.e., 200 m per cell, representing a balance between the resolutions associated to the
different ancillary datasets that were considered to support the disaggregation procedure, and that
although being much coarser lower than the resolution used in the study by Tiecke et al. [38] leveraging
deep neural networks and high-resolution satellite imagery, is still slightly higher than the 250 m
resolution used in the modern WorldPop dataset), using dasymetric weighting approaches based on
state-of-the-art machine learning methods, and evaluating the impact of using different sources of
ancillary information, including historical land coverage data [43,44] and modern information that
may correlate with the historical population.

3. The Proposed Hybrid Disaggregation Method

In this article, envisioning the disaggregation of historical census data, we propose to leverage
a hybrid approach that combines pycnophylactic interpolation and regression-based dasymetric
mapping, following the general ideas that were advanced by Monteiro et al. [5]. In brief, pycnophylactic
interpolation is used for producing initial estimates from the aggregated data, which are then adjusted
through an iterative procedure that uses regression modeling to infer population from a set of ancillary
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variables. The general procedure is illustrated in Figure 1 and detailed next, through an enumeration
of all the individual steps that are involved:

Figure 1. Different steps in the proposed hybrid disaggregation method.

1. Produce a vector polygon layer for the data to be disaggregated by associating the population
counts, linked to the source regions, to geometric polygons representing the regions;

2. Create a raster representation for the study area, with basis on the vector polygon layer from
the previous step and considering a resolution of 200 m per cell. This raster, referred to as
Tp, will contain smooth values resulting from a pycnophylactic interpolation procedure [30].
The algorithm starts by assigning cells to values computed from the original vector polygon layer,
using a simple mass-preserving areal weighting procedure (i.e., we re-distribute the aggregated
data with basis on the proportion of each source zone that overlaps with the target zone).
Iteratively, each cell’s value is replaced with the average of its 8 neighbors in the target raster.
We finally adjust the values of all cells within each zone proportionally, so that each zone’s total
in the target raster is the same as the original total (e.g., if the total is 10% lower than the original
value, we increase the value of each cell by a factor of 10%). The procedure is repeated until no
significant changes occur. The resulting raster is a smooth surface corresponding to an initial
estimate for the disaggregated values;

3. Overlay six rasters of ancillary data, P1, P2, P3, P4, P5 and P6, also using a resolution of 200 m
per cell, on the study region from the original vector layer and from the raster produced in
the previous step. These rasters contain information regarding (i) modern population density,
(ii) historical land coverage, (iii) terrain elevation, (iv) modern data on terrain development,
(v) modern data on human settlements, and (vi) distance from a given cell to the nearest cell
with a land coverage equal to water. These data were used as ancillary information for the
spatial disaggregation procedure. Prior to overlaying the data, the six different raster sources
are normalized to the resolution of 200 m per cell, through an aggregation procedure based on
averaging the different encompassed cells (i.e., in the cases where the original raster had a higher
resolution), or through the application of bi-linear [45] interpolation (i.e., in the cases where the
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original raster had a lower resolution, and producing smoother results than those obtained by
taking the value from the nearest/encompassing cell);

4. Overlay another raster Td on the study region, with the same resolution used in the rasters
from the previous steps (i.e., 200 m per cell). This raster will be used to store the estimates
produced by a simple spatial disaggregation procedure leveraging rule-based dasymetric mapping
(i.e., a method based on proportional and weighted areal interpolation). For producing these
estimates, we weight the total value, for each source zone in the original vector polygon
layer, according to the proportion between the modern population counts available for the
corresponding cell in raster P1, and the sum of all the values for the given source zone in the same
raster. This is essentially a proportional and weighted areal interpolation method, corresponding
to Equation (1) and where Td

t is the estimated count in target zone t, where Ss is the historical
population count in source zone s, Pt is the modern population count in target zone t, and Ps is
the modern population count in source zone s;

Td
t = ∑

{s:s∩t 6=∅}

(
Pt

Ps
× Ss

)
. (1)

5. Create a final raster overlay, through the application of an intelligent dasymetric disaggregation
procedure based on disseveration, originally proposed by Malone et al. [46] and later extended by
Roudier et al. [47] and by Monteiro et al. [5]. The algorithm leverages the rasters from the previous
steps as ancillary information. Specifically, the vector polygon layer from step 1 is considered
as the source data to be disaggregated, while raster Tp from step 2 is considered as an initial
estimate for the disaggregated values. Rasters P1 to P6, as well as raster Td, are seen as predictive
covariates. The regression algorithm used in the disseveration procedure is fit using the available
data, and applied to produce new values for raster Tp. The application of the regression algorithm
will refine the initial estimates with basis on their relation towards the predictive covariates,
this way dissevering the source data into the target raster cells;

6. Proportionally adjust the values returned by the down-scaling method from the previous step for
all cells within each source zone, so that each source zone’s total in the target raster is the same as
the total in the original vector polygon layer (e.g., again, if the total is 10% lower than the original
value, increase the value of each cell in by a factor of 10%).

7. Steps 5 to 7 are repeated, iteratively executing the disseveration procedure that relies on regression
analysis to adjust the initial estimates Tp from step 2, until the estimated values converge
(i.e., until the change in the estimated error rate over three consecutive iterations is less than 0.001)
or until reaching a maximum number of iterations (i.e., 200 iterations).

Notice that the previous enumeration describes the proposed procedure through example
applications that involve a specific resolution (i.e., 200 m per cell) and a particular set of ancillary
datasets. The same general procedure could nonetheless also be used in different scenarios,
involving different parameters. Moreover, different regression algorithms can also be used in step
6. The following sub-sections describe the particular regression algorithms that were considered,
and detail the different sources of ancillary data.

3.1. Implementation Details and the Considered Regression Algorithms

The aforementioned procedure was implemented through the programming language of the
R (http://www.r-project.org) project for statistical computing. Given that there are already many
extension packages (http://cran.r-project.org/web/views/Spatial.html) for R concerned with the
analysis of spatial data, using R facilitated the use of geo-spatial datasets encoded using either the
geometric or the raster data models. We have specifically integrated and extended the source code from
the R packages named pycno (http://cran.r-project.org/web/packages/pycno/) and dissever (http://
github.com/pierreroudier/dissever), which respectively implement the pycnophylactic interpolation

http://www.r-project.org
http://cran.r-project.org/web/views/Spatial.html
http://cran.r-project.org/web/packages/pycno/
http://github.com/pierreroudier/dissever
http://github.com/pierreroudier/dissever


ISPRS Int. J. Geo-Inf. 2019, 8, 327 7 of 22

algorithm from Tobler [30] used in step 2, and the down-scaling procedure based on regression analysis
and disseveration, that was outlined by Malone et al. [46] and that was used in step 6. Specifically
on what regards pycnophylactic interpolation, the implementation from the pycno package was
extended in order to consider parallel processing, by dividing the target region into multiple slices
that are processed independently in parallel (i.e., each worker thread is assigned to a slice of the entire
geographic region, and the different slices overlap in one column in order to support accessing the
neighboring cells that are processed by an independent worker thread).

The latest version of dissever is internally using the caret (http://cran.r-project.org/web/
packages/caret) package, in terms of the implementation of the regression models. The caret package,
short for classification and regression training, contains numerous tools for developing different types
of predictive models, facilitating the realization of experiments with different types of regression
approaches in order to discover the relations between the target variable and the available covariates.
Leveraging caret, we specifically experimented with standard linear regression models, and with
approaches based on ensembles of decision trees. We also extended the dissever package in order to
use keras (http://rstudio.github.io/keras/) as an alternative machine learning library, which allowed
us to experiment with the use of deep convolutional neural networks.

In standard linear regression, a linear least-squares fit is computed for a set of predictor variables
(i.e., the covariates) to predict a dependent variable (i.e., the disaggregated values). The regression
equation corresponds to a linear combination of the predictive covariates, added to a bias term.

In turn, models based on decision trees correspond to non-linear procedures based on inferring
a flow-chart-like structure, where each internal node denotes a test on an attribute, each branch
represents the outcome of a test, and each leaf node holds a target value. Decision trees can be learned
by splitting the source set of training instances into subsets, based on finding an attribute value test that
optimizes the homogeneity of the target variable within the resulting subsets (e.g., by optimizing an
information gain metric). This process is recursively applied to each derived subset. Recently, ensemble
strategies for combining multiple decision trees, extending the general concepts of boosting [48] or
bagging [49], have become popular in machine learning and data mining competitions, often achieving
state-of-the-art results while at the same time supporting efficient training and inference through the
parallel training of the trees involved in the ensemble [22].

Specifically, the cubist approach combines decision trees with linear regression models, in the
sense that the leaf nodes in these trees contain linear regression models based on the predictors used
in previous splits [50]. There are also intermediate linear models at each step of a tree, so that the
predictions made by the linear regression model, at the terminal node, are also smoothed by taking
into account the predictions from the linear models in the previous nodes, recursively up the tree.
The cubist approach is also normally used within an ensemble classification scheme based on boosting,
in which a series of trees is trained sequentially with adjusted weights. The final predictions result
from the average of the predictions from all committee members.

The gradient tree boosting approach also operates in a stage-wise fashion, in this case
sequentially learning decision tree models that focus on improving the decisions of predecessor
models. The prediction scores of each individual tree are summed up to get the final score. Chen and
Guestrin introduced a scalable tree boosting library called XGBoost, which has been used widely by
data scientists to achieve state-of-the-art results on many machine learning challenges [48]. XGBoost is
available from within the caret package, and we used this specific implementation of tree boosting.

All three aforementioned procedures (i.e., linear regression modeling, cubist, and gradient tree
boosting) process each grid cell independently of the others. The values for each cell of the raster grid
Tp are used to fit the parameters of a regression model, taking the values from the corresponding cells
in the ancillary rasters as the predictor variables. The model is then used to update the value of each
cell in the raster grid Tp, again leveraging the values from the corresponding cells in the ancillary
rasters. Extending on this idea, we also experimented with a more sophisticated non-linear regression
model, based on a deep convolutional neural network (CNN). The network takes input patches of

http://cran.r-project.org/web/packages/caret
http://cran.r-project.org/web/packages/caret
http://rstudio.github.io/keras/
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7× 7 grid cells (i.e., 49 cells in total, with each cell in the patch described by 7 values taken from the
corresponding cells in the grids with the ancillary data—rasters P1 to P6, as well as raster Td), in order
to produce an estimate for the central cell in the patch. The considered CNN is based on the LeNet-5
architecture [24], which we describe next and is illustrated on Figure 2. The reader can refer to recent
tutorials and surveys [23,51,52] for further information about deep learning with CNNs:

Figure 2. The considered convolutional neural network architecture.

• The first hidden layer performed a two-dimensional convolution. The layer had 14 feature maps,
each with the size of 3 × 3, and it also used a recently proposed activation function named
Swish [53]. This is the input layer, expecting patches with the structure outlined above;

• Next we defined a pooling layer that took the maximum values, configured with a pool size of
2× 2 and with a stride of 2. This was equivalent to a 2× 2 sliding window that walks across the
activation volume, taking the maximum value of each region, while taking a step of two cells in
both the horizontal and vertical directions;

• Afterwards, we had a second two-dimensional convolution layer, again with a filter size of 3× 3
and using the Swish activation function, but this time with 28 feature maps instead of 14;

• Then, we had another pooling layer similar to the previous one, again taking maximum values
and with a pool size of 2× 2;

• Afterwards, we had a dropout regularization layer, configured to randomly exclude 10% of the
neurons in order to reduce over-fitting;

• Next, we converted the 2D matrix resulting from the previous step to a flattened vector, allowing
the data to be processed by standard fully-connected layers. We specifically used a fully-connected
layer with 56 neurons and with the swish activation function;

• Finally, the output layer had one single neuron with a linear activation function, in order to output
a real value corresponding to the estimated population at the center cell of the input patch.

Independently of the regression model being used, for performance reasons and also in accordance
with the original implementation of the disseveration procedure [46,47], each iteration of the
disaggregation method used a random sample with 25% of the cells (or 25% of the 7× 7 patches, in the
case of the CNN model) as the training data for fitting the regression model. Different random samples
are considered at each iteration of the disseveration procedure.

Some of the hyper-parameters involved on the different models (e.g., the number of trees in the
ensemble methods that were used, or the learning rate in the CNN model) were also tuned for optimal
performance at each iteration of the disseveration procedure. For instance, in the case of gradient tree
boosting, the caret package was used to tune parameters such as the number of trees, the learning rate,
or the minimum loss reduction required to make a further partition on a leaf node of a tree.

Specifically on what regards the CNN model, the training procedure used a loss function
corresponding to the mean squared error, considering batches of 1024 instances, and using one epoch
over the training data per iteration of the disseveration procedure. We used the Adam optimization
algorithm [54] with the default parameters in the keras deep learning library, except for the learning
rate which was set to 10−i, with i equal to 3, 4 or 5.

In order to avoid overfitting with the CNN model, besides using dropout regularization, we also
used a data augmentation procedure for artificially creating new training instances, at each iteration
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of the dissever procedure. Assuming that different types of transformations on the input data
(i.e., the patches containing ancillary data) can result on different representations for the same
population count, we followed an approach that extends the original dataset in 2.5 times its original size.
The new patches were computed by randomly applying, to each original training patch, (i) a vertical
flip, (ii) an horizontal flip, (iii) both vertical and horizontal flips, (iv) a rotation of 90◦, (v) a rotation of
−90◦, or (vi) a transpose operation.

3.2. The Ancillary Data Sources

Our disaggregation procedure leverages six different sources of external ancillary data (i.e., rasters
P1 to P6 from the previous enumeration), specifically encoding (i) modern population density,
(ii) historical land coverage, (iii) terrain elevation, (iv) modern data on terrain development, (v) modern
data on human settlements, and (vi) distance from a given cell to the nearest cell with a land coverage
type equal to water. All these six sources of information are expected to correlate with historical
population density, although to different degrees. Figure 3 provides an illustration for the data
available in all six sources, for a region corresponding to the territory of Great Britain.

Figure 3. Map representations for the ancillary sources of information.

The ancillary information regarding modern terrain development and modern population counts
was obtained from the Global Human Settlement (GHS (http://ghsl.jrc.ec.europa.eu)) project [8–11],
which focuses on mapping the distribution and density of the world’s built-up areas. This project
analyzed Landsat imagery, related to the epochs of 1975, 1990, 2000 and 2013–2014, to quantify built-up
structures in terms of their location and density. Raster grids with a resolution of 38 m per cell are

http://ghsl.jrc.ec.europa.eu
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made available through the project, expressing the distribution of built-up areas as the proportion
(i.e., ratio) of occupied footprint in each cell. We specifically used the GHS built-up presence grid
related to the year of 1975 (i.e., the oldest year for which data is available), converting the data to the
resolution of 200 m per cell.

Besides the raster encoding terrain development (i.e., built-up presence), the GHS project
also created population density grids for the same years, with a resolution of 250 m per cell.
The methodology for building these grids was based on raster-based dasymetric mapping, using the
GHS built-up presence to restrict and refine the population information available through the Gridded
Population of the World (GPW (http://beta.sedac.ciesin.columbia.edu/data/collection/gpw-v4))
dataset. This population grid was in turn constructed from national or subnational input units
(i.e., from low-level administrative units from the different countries) of varying resolutions, through a
spatial disaggregation procedure. Since historical population counts are expected to correlate with
modern population density, it is our belief that this specific variable can provide crucial information
to our disaggregation objectives. We used the population density layer referring to the year of 1975,
again interpolating the data to the resolution of 200 m per cell.

On what concerns historical land coverage data, we used the dataset made available in the
context of the historic land dynamics assessment (HILDA (http://www.wur.nl/en/Expertise-Services/
Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/
Models/Hilda.htm)) project [43,44], which was built from the combination of multiple harmonized
and consistent datasets, like remote sensing products, national inventories, aerial photographs, land
cover statistics, old encyclopaedias, and historic land cover maps. HILDA data is made available at a
spatial resolution of 1km per cell, and in a decadal (i.e., 10 years) temporal resolution for the period
between 1900 and 2010. Each cell is assigned to one of six land coverage classes, namely settlements,
cropland, forest, grassland, other land (e.g., glaciers, sparsely vegetated areas, beaches, bare soil, etc.)
and water. We specifically used the available data referring to the year of 1900 (i.e., the year that is
closer to the census datasets that were used in our experiments) and the six land coverage classes were
converted into a value in the range from 0.0 to 1.0, encoding the level of terrain development (i.e., cells
with the class water bodies were assigned the value of zero, cells corresponding to other land were
assigned the value of 0.25, forest and grassland areas were assigned the value of 0.5, cropland areas
were assigned the value of 0.75, and settlement areas were assigned the value of one). This conversion
from categorical to numeric values makes it easier to explore land coverage within different types
of regression modeling methods (e.g., this procedure is appropriate for standard linear regression
models, where categorical variables would otherwise have to be encoded, for instance through the use
of one different variable for each possible category, with a value of one if the case falls in that category
and zero otherwise). Despite the arbitrariness of the considered weights, our disaggregation method
based on regression will adjust the contribution of each of the class-percent values in a data-driven
way. Besides the raster encoding terrain development, the HILDA dataset was also used to produce
a separate raster with derived information, encoding the distance towards the nearest water body
(i.e., the distance towards the nearest cell assigned to the water class within HILDA, thus considering
the ocean, as well as rivers, lakes, and water channels, in the computation).

The terrain elevation data was obtained from the ALOS Global Digital Surface Model (AW3D30
(http://www.eorc.jaxa.jp/ALOS/en/aw3d30/)), produced by the Japan Aerospace Exploration
Agency and originally available at a resolution of 30 m per cell [55,56]. This dataset has been compiled
with images acquired by the Advanced Land Observing Satellite (ALOS), named DAICHI, using stereo
mapping (PRISM) for worldwide topographic data based on optical stereoscopic observation.

Finally, we used modern pan-European information on the presence of human settlements,
obtained from the Copernicus Land Monitoring Service (http://land.copernicus.eu). The human
settlement layer is made available on a spatial resolution of 10 m, and it represents the percentage of
built-up area coverage per spatial unit, based on SPOT5 and SPOT6 satellite imagery from the year of
2012. The automated information extraction process used for building this last dataset uses machine

http://beta.sedac.ciesin.columbia.edu/data/collection/gpw-v4
http://www.wur.nl/en/Expertise-Services/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/Models/Hilda.htm
http://www.wur.nl/en/Expertise-Services/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/Models/Hilda.htm
http://www.wur.nl/en/Expertise-Services/Chair-groups/Environmental-Sciences/Laboratory-of-Geo-information-Science-and-Remote-Sensing/Models/Hilda.htm
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/
http://land.copernicus.eu
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learning techniques in order to understand systematic relations between morphological and textural
features, extracted from the multispectral and panchromatic bands of the satellite imagery [57].

4. Experimental Evaluation

We evaluated the proposed hybrid spatial disaggregation technique through a set of experiments,
changing parameters such as the learning algorithm used within the disseveration procedure, or the
considered ancillary variables. The experiments were performed on a standard Linux machine with
an Inter Core i7 CPU, 64 GB of RAM, an SSD drive, and an NVIDIA Titan Xp GPU (used in the tests
with CNN models). As mentioned in Section 3.1, the disseveration procedure was implemented in
R, using machine learning libraries like caret and Keras. Specifically on what regards the tests with
CNN models, we used Keras with Tensorflow 1.9 as the computational backend, which in turn used
version 9.2 of the NVIDIA CUDA libraries.

In our experiments, we attempted to disaggregate historical population counts from three different
national censuses which took place around 1900 (i.e., during the changeover from the 19th to the 20th
century, which is a period that went down in history as the Belle Epoque, when the foundations of
modern society were laid). These are as follows:

• Data from the CEDAR project (http://www.cedar-project.nl) related to the Dutch historical census
from 1899 (http://github.com/CEDAR-project/DataDump), together with a shapefile for Dutch
historical administrative units available from the HGIN/NLGis project (http://nlgis.dans.knaw.nl/
HGIN/). The census data from 1899 is originally available at the level of municipalities, of which
there are 1121 units. The municipalities are also originally aggregated into 11 larger geographical
regions corresponding to historical boundaries for provinces.

• Data from LOKSTAT, i.e., the Historical Database of Local Statistics in Belgium (http://
www.lokstat.ugent.be/en/lokstat_start.php), concerning the population census from 1900 (i.e.,
the sixth census that was organized after Belgium gained its independence) that was published
in 1903. The census data was originally available at the level of municipalities (i.e., the
processing of the data was entrusted to the municipal authorities), of which there are 2605
units. The municipalities can be aggregated into 41 larger regions corresponding to historical
boundaries for administrative districts.

• Data from the vision of Britain through time project (http://www.visionofbritain.org.uk) related
to the census statistics for England and Wales (http://www.visionofbritain.org.uk/gbhdb/
section.jsp?id=cen_par_ew), together with the corresponding boundary data (http://www.
visionofbritain.org.uk/gbhdb/part.jsp?id=geos_gb). We specifically used data taken from the
1891 census and collected at the level of parishes, of which there are 14,978 units. The parishes
can be aggregated to larger regions corresponding to the historical boundaries for registration
districts, of which there are 628 in total.

The geographic boundaries for the administrative divisions concerning the three aforementioned
territories, at the two different levels of aggregation (i.e., provinces and municipalities in the case of the
Netherlands, districts and municipalities in the case of Belgium, and registration districts and parishes
in the case of Great Britain), are illustrated on Figure 4.

For testing the proposed disaggregation procedure, we started by using the census information at
the lowest level of data aggregation that is available (i.e., parishes for Great Britain, and municipalities
for Belgium and for the Netherlands), producing raster datasets with a resolution of 200 m per cell.
The left part of Figure 5 presents two choropleth maps illustrating the aggregated information at the
level of municipalities, for the territories of Belgium and the Netherlands, while the right part of
Figure 5 presents the results of the complete disaggregation procedure, leveraging regression analysis
based on a convolutional neural network with all sources of ancillary information. All the maps from
Figure 5 used a logarithmic transformation to assign data values to particular colors, given that the
population counts have a highly skewed distribution in their values.

http://www.cedar-project.nl
http://github.com/CEDAR-project/DataDump
http://nlgis.dans.knaw.nl/HGIN/
http://nlgis.dans.knaw.nl/HGIN/
http://www.lokstat.ugent.be/en/lokstat_start.php
http://www.lokstat.ugent.be/en/lokstat_start.php
http://www.visionofbritain.org.uk
http://www.visionofbritain.org.uk/gbhdb/section.jsp?id=cen_par_ew
http://www.visionofbritain.org.uk/gbhdb/section.jsp?id=cen_par_ew
http://www.visionofbritain.org.uk/gbhdb/part.jsp?id=geos_gb
http://www.visionofbritain.org.uk/gbhdb/part.jsp?id=geos_gb
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Figure 4. The boundaries for the source units associated to the three different regions.

The maps from Figure 5 illustrate general trends in the resulting distribution for the disaggregated
values. Higher values are assigned to coastal regions, large cities such as Brussels or Amsterdam end
up receiving a significant proportion of the disaggregated population, and other similar patterns can
be observed in the results. For instance, in the northern half of Belgium, the disaggregated population
counts are clearly concentrated around the important port of Antwerp, the city of Ghent, and the
capital, Brussels. In the southern half, we have a number of smaller towns and cities along the valley of
the Sambre and Meuse rivers, where the sillon industriel (i.e., the industrial valley) became a focus of
industrialization. In southeast Belgium, along the border with Luxembourg and Prussia, we have the
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heavily forested and agricultural region known as the Ardennes, with much lower population counts.
Interestingly, according to the census data, 1900s Belgium had more people than the Netherlands.

Figure 5. Results for the disaggregation of historical population counts.

Figure 6 details the disaggregation results for the British census from 1900, focusing on the city of
London and its outskirts. We plot, side-by-side, historical land coverage information from the HILDA
dataset, modern information on human settlements, modern population density, a satellite photo
collected from Google Earth for the same region, the estimates obtained with a baseline disaggregation
method corresponding to a proportional and weighted areal interpolation procedure that only used
modern population density (i.e., raster Td from the enumeration shown in Section 3), and the estimates
computed with the complete hybrid method leveraging CNNs and all sources of ancillary information.
From the figure, and as expected, one can see that more developed areas have higher values, while less
developed areas end up with lower values. The historical population density also seems to have a
high relation with the modern information given in the GHS datasets, in terms of the geographic
distribution of the data.



ISPRS Int. J. Geo-Inf. 2019, 8, 327 14 of 22

Figure 6. Results for the disaggregation of historical population counts for a region corresponding to
the city of London, together with ancillary variables for the same region.

When further investigating the correlations between the historical population counts and the
ancillary variables, we found that there is a very strong linear correlation between the population
counts for each aggregation area (e.g., for each parish/municipality) and the aggregated values for
some of the different variables that were considered, particularly with the information on modern
population density. Consequently, a very high linear correlation is also found for the disaggregated
results produced through the dasymetric procedure that relied exclusively on modern population
density as ancillary information (i.e., proportional and weighted areal interpolation, leveraging the
population counts, constitutes a very strong baseline).

Figure 7 presents two correlation matrices, illustrating the correlations between the ancillary
variables that were considered in our study and the historical population counts for Great Britain and
Belgium (similar results were observed for the case of the Netherlands). The ancillary variables were
aggregated to the level of parish/municipality, in order to compare the values against the historical
population counts. For each pair of variables we present also the actual value that was obtained for the
Pearson correlation coefficient between the variables, and also an indication for whether the correlation
was statistically significant (i.e., three stars corresponds to a p-value of zero, two stars to a p-value of
0.001, one star to 0.01, and a single dot to 0.05).

From Figure 7, one can confirm the relevance of some of the auxiliary variables for the spatial
disaggregation of historical population. For instance, one can see (i.e., either through visual observation,
or through the computed values for the Pearson correlation coefficient) that the relationship between
the ancillary raster corresponding to modern population density and the considered target variables
is indeed very strong. The information on modern terrain development and human settlements
(i.e., two variables that seem to capture more or less the same information) is moderately correlated
with the target variables, and the information on historical land coverage has notably less relevance in
the distribution of the target population counts. The regression algorithms should consider parameters
based on the importance of such correlations, for instance giving more relevance to the ancillary
information provided by the modern population density.
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Figure 7. Correlation matrices between the ancillary variables and historical population.

The typical strategy for quantitatively evaluating the accuracy of spatial disaggregation
procedures involves aggregating the target zone estimates to either the source or some intermediary
zones, and then compare the aggregated estimates against the original counts. Although other
evaluation procedures could provide alternative, or even more detailed, information about the quality
of the disaggregation methods (e.g., compare the results obtained for administrative divisions with an
area smaller than the target resolution of 200 m per cell, with population counts collected from other
historical records, in order to exactly capture differences at the target resolution), these would require
the availability of data that can be very difficult to collect, and that would likely only be possible to
obtain for a small number of regions. With the strategy based on intermediary aggregation zones,
the results for the comparison can be summarized by various statistics that capture the quality of the
disaggregation results, such as the root mean square error (RMSE) between estimated and observed
values, or the mean absolute error (MAE). The corresponding formulas are as follows.

RMSE =

√
∑n

i=1(ŷi − yi)2

n
(2)

MAE =
∑n

i=1 |ŷi − yi|
n

(3)

In Equations (2) and (3), ŷi corresponds to a predicted value, yi corresponds to a true value,
and n is the number of predictions. Using multiple error metrics can have advantages, given that
individual measures condense a large number of data into a single value, thus only providing one
projection of the model errors that emphasizes a certain performance aspect. For instance, Willmott
and Matsuura [58] proved that the RMSE is not equivalent to the MAE, and that one cannot easily
derive the MAE value from the RMSE (and vice versa). While the MAE gives the same weight to all
errors, the RMSE penalizes variance, as it gives errors with larger absolute values more weight than
errors with smaller absolute values. When both metrics are calculated, the RMSE is by definition never
smaller than the MAE. Chai and Draxler [59] argued that the MAE is suitable to describe uniformly
distributed errors, but because model errors are likely to have a normal distribution rather than a
uniform distribution, the RMSE is often a better metric to present than the MAE. Multiple metrics
can provide a better picture of error distribution and thus, in our study, we present results in terms
of the MAE and RMSE metrics. We also report results in terms of the normalized root mean square
error (NRMSE) and the normalized mean absolute error (NMAE), in which we divide the values of
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the RMSE and MAE by the amplitude of the true values (i.e., the subtraction of the maximum by the
minimum true values). This normalization can facilitate the comparison of results across variables.

To get some idea on the errors that are involved in the proposed spatial disaggregation procedure,
we experimented with the disaggregation of data originally reported at the level of larger territorial
divisions (i.e., at the level of counties or administrative districts) to the raster level, later aggregating the
estimates to the level of parishes/municipalities (i.e., taking the sum of the values from all raster cells
associated to each parish/municipality) and comparing the aggregated estimates against the values
that were originally available in the census datasets. Table 1 shows the obtained results, comparing
the disaggregation procedure leveraging different types of regression algorithms, against simpler
baselines corresponding to (i) mass-preserving areal weighing, (ii) pycnophylactic interpolation,
or with (iii) weighted areal disaggregation leveraging population data for the weights (i.e., raster Td in
the enumeration given in Section 3). Values in bold correspond to the best results for each variable.

Table 1. Results obtained with different disaggregation methods.

Netherlands

RMSE MAE NRMSE NMAE

Mass-preserving areal weighting 19,756.9 4176.1 0.0387 0.0082
Pycnophylactic interpolation 19,756.4 4178.8 0.0387 0.0082
Weighted areal interpolation (WA) 17,124.5 3248.2 0.0335 0.0063

Linear regression 17,286.7 3073.7 0.0339 0.0060
Cubist 17,980.9 3394.7 0.0352 0.0066
Gradient boosting 16,989.0 3003.2 0.0333 0.0059
Convolutional neural network 17,484.4 3216.3 0.0342 0.0063

Belgium

RMSE MAE NRMSE NMAE

Mass-preserving areal weighting 8690.0 2048.2 0.0319 0.0075
Pycnophylactic interpolation 8660.1 2028.7 0.0317 0.0074
Weighted areal interpolation (WA) 6787.9 1462.1 0.0249 0.0054

Linear regression 6792.2 1459.7 0.0249 0.0054
Cubist 6930.8 1329.8 0.0254 0.0049
Gradient boosting 6518.4 1198.1 0.0239 0.0044
Convolutional neural network 6312.7 1224.5 0.0231 0.0045

Great Britain

RMSE MAE NRMSE NMAE

Mass-preserving areal weighting 6271.9 1418.2 0.0197 0.0044
Pycnophylactic interpolation 6034.7 1376.1 0.0189 0.0043
Weighted areal interpolation (WA) 5648.7 1178.9 0.0177 0.0037

Linear regression 5660.6 1162.9 0.0177 0.0036
Cubist 5170.0 1013.0 0.0162 0.0032
Gradient boosting 5255.8 1037.3 0.0165 0.0033
Convolutional neural network 5117.1 1009.8 0.0160 0.0032

The results from Table 1 show that the hybrid method outperforms the baselines corresponding
to mass-preserving areal weighting or pycnophylactic interpolation. However, the simpler dasymetric
procedure that only uses modern population density as ancillary data produces results that are quite
similar to those achieved by the methods that leverage regression analysis, in some cases (e.g., in the
case of testes using linear regression) even slightly superior.

To some degree, the strong linear dependence between modern population density and the
historical population can explain why the relatively simple weighted areal disaggregation method,
or why the approach based on linear regression, can achieve results that are almost as good as the
more sophisticated methods. However, the obtained results also showed that approaches based on
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more advanced procedures for regression analysis (e.g., convolutional neural networks or gradient tree
boosting) achieved the best results overall. It should also be noted that the errors that were reported
correspond to an upper bound on the actual errors produced from the disaggregation of data reported
at the level of parishes/municipalities (i.e., we only measured the errors in the disaggregation of data
originally at the level larger territorial divisions), given that, in principle, the higher the differences
between the source and target areas, the higher the errors introduced by a disaggregation procedure.

The best results for Great Britain were obtained with Convolutional Neural Networks (CNNs),
while gradient boosting achieved the best results for the Netherlands. Mixed results were obtained
for Belgium, with CNNs obtaining better values for RMSE. While we have no definitive explanation
for these differences, we noticed that the weighted areal disaggregation method has a much higher
correlation towards the historical population counts in the case of Great Britain. This can be seen
in the plots from Figure 7, which compare Great Britain to Belgium (in the case of the Netherlands,
the results are similar to those obtained for Belgium, e.g., with a correlation of 0.52 between the
historical population counts and the results of weighted areal disaggregation). The results from the
weighted areal disaggregation are used in the first step of the hybrid procedure, as inputs to the
learning algorithms. The CNN approach is perhaps better at capturing the patterns originally present
in the results from the weighted areal interpolation.

In an additional set of experiments, we tried to assess the degree to which the different ancillary
variables contribute to the final disaggregation results. Table 2 reports on the results of experiments
with different sets of ancillary variables, considering both linear regression analysis, or regression
based on the convolutional neural network. Moreover, Figure 8 presents maps for the disaggregated
historical population of the territory of Great Britain, respectively considering the worst (i.e., linear
regression leveraging just the historical variables) and the best model (i.e., a convolutional neural
network with all the ancillary variables) from Table 2. The results confirm that all the considered
variables, including the variables reporting modern/contemporary information, seem to contribute
to improving the disaggregation results. Nonetheless, simpler models with fewer variables remain
quite competitive, in some cases (e.g., when using only modern data in the case studies relative to the
Belgian and British territories) even superior in some error metrics.

Table 2. Results obtained with different sets of ancillary variables.

Netherlands Linear Regression Convolutional Network

RMSE MAE NRMSE NMAE RMSE MAE NRMSE NMAE

Historical data 19,692.8 4232.9 0.0386 0.0083 18,771.8 4301.8 0.0368 0.0084
Historical +WA 17,221.0 3089.3 0.0337 0.0060 17,263.3 3084.6 0.0338 0.0060
Modern data 17,412.5 3207.0 0.0341 0.0063 17,525.3 3333.0 0.0343 0.0065
All variables 17,286.7 3073.7 0.0339 0.0060 17,484.4 3216.3 0.0342 0.0063

Belgium Linear Regression Convolutional Network

RMSE MAE NRMSE NMAE RMSE MAE NRMSE NMAE

Historical data 8573.5 2059.8 0.0314 0.0076 8138.0 2285.2 0.0298 0.0084
Historical +WA 6792.0 1460.4 0.0249 0.0053 6413.8 1227.4 0.0235 0.0045
Modern data 6809.7 1342.0 0.0250 0.0049 6557.4 1208.1 0.0240 0.0044
All variables 6792.2 1459.7 0.0249 0.0054 6312.7 1224.5 0.0231 0.0045

Great Britain Linear Regression Convolutional Network

RMSE MAE NRMSE NMAE RMSE MAE NRMSE NMAE

Historical data 5933.4 1398.1 0.0186 0.0044 5773.1 1263.9 0.0181 0.0040
Historical +WA 5662.4 1222.6 0.0177 0.0038 5447.3 1087.7 0.0171 0.0034
Modern data 5665.5 1180.5 0.0178 0.0037 5270.4 1024.1 0.0165 0.0032
All variables 5660.6 1162.9 0.0177 0.0036 5134.9 1009.5 0.0161 0.0032
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Figure 8. Comparison of two different methods in the disaggregation of historical population counts
for the territory of Great Britain.

5. Conclusions and Future Work

This article reported on experiments with a hybrid spatial disaggregation technique that combines
the ideas of dasymetric mapping and pycnophylactic interpolation, using machine learning methods
(e.g., ensembles of decision trees, or deep learning methods based on convolutional neural networks)
to combine different types of ancillary data, in order to disaggregate historical census data into a 200 m
resolution grid. We specifically present results related to the disaggregation of historical census data
collected for Great Britain, Belgium, and the Netherlands, which indicate that the proposed method
is indeed highly accurate, outperforming simpler disaggregation schemes based on mass-preserving
areal weighting or pycnophylactic interpolation.

Despite the interesting results, there are also many open challenges for future work.
Our experimental results indicate that regression modeling based on CNNs leads to interesting
results, although we have only experimented with a relatively simple neural network architecture.
In the future, we plan to also evaluate the proposed approach with data for smaller regions (i.e.,
compatible with the target resolution of 200 m per cell) having known values in terms of historical
population, this way obtaining different estimates for result quality (i.e., errors measured directly
at the target resolution). We also plan to experiment with different types of model ensembles (e.g.,
ensembling CNN results), this way perhaps improving the quality of the obtained results and, at
the same time, allowing us to estimate the disaggregation quality at the level of individual cells (i.e.,
the variance in the results from the different models in the ensemble can be used to estimate the
certainty of the predictions for a given cell). Moreover, we plan to experiment with more advanced
CNN architectures [23,52,60,61], similar to those that are currently achieving state-of-the-art results in
different types of image processing and computer vision problems (e.g., in tasks such as aerial image
segmentation [62] or image super-resolution [63]).

The experiments that are reported on in the present article have also been limited to the
disaggregation of historical census data referring to specific individual years, although it could
be interesting to consider temporal interpolation, in order to infer disaggregated population counts
for the years in between census collection. Similar methods to those used in the present study
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can, in principle, be adapted to simultaneously perform population disaggregation and population
projection to different years, taking inspiration on recent experiments with modern data [41].

Finally, in terms of future work and taking inspiration on recent studies within the realm of the
spatial humanities, we also plan to experiment with the inclusion of other types of ancillary variables
(e.g., proximity towards the historical transportation network [19–21], or information on building
footprints obtained from the segmentation of historical maps [64]), and with other types of spatial
disaggregation tasks that involve historical datasets (e.g., disaggregation of indicators relative to
health problems [65–69] or historical tourism [70,71]), leveraging ancillary data collected from textual
sources through the application of geographical text analysis. Although the present study focused on
the disaggregation of population counts, the proposed methods can naturally also be applied in the
disaggregation of socio-economic indicators relevant for different types of historical inquiries.
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