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Abstract: The decomposition of a point process is useful for the analysis of spatial patterns and in
the discovery of potential mechanisms of geographic phenomena. However, when a local repulsive
cluster is present in a complex heterogeneous point process, the traditional solution, which is based
on clustering, may be invalid for decomposition because a repulsive pattern is not subject to a specific
probability distribution function and the effects of aggregative and repulsive components may be
counterbalanced. To solve this problem, this paper proposes a method of decomposing repulsive
clusters in complex point processes with multiple heterogeneous components. A repulsive cluster
is defined as a set of repulsive density-connected points that are separated by a certain distance
at a small scale and aggregated at a large scale simultaneously. The H-function is used to identify
repulsive clusters by determining the repulsive distance and extracting repulsive points for further
clustering. Through simulation experiments based on three datasets, the proposed method has
been shown to effectively perform repulsive cluster decomposition in heterogeneous point processes.
A case study of the point of interest (POI) dataset in Beijing also indicates that the method can identify
meaningful repulsive clusters from types of POIs that represent different service characteristics of
shops in different local regions.

Keywords: decomposition of a point process; spatial heterogeneity; repulsive cluster; aggregative
cluster; H-function

1. Introduction

Many geographic phenomena affected by various factors at different scales can be seen as complex
point processes with components of different types and spatiotemporal scales, such as seismic events [1],
crime incidents [2], commercial site locations, and other phenomena. The decomposition of these
point processes into different components over different scales may help identify the corresponding
spatiotemporal patterns and mechanisms. For example, a seismic dataset can be decomposed as the
superposition of background earthquakes at the global scale and clustered earthquakes at the local
scale. Crime incidents can be decomposed into random cases distributed around a city (low-density
noise), and high-risk cases concentrated in hotspots (high-density clusters). Chain stores in a large city
can also be decomposed into several isolated shops (repulsive clusters) distributed in districts to serve
local communities or many stores (aggregative clusters) concentrated in central business district (CBD)
areas. These patterns are widely used for identifying areas with high earthquake rates, predicting
periods, areas in a city with high-crime incidence [3], as well as providing valuable information for
site selection and urban planning. Thus, the decomposition of point processes is a useful theoretical
method in geographical research.
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Recently, several methods based on various clustering algorithms have been developed to
decompose the point processes of different geographical phenomena [4–6]. One commonly considered
problem is the separation of homogeneous aggregative clusters with different densities from the point
set. Many density-based clustering methods, such as DENCLUE [7], CHAMELEON [8], DBSCAN [9],
OPTICS [10], among others, have been proposed to solve this problem. Pei [11] summarized these
clustering methods and classified them into five types, including grid-based [12], graph-based [13],
window-based [14], distance-based [15] and model-based models; the study also constructed a
theoretical framework to objectively decompose clusters with multiple densities and arbitrary shapes
in a complex point data set, as seen in Figure 1. Previous research has determined the heterogeneity of
a point data set based on summary indices [16–20] or scale-related X-functions, such as the L-function
and K-function [21,22]. Subsequently, a likelihood model of the kth nearest distance for a point process
with multiple density components is constructed on the basis of various parameter estimation methods,
such as the EM algorithm [1] and the reversible jump MCMC algorithm [15,23,24]. Finally, points are
connected to clusters of different densities based on the connectivity at different scales through the
parameter eps.
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Most of the clustering methods mentioned above have certain limitations in real data applications
because they are based on the hypothesis that the point set is only composed of homogeneous
aggregative clusters and noise; accordingly, these clustering methods do not consider repulsive
clusters. Repulsive clusters are ubiquitous in geographic phenomena and are commonly used
to describe the competition among plants [25,26], animals [27], the distribution of aerial base
stations [28], and the service areas of chain stores [29], among other applications [30–32]. When a local
repulsive cluster is present in a complex heterogeneous point process (with multiple heterogeneous
components), the commonly used statistical measurements for quantifying heterogeneity may be
invalid in some situations. For example, as seen in Figure 2, although the statistical measurement
A [33,34] effectively quantifies the heterogeneity of two point processes, as seen in Figure 2a,b, that
contain homogeneous components, it cannot effectively quantify the heterogeneity of a complex
point process with heterogeneous components, as seen in Figure 2c with one repulsive cluster and
one aggregative cluster; In this case, an incorrect CSR (complete spatial randomness) distribution
judgment may be made. Specifically, a repulsive pattern is not subject to the same specific probability
distribution function as homogeneous components in a point process. Additionally, the effects of the
aggregative and repulsive components may be counterbalanced, which can lead to an indeterminate
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statistical result. Although these statistical measurements are significant (A < 1 or A > 1), they can only
indicate one aspect of a certain component (repulsion or aggregation) for the point set, and it is difficult
to understand the spatial heterogeneity of a complex point process with multiple heterogeneous
components on the basis of these values.
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Figure 2. Comparison of point processes with different components. (a) Noise and a repulsive cluster;
(b) noise and an aggregative cluster; and (c) noise, a repulsive cluster and an aggregative cluster.

To solve this problem, we propose a method of decomposing repulsive clusters from complex
point processes with multiple heterogeneous components to improve the theoretical method of point
process decomposition. In our study, a repulsive cluster is considered to be a connected dense region
that consists of repulsive points with respect to a certain distance. This definition differs from that of
a traditional aggregative cluster in which points are separated by a certain distance at a small scale.
Additionally, the repulsive clusters still exhibit a certain aggregate morphology at a large scale and
noise is isolated.

The remainder of the paper is arranged as follows. Several concepts regarding repulsive clusters
and details of the method for decomposition of repulsive clusters are introduced in Section 2. Three
groups of simulation experiments and related parameter analysis are performed to illustrate the
effectiveness of the method in Section 3. A case study of different types of point of interest (POI)
distributions in Beijing is presented in Section 4. The conclusions and future work are detailed in
Section 5.

2. Materials and Methods

2.1. Basic Concepts

Before our method is proposed, some basic concepts related to repulsive clusters should be
introduced in Figure 3.

Definition 1 (Repulsive point). Let D be a set of points. A point p is a repulsive point with respect to distance
d. If ∀q ∈ D, q , p⇒ dist(p, q) ≥ d , then this repulsive point p can be denoted as pd and the repulsive
point set can be denoted as Dd. The area within distance d of each repulsive point p is denoted as the
repulsive area.

Definition 2 (Repulsive eps neighborhood and core repulsive point). The repulsive eps neighborhood
of a repulsive point pd, denoted as Neps(pd), is defined as Neps(pd) =

{
q
∣∣∣dist(p, q) ≤ eps), q ∈ Dd

}
, where

p ∈ Dd, eps > d. If
∣∣∣Neps(pd)

∣∣∣≥ minpt , pd is a core repulsive point with respect to d and minpt.

Definition 3 (Directly repulsive density-reachable). If qd
∈ Neps(pd) and pd is a core repulsive point with

respect to d and minpt, then qd is directly repulsive density-reachable from a core repulsive point pd.
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Definition 4 (Repulsive density-connected). Repulsive point o is considered to be repulsive density-connected
to point p if there is a collection of repulsive core points qd

1, qd
2, . . . , qd

n, where o = qd
0, p = qd

n, such that qd
i−1 is

directly repulsive density-reachable from qd
i , i = 1, 2, . . . , n.

Definition 5 (Repulsive cluster). A repulsive cluster Cd is a non-empty subset of D that satisfies the following
three conditions. (i) ∀p ∈ Cd, where p is a repulsive point with respect to d. (ii)∀p, q ∈ D, where if p ∈ Cd and p
is repulsive density connected to q, then q ∈ Cd. (iii) ∀p, q ∈ Cd, where p is repulsive density connected to q.
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2.2. Method

On the basis of the concepts defined above, we propose a method to decompose the repulsive
clusters from a point process with multiple heterogeneous components. This method can be divided
into three steps, as shown in Figure 4. First, we determine whether there is a repulsive cluster
in the heterogeneous data set using the H-function. If there is a repulsive cluster, we proceed to
the second step. Otherwise, the point set is considered to have no repulsive clusters and can be
tested for aggregative clusters based on Pei’s theory [11]. Second, if a repulsive cluster is confirmed,
a repulsive distance with respect to the repulsive cluster is determined and used to eliminate certain
local aggregative points from the data set. The remaining points only include repulsive clusters to
be identified and noise. Third, we determine eps, which is used to construct the density domain of
repulsive points and distinguish all repulsive core points from noise. On the basis of this approach,
we can generate repulsive clusters according to the density connectivity of those points. The details of
this method are as follows.
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2.2.1. Determining the Existence of Repulsive Clusters

Because traditional indices have certain limitations in indicating the distribution of complex
heterogeneous point processes, we use an interactive method to determine whether there is a repulsive
cluster in the dataset. Previous studies have shown that Ripley’s K-function and H-function [35,36] can
be widely used to compare a simple point distribution with a random distribution. For a simple point
process, a positive value of H(d) indicates clustering over the given spatial scale, whereas a negative
value indicates dispersion [37]. Therefore, we can use the H-function for dispersion identification. The
definitions of the H-function and K-function are as follows:

K(d) = λ−1
n∑

i=1

n∑
j=1

δi, j(d)/n,(i, j = 1, 2, . . . , n; i , j) (1)

H(d) =
√

K(d)/π− d (2)

where δi j(d) =
{

1, (di j ≤ d)
0, (di j > d)

, dij is the distance between point i and point j, n is the number of points,

and λ is the density of points in the study area.
Because a significant local peak value in the H-function reflects the cluster scale of the aggregative

pattern in the point process [38], the apparent local valley value in the H-function is believed to
be an indicator of a repulsive cluster with respect to a certain repulsive distance. Here, we use a
minima detection algorithm [39] to determine whether there are repulsive clusters by identifying the
local valley in the H-function. This algorithm is to detect the first derivative of a peak/valley, which
has a downward-going/upward-going zero-crossing at the peak maximum/valley minimum. Thus,
the local valley position in the H-function can be determined by the upward-going zero-crossing of
the maximum slope exceeding a certain threshold (empirically set to 0.001). If there is a significant
repulsive cluster in the point process, a significant local valley can be identified in the H-function,
as seen in Figure 5c,d,e. Otherwise, no significant local valley will be present in the H-function plot,
as seen in Figure 5a,b. The specific scale d corresponding to an identified local valley of the H-function
is considered to be the repulsive distance because the number of neighbors Neps(pd) changes most when
d is close to the repulsive distance. This change will manifest itself as a local valley in the H-function.
Thus, the existence of repulsive clusters can be checked.
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depending on the size and density of the repulsive cluster. Larger estimated repulsive distances 
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result will be detailed in Section 3.2.1. 

2.2.3. Generating Density-Connected Repulsive Clusters 

Figure 5. Distributions of different types of point processes and their H-functions. (a) Aggregation
and noise; (b) homogeneous point process; (c) repulsion (repulsive distance = 0.038); (d) repulsion and
noise (repulsive distance = 0.028); and (e) aggregation, repulsion and noise (repulsive distance = 0.026).

2.2.2. Extracting Repulsive Points Based on the Repulsive Distance

Once the existence of a repulsive cluster is confirmed and the repulsive distance is determined,
the nearest distance (NN-Dist) of each point in the dataset is compared with the repulsive distance and
all points with an NN-Dist less than the repulsive distance are decomposed as aggregative components,
as seen in Figure 6b,c, red points. The remaining points containing repulsive clusters and noise are
processed in the next step.
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Figure 6. Extraction of repulsive points. Blue points represent repulsive points with respect to d, and red
points represent aggregative components. (a) repulsion; (b) repulsion and noise; (c) aggregation,
repulsion and noise.

Note that the repulsive distance will be limited to a certain range (0 ∼ 1.0746λ−1/2 [33]) depending
on the size and density of the repulsive cluster. Larger estimated repulsive distances correspond to a
lower amount of retained noise but a greater likelihood that positive repulsive point decomposition
will occur and vice versa. The effect of the repulsive distance estimation on the cluster result will be
detailed in Section 3.2.1.



ISPRS Int. J. Geo-Inf. 2019, 8, 326 7 of 16

2.2.3. Generating Density-Connected Repulsive Clusters

After the extraction process, we decomposed all aggregative components of the point set and
obtained the remaining repulsive points with respect to the repulsive distance. Thus, the following steps
were used to estimate eps, determine the cluster scale and generate density-connected repulsive clusters.

Because eps is the only parameter required to transform spatial points into the density domain,
it is very important to estimate the corresponding ability to separate clusters from noise. To estimate
eps, we use the same methods as Pei [38] and determine the appropriate value of the clustering scale
factor based on Monte Carlo simulation experiments. The difference is that we use the local maximum
of the H-function to estimate the clustering scale instead of the minimum of the derivative function
because the derivative function of a repulsive point set tends to fluctuate. As eps is the product of
the clustering scale and clustering scale factor, the experiments based on synthetic data indicated that
when the clustering scale factor is approximately 5/12, the identification error is minimized, as seen in
Section 3.2.2.

After eps is determined, the repulsive clusters can be generated in the corresponding regions of
the density domain. All core repulsive points are marked and connected to each other based on the
density connectivity according to definition 2.4. The detailed process is as follows. First, we randomly
choose a core repulsive point and assign a cluster ID. Then, all neighbors of this point are assigned
the same cluster ID and traversed to expand the cluster region. The same process is repeated for
the next core repulsive point in the neighborhood until no unclassified core points are found in the
neighborhood. All points with the same cluster ID form a cluster, and another cluster begins with
a new unclassified core repulsive point. After all core repulsive points are traversed, all repulsive
clusters are generated from the data set.

3. Simulation Results

3.1. Validation of the Algorithm for Different Synthetic Datasets

In this section, three groups of synthetic data in Figure 5c1, d1 and e1 are used to verify the
proposed method. The Group I dataset, as seen in Figure 5c1, exhibits a global repulsive pattern and is
entirely composed of repulsive points. The Group II dataset, as seen in Figure 5d1, is a complex point
process that includes three repulsive clusters of different shapes (cross-shaped, square-shaped, and
strip-shaped clusters) and densities (densities 1, 1, and 1.5 times that of the background noise). The
Group III dataset, as seen in Figure 5e1, is a complex point process with heterogeneous components
and includes two repulsive clusters (a reverse “T” shape with the same density as the background
noise and a bar shape with 1.5 times the density of the background noise) and an aggregative cluster
(a strip-shaped cluster with five times the density of the background noise). Experiments are performed
for each dataset 1000 times to evaluate the average identification rates.

The identification result is shown in Figure 7 and the identification rate is shown in Figure 8. The
simulation experiments for Group I data have a recall rate above 85% and a precision rate equal to
100%. Simulation experiments with the other two datasets yielded satisfactory recall rates (R above
0.99 in 95% of simulations) and precision rates (lowest rates of P are 0.8 and 0.73). F1 is defined
as F1 = 2RP/(R + P) and is commonly used to evaluate summary results. The F1 values obtained
were above 0.9 in almost all simulations. The average detection results are listed in Table 1. This
table indicates that the proposed method successfully identifies each repulsive cluster at a high rate.
For Group I data, the recall rate is approximately 88.6% and the precision rate is 100% because almost
all points have been correctly identified except a few points in edge regions. For Group II data,
the recall rates of most simulations reach 100% and the precision rates are almost above 85% except
for those of the “cross-shaped” cluster. The nearly perfect recall rates indicate that almost all points
belonging to the repulsive clusters were identified by the proposed method. Additionally, the relatively
low precision rates suggest that certain noise points were misidentified, including points around the
borders of clusters, especially in the upper area of the “cross-shaped” cluster and in the lower-right
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area of the “strip-shaped” cluster, as seen in Figure 7b. For Group III data, a slightly inferior result can
be observed. Notably, the detection precision for each repulsive cluster decreases by approximately 7%.
Although the recall rates remain high, the lowest precision rate decreases to approximately 73%. These
results indicate that the detection may be disturbed to some extent when there is an aggregative cluster.
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Figure 7. Generating density-connected repulsive clusters. (a) All points in this set have been identified
as repulsive points and generated as a single repulsive cluster. (b) Three repulsive clusters have been
identified, including cross, square and circle clusters. (c) Two repulsive clusters have been identified,
including cross and square clusters.
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Figure 8. Detection results from the simulations. (a) repulsion; (b) repulsion and noise; (c) aggregation,
repulsion and noise.

Table 1. Detection results for synthetic data.

Dataset Clusters Number
of Points TP FP FN Recall Precision

Group I All points 400.5 354.76 0 45.71 88.6% 100%

Group II

Square-Shaped Cluster 53.94 53.67 13.35 0.28 99.5% 88.2%
Strip-Shaped Cluster 53.99 52.92 7.01 1.08 98.0% 89.6%
Cross-Shaped Cluster 80.98 80.57 19.18 0.41 99.5% 83.1%

Noise Cluster 0.00 0.00 2.93 0.00 0.0% 0.0%
All 188.92 187.80 24.00 2.24 99.4% 88.8%

Group
III

Bar-Square 48.07 47.33 12.04 0.74 98.4% 83.2%
Reversed “T”-Shaped Cluster 105.37 100.73 20.00 4.64 95.4% 84.0%

Noise Cluster 0.00 0.00 8.43 0.00 0.0% 0.0%
All 153.63 148.96 35.55 9.33 96.9% 81.2%
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3.2. Parameter Analysis

3.2.1. Effect of the Repulsive Distance on the Clustering Results

As discussed in Section 2.2.3, the determination of the repulsive distance influences the results of
cluster identification. Here, we generate 100 duplicates of the Group III dataset and implement the
proposed method for each dataset using different repulsive distance, with errors ranging from -20%
to 20% of true value. The average identification rates for different estimation errors of the repulsive
distance are shown in Figure 9. This figure shows that the identification rate remains stable at a
relatively high level when the estimated repulsive distance error is negative and displays a sharp
decline when the estimated repulsive distance error is positive. A 20% negative error yields an F1
value above 0.75, whereas a 10% positive error leads to a poor F1 below 0.5.
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Figure 9. Identification rate for different estimation errors of the repulsive distance.

The reason for this result may be that, although repulsive noise will increase considerably for
an underestimated repulsive distance, the proposed generation process can effectively distinguish
clusters from noise, especially with an appropriate eps. However, an overestimated repulsive distance
may abruptly eliminate the real repulsive points, which can directly lead to poor identification
performance. Therefore, an underestimated repulsive distance may yield a better result than an
overestimated distance.

3.2.2. Effect of the Determination of Eps on the Clustering Results

After the repulsive distance has been determined, eps is the key parameter used to obtain the
clustering results. In this section, we generate 100 simulated datasets and implement the proposed
method for each dataset using different clustering scale factors ranging from 8/24 to 16/24. The average
identification rates are shown in Figure 10. Notably, as the clustering scale factor increases, the recall
rate slowly increases and the precision rate decreases. The clustering scale factor corresponding to the
optimal result is approximately 5/12. When the clustering scale factor is below 5/12, the recall rate
is still above 0.7, and the precision rate is above 0.85. When the clustering scale factor is above 5/12,
the recall rate increases to above 0.9, but the precision rate decreases to below 0.75. However, the F1
measure may maintain an acceptable level with an identification rate above 0.8 if the clustering scale
factor ranges from 8/24 to 14/24, which indicates fair performance.

The effect of the clustering scale factor on the clustering results can be interpreted as follows.
When the clustering scale factor is too large, more noisy repulsive points are misidentified with a large
eps neighborhood, which may lead to a high recall rate and low precision rate. In contrast, when the
clustering scale is too small, the repulsive clusters may be broken into fractions because the repulsive
core points are minimally connected to each other due to the unstable local density of repulsive points
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with an inhomogeneous distribution. In our case study, a carefully selected value of 5/12 was used to
detect repulsive clusters.
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Figure 10. Identification rate with different clustering scale factors.

4. Case Study and Discussion

To evaluate the proposed method based on a real dataset, we applied it to the POI dataset in
Beijing to decompose different types of implicit repulsive clusters. This dataset provides different
examples of POIs in urban areas that may reflect the demand situation and supply capacity of different
POI services. Here, we chose eight types of POIs, including 7-Elevens, gas stations, KFC, kindergartens,
McDonalds, shopping malls, Starbucks, and parks in Beijing, from the POI dataset in 2018. These
types of POIs cover urban places where many of the daily activities of residents, such eating, traveling,
education, leisure, and entertainment activities, occur.

To avoid disturbances from small-scale POIs of the same types, we preprocessed the POI dataset
by filtering out certain small POIs, such the dessert shops of McDonalds and KFC. Kindergartens,
shopping malls, and parks with areas less than certain thresholds were also removed. Here, we only
analyze POIs within the fifth ring, which encircles the main built-up area in Beijing. After these steps,
the POI dataset to be analyzed was obtained, as shown in Figure 11.

The H-function is shown in Figure 12 and was used to determine the existence of repulsive clusters
for each type of POI. The figure shows that three types of POIs, i.e., KFC, McDonalds, and shopping
malls, exhibit repulsive patterns, as seen in Figure 12 (solid lines). However, 7-Elevens and Starbucks
exhibit aggregative patterns with increasing H-function trends, as seen in Figure 12 (dashed lines).
Other types of POIs do not exhibit significant patterns in the corresponding H-functions (dashed-dotted
lines). We also calculated the A index value for each type of POI to provide a comprehensive summary
of the distribution patterns of POIs, as seen in Table 2. Table 2 shows that the H-functions and A indices
both exhibit aggregative clustering patterns for 7-Eleven and Starbucks POIs. Although the A index
values suggest an aggregative pattern for kindergartens, the H-function does not exhibit an upward
trend at a large scale because the aggregative scale of kindergartens is too small to be identified in the
H-function at a large scale due to the relatively high density of POIs in the area. The H-functions also
indicate certain repulsive clustering patterns for KFC, McDonalds, and shopping mall POIs, whereas
the A indices reflect aggregative clustering patterns for KFC and shopping malls. Thus, mixed patterns
are observed for KFC and shopping mall POIs and a repulsive pattern is observed for McDonalds.
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Figure 12. H-functions of different types of POIs. The aggregative clustering patterns shown are
for 7-Elevens and Starbucks. The repulsive clustering patterns shown are for KFC, McDonalds,
and shopping malls.

Here, we focus on types of POIs with repulsive clustering patterns (KFC, McDonalds, and shopping
mall POIs). Because the local valleys of these three types of POIs are very close, the unified repulsive
distance is set to 1 km for all three types of POIs for comparison. Similarly, a unified value of eps for
detecting clusters is set to 2.1 km based on the method detailed in Section 2.2.3. The identified results
are as follows.

Figure 13a shows the KFC distribution in the fifth ring of Beijing and the population density of
each background block. This figure shows three types of shops in the study area that represent repulsive
clusters, aggregative points, and repulsive noise. Five repulsive clusters can be seen in the study
area, each of which serves a specific area. These clusters are mainly distributed in densely populated
areas. The blue cluster distributed in the fourth ring in the northwest serves several blocks in Haidian
District, including the Haidian block, Shuguang block, Zizhuyuan block, Beixiaguan block, Exhibition
Road block, among others. The orange cluster and green cluster are distributed in the eastern and
northeastern areas, respectively, serve blocks in the Chaoyang District within the fifth ring. The orange



ISPRS Int. J. Geo-Inf. 2019, 8, 326 12 of 16

cluster covers several blocks, including the Xiaoguan block, Hepingjie block, and Xiangheyuan block,
and the green cluster covers the Sanlitun block, Hujialou block, Tuanjiehu block, Liulitun block, among
others. These two clusters are separated by Jingmi Road, which is the main road leading to the airport.
The yellow cluster distributed between the fourth ring and the fifth ring in the southwest serve parts of
Fengtai District and Shijingshan District in the fifth ring, including the Lugouqiao block, Fengtai block,
Babaoshan block, and Lugu block. The red cluster distributed between the second ring and fourth ring
mainly serves blocks in parts of Dongcheng District and Fengtai District, including the Guanganmen
outer block, Baizhifang block, Youanmen block and Majiapu block. The aggregative shops are mainly
distributed within the second ring and in population hotspot areas, such as Zhongguancun, the Beijing
West Railway Station area, and the Beijing South Railway Station area. This pattern may be observed
because many places within the second ring restrict development and shops can only be located in
certain areas. Additionally, transportation hubs, such as the Beijing West Railway Station and Beijing
South Railway Station, need more shops to meet the needs of a large number of people. Other shops
associated with repulsive noise are mainly distributed outside the southern fourth ring, where the
population is relatively small.

Table 2. Distribution pattern for different types of POIs.

POI Types Number of Points H-function Clark and Evan’s A Clustering Patterns

7-Elevens 195 uptrend 0.63 *** Aggregative
KFC 200 d = 0.9 km 0.94 * Mixed

McDonalds 156 d = 1 km 0.99 Repulsive
Starbucks 191 uptrend 0.62 *** Aggregative

Gas Stations 260 - 1.04 -
Shopping Malls 128 d = 1.05 km 0.80 *** Mixed
Kindergartens 830 - 0.88 *** Aggregative

Parks 216 - 0.99 -

*** Significant at 0.001; ** significant at 0.01; and * significant at 0.1.
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The McDonalds distribution is similar to that of KFC, as seen in Figure 13b. There are six repulsive
clusters distributed in the study area, each of which serves several densely populated areas. Shops in
the northern part of the study area include two repulsive green clusters that serve the northeastern
portion of Haidian District and blue clusters that serve part of Chaoyang District. The yellow cluster
and orange cluster distributed in the west third ring and west fifth ring, respectively, serve blocks in



ISPRS Int. J. Geo-Inf. 2019, 8, 326 14 of 16

the southern part of Haidian District and western part of Xicheng District, including the Tiancun Road
block, Yongding Road block, Ganjiakou block, Yangfangdian block, Yuetan block and Exhibition Road
block. The remaining two repulsive clusters of McDonalds shops are distributed in the southwestern
part of the fourth ring in Fengtai District and the southeastern part of the fourth ring in Chaoyang
District. These two clusters serve relatively small populations and areas. The aggregative McDonalds
shops are distributed in Dongcheng District and at the same traffic hubs as KFC. In addition, there
are many aggregative McDonalds shops distributed in Sanlitun and Chaoyang Park in the eastern
third ring. The reason for this pattern may be similar to that for KFC. The repulsive noise points
are dispensed in the fringe areas of the fifth ring, such as in Sijiqing Town in the northeastern fifth
ring, the Nanyuan block and Dahongmen block in the southern fifth ring and the Pingfang block and
Gaobeidian block in the eastern fifth ring.

The distribution of shopping malls exhibits a different pattern, and most of the shops exhibit an
aggregative pattern. Figure 13c shows only two repulsive clusters distributed in the study area. One
cluster is around the west third ring and serves the Yongding Road block and Wanshou Road block;
the other is distributed in the northeast fourth ring and serves the Maizidian block. The aggregative
shops are dominant in the central area, including the Zhongguancun block, Olympic Village block,
Datun block, Jinrong Street block, Donghuamen block, and Chaowai block. The remaining repulsive
noise shops are dispersed in the southern part of the study area, largely because the main business
districts are concentrated in the northern and central parts of Beijing, and many sellers are centrally
located in prime locations for competition. In this situation, the repulsive clusters of shopping malls
identified in the study serve local residents instead of dominating the market.

5. Conclusions

In this study, a method is proposed to identify repulsive clusters in complex point processes and
solve the decomposition problem in complex point processes with different heterogeneous components,
including both repulsive clusters and aggregative clusters. Repulsive clusters, which are not considered
in traditional point processes, consist of repulsive points that are separated by a certain distance at
small scales and aggregated at large scales simultaneously. To illustrate the validity of the proposed
method, the approach was tested in three simulation experiments and applied to identify the repulsive
patterns of different types of POIs in Beijing. The identification rate in the simulation experiments
reflected a satisfactory result, and the repulsive clusters of KFC, McDonalds, and shopping mall POIs
also exhibited meaningful results that represent the service characteristics of shops in different regions.

The proposed framework provides a new point anomaly method for point processes and a solution
for the decomposition of complex point processes with heterogeneous components. This approach may
be useful in many applications for analyzing complex geographical phenomena. However, the method
has some limitations. Notably, the repulsive clusters to be identified must be significant, which means
that the size of a cluster should be sufficiently large and the repulsive distance should be sufficiently
long. Otherwise, the H-function cannot accurately indicate the repulsive distance or there may be
too much noise remaining to identify a target precisely. Future work may explore additional spatial
characteristics of repulsive clusters and new indices to determine the existence of less significant
repulsive clusters. Moreover, the method should be expanded to different applications, such as the
identification of local service networks of public resources or the discovery of the local characteristics
of competition.
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