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Abstract: Buildings are fundamental components of cities. Understanding the function of buildings is
therefore of great importance for urban development and management. Some studies have identified
building functions using spatiotemporal data, which assumes that buildings with the same function
have similar temporal activity patterns. However, these methods present difficulties in coping with
the situation when buildings with the same function have heterogeneous activity patterns. To solve
this problem, this research proposes a new method to identify building functions from the perspective
of the spatial distribution and spatial interactions of human activities. First, taxi data were used to
acquire the spatiotemporal interaction characteristics among buildings with different functions. Then,
the spatiotemporal population density distribution was adopted to depict the building vitality. Finally,
an iterative clustering method was introduced to identify the building functions. The proposed
scheme was applied in the Haizhu district of Guangzhou and compared with the traditional method.
The results prove that the spatial interaction characteristics are more helpful than the temporal
variation characteristics and therefore can be used to improve the accuracy of building function
identification. A higher accuracy for identifying building functions can be realized by combining
the spatiotemporal interactions and building vitality characteristics. The overall accuracy reaches
0.8566, with a Kappa coefficient of 0.8174, which are both better than the results of using a single
characteristic only.

Keywords: building function; spatiotemporal interaction; building vitality; iterative clustering

1. Introduction

Buildings are fundamental structural elements of the urban physical space and serve many
functions with respect to human living, working, and recreation. Associated with the physical space
of a building, the various functions form a functional space of the building, which directly affects
the movement of people, goods, and information, and further involves the interaction of urban
flows. Obtaining the spatial distribution of buildings and identifying their functions can enhance the
understanding of various temporal and spatial behavior patterns and assist in analyzing complex
urban functional structures as well as their changes. This not only provides key data to support high
spatiotemporal resolution population estimates and risk assessment, but also serves as an important
basis for urban economic development planning and urban management.

Due to the development of high spatial resolution remote sensing and light detection and
ranging (LiDAR) technology, research on building 3D information extraction and reconstruction
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has made significant advancements [1,2]. However, building classification, especially building
function classification, has made much slower progress. The standards for building classification
can be summarized from the physical materials and forms and their functions. The existing remote
sensing-based building classification studies mainly classify buildings as brick-wood, brick-concrete
or multistory-/high-rise buildings based on their physical characteristics, such as the load-bearing
structural materials and building sizes. Traditional studies use the spectral, textural and shape
features derived from medium- or high-resolution remote sensing images and further combine
the landscape attributes to obtain the building type information [3–6]. LiDAR images were also
utilized to identify the related building types by considering their three-dimensional information
characteristics [7–9]. Some scholars overcame the limitation of using a single remote sensing image
and proposed comprehensive building classification schemes based on multisource remote sensing
data, including multispectral remote sensing images, LiDAR data, and nighttime lighting data [10–14].

The above-mentioned studies demonstrate the potential of using high spatial resolution remote
sensing data and LiDAR images to capture the apparent physical characteristics, such as the building
morphology and structure, but also expose the shortcomings in identifying the building function.
The main reason is that the apparent physical characteristics of buildings are usually not highly relevant
to the building function, especially for buildings with complex shapes, materials, and neighboring
land uses. In addition, the apparent forms of buildings are relatively fixed, but their functions may
change as people alter the usage of the buildings [15].

The function of a building is often closely related to human activities. Therefore, it can be inferred
from the characteristics of human activity. In recent years, multisource spatiotemporal big data, such
as mobile phone data, taxi trajectory data, and social media check-in data, have emerged. These data
record people’s spatiotemporal activity position information and have shown unique advantages
and potential in researching human activities, urban functional regions, regional structures and land
uses [16–22]. Some scholars have also tried to use these human time-series position data to infer the
building functions. Chen et al. [23] assumed that the social media activities in buildings with similar
functions have similar spatiotemporal patterns and applied a cluster-based method to identify urban
building functions. Niu et al. extracted the peak activity characteristics from taxi global positioning
system (GPS) trajectory data and real-time Tencent user density data for each type of building by
analyzing the building training samples, and then combined such characteristics with the density-based
spatial clustering of applications with noise (DBSCAN) and spatial point density methods to infer
the functions of the buildings [24]. Moreover, the peak activity characteristics of different functional
buildings were also utilized to analyze the mixed functions of buildings by using a probabilistic
model [25]. Zhong et al. [15] combined survey data and smart card data to deduce the purpose of
people’s daily activities using the probabilistic Bayesian model and then inferred the building functions
by linking the daily activities to the buildings. Their method was successfully applied in two areas
of Singapore. In these studies, the spatiotemporal characteristics of the human activities related to
different building functions are revealed, for instance, people mainly flow to office buildings, schools
and other workspaces during the day and return to residential buildings at night, and such insights
have been used to identify the building functions. Such research usually assumes that buildings of
the same function share similar temporal human activity curves, i.e., the daily variation curve of the
number of people in the building. However, similarly to the spectral heterogeneity found in remote
sensing images, buildings with the same function often have heterogeneous temporal activity curves.
Therefore, how to solve the synonymous activity curve phenomenon becomes the key to further
improve the accuracy of identifying the building functions.

In an urban network, the spatially discrete buildings are connected by the spatiotemporal activities
of humans [26], and their functions are updated and refined in the network, which further promotes
the evolution of the city [27]. That means that the buildings are not isolated in urban space; instead,
they interact with each other with different strengths and directions through the connection of crowd
activities. Differences between the intensity and direction of the spatial interaction are closely related to
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the functions of the building. Therefore, considering the spatial interaction among buildings can help
overcome the limitations of using only the spatiotemporal population density characteristics, solve the
heterogeneous temporal activity curve problem and finally improve the accuracy of identifying the
building functions. Unfortunately, detailed spatial interaction is usually ignored in existing studies of
identifying the building functions.

Human activities and building functions have mutual effects on each other. Specifically, building
functions may determine people’s travel characteristics to a certain extent. Many existing studies
were inspired by this and utilized the spatiotemporal variations in human activity density to infer
building functions. On the other hand, the characteristics of human movement between buildings may
also reflect the spatial distribution of different functional buildings and their connection. However,
previous studies have mainly focused on quantifying the spatial interaction at the parcel scale through
individual mobility data, and the application is generally limited to urban spatial structure and land
use classification.

With the above background, this study explored the application of the spatial interaction at the
building scale, and proposed a new scheme for building function identification based on the integration
of both the spatial distribution and spatial interaction characteristics. Specifically, the taxi GPS trajectory
data were used to construct the spatiotemporal interactions among different functional buildings,
and the real-time Tencent user density data were used to depict the spatiotemporal distribution
characteristics of the building vitality. The rest of the paper is organized as follows: The study area
and data sources are introduced in Section 2; the methods are described in Section 3, and the results
are presented in Section 4 followed by a discussion and conclusions.

2. Study Area and Data

The Haizhu district is selected as our study area (Figure 1). As one of the oldest districts in
Guangzhou, China, Haizhu covers an area of 102 km2 and has a residential population of 1,613,900 in
2015 (Bureau of Statistics of Guangzhou 2015, http://www.gzstats.gov.cn/tjgb/qstjgb/). This district
has a complex urban structure and contains many types of buildings, including residential buildings,
businesses, schools, hospitals, and urban villages, which refer to villages that appear in both the
outskirts and the downtown segments of major Chinese cities, including Shenzhen and Guangzhou.
In the past, it used to be an industrial area, but now, after continuous development and planning, it has
gradually entered the Silicon Valley era. The rapid development of the regional economy and the
government planning of urban construction have made the forms and functions of the buildings in the
region more diverse.

Three different datasets, including taxi GPS trajectory data, real-time Tencent user density data,
and building footprints in Haizhu, were used in this research.

The taxi GPS trajectory data record the position, time and status information of a taxi in real time,
and can be processed to obtain the passengers’ time and the geographic locations of the pick-up or
drop-off points, which can be used to represent the relationship between the origin and destination to a
certain extent. According to the 2014 Guangzhou Transportation Development Annual Report, the daily
average number of taxi passengers in Guangzhou was approximately 2.16 million, accounting for
14% of the passengers using public transportation (railway, conventional bus, and taxi). This number
indicates that taxis play an important role in the urban traffic of Guangzhou. Therefore, this study uses
the taxi GPS trajectory data to extract the spatiotemporal interactions among the buildings from the
data generated by taxi passengers.

http://www.gzstats.gov.cn/tjgb/qstjgb/
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The taxi data used in the study was provided by Guangdong Ritu Wanfang Science & Technology
Co., Ltd, with a time range of one consecutive week, from January 1 to January 7, 2014, from 6:00 to
23:00 every day. The original trajectory records of each taxi were first sorted according to the record
time; then, the pick-up/drop-off records were selected for when the status of the taxi changed from
cruising to occupied, or the other way around. The records with pick-up or drop-off locations outside
the study area were excluded. After these preprocessing steps, attributes such as the latitude, longitude,
and time of the pick-up/drop-off, were obtained.

The real-time Tencent user density data record the number of smartphone users who use Tencent’s
real-time location service products every hour, such as Tencent QQ, WeChat, Tencent Maps, etc.
According to the Tencent WeChat data report, the number of monthly active users of WeChat reached
549 million in 2015. Thanks to its enormous user base, the Tencent data could serve as a representative
indicator of the real-time human activities in China. In this study, we therefore implement a web
crawler from ‘Easygo’ and collect the data from June 15 to June 21, 2015, to represent the dynamic
spatiotemporal distribution of humans in buildings. The data have a spatial resolution of 25 m and
a temporal resolution of one hour. Compared with traditional population census data, the Tencent
data have a much finer spatiotemporal resolution.

Moreover, based on the Baidu map platform, a total of 20,928 building footprints were obtained
as the basic unit in this research. All the datasets were preprocessed by coordinate transformation and
uniformly converted to the WGS-1984 geographic coordinate system.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 4 of 18 

 

as a representative indicator of the real-time human activities in China. In this study, we therefore 

implement a web crawler from ‘Easygo’ and collect the data from June 15 to June 21, 2015, to represent 

the dynamic spatiotemporal distribution of humans in buildings. The data have a spatial resolution 

of 25 m and a temporal resolution of one hour. Compared with traditional population census data, 

the Tencent data have a much finer spatiotemporal resolution.  

Moreover, based on the Baidu map platform, a total of 20,928 building footprints were obtained 

as the basic unit in this research. All the datasets were preprocessed by coordinate transformation 

and uniformly converted to the WGS-1984 geographic coordinate system. 

 

Figure 1. Location of the Haizhu case study area and its building footprints. 

3. Methodology 

3.1. Construction of the Spatial-Temporal Interaction Matrix of the Buildings 

The spatial interaction of human activities can be depicted on various scales. However, most of 

the existing studies focus on the subdistrict scale, while few of them have performed their analysis 

on the scale of the buildings. The interaction among buildings can be represented by the connecting 

human flow among the buildings. Since it is difficult to obtain people's trajectory from one building 

to other buildings, we used the taxi data to construct the spatiotemporal interaction matrix among 

the buildings. 

Usually, a taxi pick-up/drop-off occurs on a road, which is at a certain distance from the 

destination building. Therefore, it is first necessary to associate the pick-up/drop-off locations with 

the buildings. Existing studies have found that the maximum walking distance of taxi passengers is 

approximately 300 meters; hence, we used this as the distance from the passenger's pick-up/drop-off 

location to the destination building and set the building buffer radius parameter as 300 meters[28–

30], which is used to calculate the total number of pick-ups/drop-offs for the buildings within the 

range. 

By performing the above analysis, all the pick-ups and drop-offs were assigned to their 

corresponding buildings, whose footprints were used as the research units to construct the 

spatiotemporal interaction matrix, 𝐵𝑆
𝑡 , among all the buildings. Assuming that there are total N 

buildings in the study area and 𝐵𝑖,𝑗
𝑡  represents the outflows from building i to building j at time t (t∈

[1,2,⋯ ,24]，𝑖、𝑗 ∈ [1,2, … . 𝑁] ), the interaction matrix, 𝐵𝑠
𝑡 , among N buildings at t time can be 

expressed as in Equation (1). 

Figure 1. Location of the Haizhu case study area and its building footprints.

3. Methodology

3.1. Construction of the Spatial-Temporal Interaction Matrix of the Buildings

The spatial interaction of human activities can be depicted on various scales. However, most of
the existing studies focus on the subdistrict scale, while few of them have performed their analysis
on the scale of the buildings. The interaction among buildings can be represented by the connecting
human flow among the buildings. Since it is difficult to obtain people’s trajectory from one building
to other buildings, we used the taxi data to construct the spatiotemporal interaction matrix among
the buildings.

Usually, a taxi pick-up/drop-off occurs on a road, which is at a certain distance from the destination
building. Therefore, it is first necessary to associate the pick-up/drop-off locations with the buildings.
Existing studies have found that the maximum walking distance of taxi passengers is approximately
300 meters; hence, we used this as the distance from the passenger’s pick-up/drop-off location to the
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destination building and set the building buffer radius parameter as 300 meters [28–30], which is used
to calculate the total number of pick-ups/drop-offs for the buildings within the range.

By performing the above analysis, all the pick-ups and drop-offs were assigned to their
corresponding buildings, whose footprints were used as the research units to construct the
spatiotemporal interaction matrix, Bt

S, among all the buildings. Assuming that there are total N
buildings in the study area and Bt

i, j represents the outflows from building i to building j at time

t (t∈ [1, 2, · · · , 24], i, j ∈ [1, 2, . . . .N]), the interaction matrix, Bt
s, among N buildings at t time can be

expressed as in Equation (1).

Bt
S =


Bt

1,1 Bt
1,2 · · · Bt

1,N
Bt

2,1 Bt
2,2 · · · Bt

2,N
...

...
. . .

...
Bt

N,1 Bt
N,2 · · · Bt

N,N

 (1)

For the convenience of the following expression, we use Bt
i, =

[
Bt

i,1 , Bt
i,2 , · · · , Bt

i,N

]
to represent

the outflows from building i to other buildings at time t and Bt
, j =

[
Bt

1, j , Bt
2, j , · · · , Bt

N, j

]
as the inflows

from other buildings to building j at time t.
The matrix Bt

s describes the interactions among the buildings in detail. To further express the
interaction characteristics among different functional buildings, we constructed the spatiotemporal
interaction matrix among different functional buildings based on Equation (1), which is denoted as
Bt

F. We assumed that there were K types of building functions in the study area. Then, the interaction
matrix among N buildings with K functions at time t was constructed as Equation (2).

Bt
F =


B1,t

1, · · · BK,t
1,

...
. . .

...
B1,t

N, · · · BK,t
N,

B1,t
,1 · · · BK,t

,1
...

. . .
...

B1,t
,N · · · BK,t

,N

 (2)

where n ∈ [1, 2, . . . .N], k ∈ [1, 2, · · · , K]. Bk,t
i, represents the outflows from building i to other buildings

with function k at time t, while Bk,t
,i represents the inflows of other buildings with function k into

building i at time t.
Considering the interactions of different functional buildings over 24 h a day, the spatiotemporal

interaction matrix, BF, can be constructed and expressed using Equation (3).

BF =


B1

1, · · · BK
1,

...
. . .

...
B1

N, · · · BK
N,

B1
,1 · · · BK

,1
...

. . .
...

B1
,N · · · BK

,N

 (3)

where Bk
i, =

(
Bk,1

i, , · · · , Bk,24
i,

)
, Bk

,i =
(

Bk,1
,i , · · · , Bk,24

,i

)
.

For the convenience of comparison, we used the z-score normalization algorithm to normalize the
Bk

i, and Bk
,i vectors in Equation (3) according to Equations (4) and (5).

Bknorm
i, =

Bk,1
i, − µ

k
i,

σk
i,

, · · · ,
Bk,24

i, − µk
i,

σk
i,

 (4)

Bknorm
,i =

Bk,1
,i − µ

k
,i

σk
,i

, · · · ,
Bk,24

,i − µk
,i

σk
,i

 (5)
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where µk
i, =

∑ 24
t=1Bk,t

i, /24, σk
i, =

√∑ 24
t=1

(
Bk,t

i,1 − µ
k
i,

)2
/23 , µk

,i =
∑ 24

t=1Bk,t
,i /24 and σk

,i =√∑ 24
t=1

(
Bk,t

,i − µ
k
,i

)2
/23.

3.2. Spatiotemporal Distribution Characteristics of Building Vitality

Montgomery [31] defined urban vitality as the number of people in and around the street across
different times of the day and the process of human activity at different spatial scales, and it generally
depicts the extent to which a place feels alive or lively. Yang et al. [32] used the numbers of mobile
phone users in a 24-h period as the measuring index for the vitality of urban communities. The real-time
Tencent user density data have a fine spatiotemporal resolution and are similar to cell phone data in
their potential for characterizing population activity. Therefore, we took the opportunity to characterize
the building vitality in the study area, where a higher user density indicates a stronger vitality.

If Bt
n is used to represent the real-time Tencent user density value of a building at time t, the vitality

spatiotemporal distribution characteristics of the total N buildings in the study area, BD, can be
expressed as follows:

BD =


B1

1 · · · B24
1

...
. . .

...
B1

N · · · B24
N

 (6)

Similarly, z-score normalization was performed for the vitality spatiotemporal distribution
characteristics of each building.

3.3. Identifying the Building Functions

The construction of a spatiotemporal interaction matrix among different functional buildings
was based on the assumption that the building functions are known. However, in our research,
the building functions were unknown and needed to be identified. Since there are two unknown
interdependent variables, it is difficult to directly solve the bivariate problem using the conventional
clustering methods. Liu et al. [18] met a similar bivariate problem in their study of identifying urban
land uses, and they solved it by using the iterative clustering method, which is simple but effective.
In this study, we therefore used the iterative clustering method to cluster the buildings, but with
different features.

In the iterative clustering method, the parameter K is a predetermined number of clusters,
representing the total number of building functions in the study area. We first randomly initialized
each building’s function type and then extracted the spatiotemporal interaction of different functional
buildings and the spatiotemporal distribution characteristics of building vitality. After that, the buildings
were clustered and given a new function type based on the current characteristics. The extraction of the
characteristics and the clustering of the buildings were iteratively performed until the convergence
condition was reached, i.e., most of the building functions remained unchanged between two
consecutive iterations. A detailed flowchart is presented in Figure 2 to illustrate the proposed method,
which mainly includes the seven steps that are briefly described as follows:

(1) Defining the convergence threshold

The convergence threshold was used to define the condition for stopping the algorithm.
The iterative clustering method converged when the proportion of function-changed buildings
between two consecutive iterations was lower than a certain threshold. A small convergence threshold
value means that only a small fraction of buildings had a function change.
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(2) Determining the optimal number of clusters, K

In this study, we combined the iterative convergence stability analysis with clustering effectiveness
evaluation indicators to determine the optimal K value by performing iterative clustering algorithms
with different K values. The iterative convergence stability analysis was performed to determine
whether the convergence was fast and stable. Theoretically, with an optimal number of clusters,
the proportion of function-changed buildings should decrease rapidly and be close to the convergence
threshold after a small number of iterations. The Davies-Bouldin index (DB) [33] was adopted to
evaluate the clustering effect (as shown in Equation (7)). The DB indicator describes the intraclass
divergence of the sample and the distances among the cluster centers [33]. Smaller DB values indicate
that there is less similarity among the classes, hence better clustering results.

(3) Initialize the K parameter randomly

The iterative clustering method began to run after K building function types were randomly
initialized for each building.

(4) Extracting the spatiotemporal interaction and distribution characteristics

According to Equation (3), the spatiotemporal interaction characteristics among different
functional buildings were calculated with the current K parameter, and each building had an updated
spatiotemporal interaction characteristic. In addition, the spatiotemporal distribution characteristics of
building vitality were extracted by Equation (6).

(5) Clustering buildings

Based on the present spatiotemporal interaction characteristics and the distribution characteristics
of building vitality, the k-means clustering algorithm was used to cluster the buildings into K types,
and the function of every building was assigned an updated value.

(6) The iterative process

The function of each building was updated in Step (5). The iteration Step (4) and the new
characteristics of the spatiotemporal interaction and distribution were computed with the updated K
value, and the buildings were clustered with the new characteristics according to Step (5). This process
can be summarized as follows: Steps (4) and (5) above were repeated until the clustering result reached
the convergence condition or the maximum number of iterations was reached.

(7) Identifying the building functions

By interpreting the temporal variation characteristics of the flows for every functional building
and referring to the Baidu street view map information, the building functions were assigned to
each cluster.

DB(K) =
1
K

K∑
i=1

max
j,i

(Wi + Wj

Cij

)
(7)

where K denotes the number of clusters, Wi is the average distance of all the samples in class Ci to its
cluster center and represents the dispersion degree of cluste Ci, C j is the average distance from all the
samples in class Ci to the center of class C j, and Ci j refers to the center distance between class Ci and
class C j.
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3.4. Performance Assessment

We divided the study area into grids of 500 m × 500 m and 1 km × 1 km and then calculated
the identification rate and accuracy rate for the identified building functions at these two different
spatial scales by randomly selecting gird samples. The identification rate is defined as the proportion
of the identified buildings to the total number of buildings in the study area, while the accuracy rate is
defined as the proportion of correctly identified buildings to the total number of identified buildings.

In addition, the identified building function results of the sample areas at different spatial scales
were further used to construct the confusion matrix by referring to the method for evaluating the
accuracy of remote sensing image classification. Two indices, namely the overall accuracy (OA)
and Kappa coefficient, were calculated for quantitatively evaluating the accuracy of identifying the
building function.

4. Results

4.1. Clustering Results Based on the Spatiotemporal Interactions and Building Vitality Characteristics

Using the methods described in Section 3, we calculated the spatiotemporal interaction and
building vitality characteristics of 20,928 buildings in the study area, based on the preprocessed taxi
GPS trajectory data and real-time Tencent user density data. A buffer distance of 300 meters and
a convergence threshold of 0.1% were used in the experiments. An optimal cluster value of 6 was
found through repeated experiments, which will be analyzed in detail in Section 5.1. In order to avoid
the possible local optimum dilemma and ensure the reliability of the results, the k-means clustering
algorithm was run 100 times while the experiment was repeated 50 times. The building function
classification was then determined as the most frequent class. The building function identification
results derived from the three different characteristic combinations, i.e., spatiotemporal interaction
characteristics and building vitality distribution characteristics or using either one or the other of these
two characteristics, are shown in Figure 3.

Based on the clustering results, we calculated the average population inflow/outflow of each
cluster over time, as well as the temporal variation of the population density for each cluster type,
which was reflected by the real-time Tencent user density. The red curves in Figure 3 represent the
ratios of the building outflow to the total outflow during the same period for the different building
types. The blue curves represent the ratios of the inflows over time. The orange curves represent
the ratios of different building types’ populations to the total population at a specific time. Note that
cluster 6 is defined as an “unclassified building” since there is no taxi data nearby; hence, no further
analysis was performed.
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Figure 3. Spatial distribution of six building function clusters based on the different characteristics in the
proposed scheme. (A) Clustering results derived by combining the spatiotemporal interactions among
the buildings and the building vitality characteristics. (B) Clustering results based on spatiotemporal
interaction characteristics only. (C) Clustering results based on building vitality characteristics only
and (D) Clustering results obtained from the traditional method.
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4.2. Results of Building Function Identification

Referring to Shenzhen’s standardized guiding technical document for building function
classification (SZDS/Z 26-2010), the clusters are labeled with corresponding functions based on
their temporal variation characteristics of the population inflow/outflow (Figure 4). The Baidu Map
street view was also used to provide additional information on these clusters. Cluster 1 buildings are
mostly located in areas used for medical, educational, cultural or recreational services, such as the
Guangzhou Red Cross Hospital, Sun Yat-sen University, and Guangzhou International Convention
and Exhibition Center, and are therefore labeled “public facilities”. The inflow peaks of cluster 1 are
8 A.M. and 2 P.M., which are consistent with the daily activities of such buildings, e.g., going to school,
visiting doctors or going to work. In the meantime, the population density of cluster 1 is the lowest,
thanks to the small number of people engaging in such activities. Clusters 2 and 3 have similar patterns
in terms of the population change; both having a larger outflow in the morning and a larger inflow in
the evening. This is consistent with the daily activities of residential areas, i.e., leaving home in the
morning and returning home in the evening.
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Figure 4. The temporal variation characteristics of the population inflow/outflow and population
density in different building function clusters.

With the help of Baidu Map’s street view, we labeled cluster 2 as “multistore residential
buildings”, which usually have fewer than seven stores and are distributed in high-density communities.
Cluster 3 was labeled “high-rise residential buildings”, which are mainly distributed in low-density
neighborhoods. The buildings of cluster 4 are mainly distributed along two subway lines, Guangzhou
Metro Lines 2 and 8, which cover several central business districts, such as the Jiangnanxi business
hub, Second Workers’ Cultural Palace business hub, and the Kecun business hub. These are areas
where people in the Haizhu District would go for shopping, dining, accommodations and working,
which corresponds well with the inflow and outflow trend of the people in cluster 4. Cluster 4 was
therefore labeled “business and service buildings”. For cluster 5, we found that most of the buildings
are located in urban villages, such as Shixi Village, Lijiao Village, Xiaozhou Village, and Fenghe Village.
The temporal variation of the population density in cluster 5 is also similar to that of clusters 2 and 3.
However, the inflow/outflow rate of cluster 5 is the smallest of all the clusters, as shown in Figure 3.
There are two possible reasons for this. First, people living in urban villages seldom use taxis for
transportation. Second, the roads inside urban villages are usually very narrow, making it impossible
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or inconvenient for taxis to pass through such areas. The functions of some specific buildings, derived
through iterative clustering, are listed in Table 1.

Table 1. Building function identification results.

Cluster Building Functions Examples

1 Public Facilities (PF)

Guangdong 2nd Provincial People’s Hospital, Guangzhou Red
Cross Hospital, Guangzhou NO.5 Middle School, Sun Yat-sen

University, Baogang Stadium, Guangzhou International Convention
and Exhibition Center

2 Multistore
Residential Buildings (MR)

Tongqing Community, Desheng Community, Nanyuan Community,
Zhoutouzui Community, Houde Community

3 High-rise Residential Buildings
(HR)

Haichenghuayuan, Binjiang Garden, Haizhu Peninsula Garden,
Jinyayuan, Chigangdong Community

4 Business and Service Buildings
(BS)

R&F Haizhucheng, Guangzhou Modern Sea Shopping Department,
Huaxia Building, Wedding square, Haiyi Shopping Plaza, Acer

Building, Chuangzhi Freeport, Tianyi Hotel

5 Urban Village
(UV)

Fenghe Village, Beishan Village, Luntou Village, Xiaozhou Village,
Tuhua Village, Hongwei Village, Shixi Village, Lijiao Village

6 Unclassified Buildings
(UB)

4.3. Performance Assessment and Comparative Analysis

As described in Section 4.2, buildings of different functions in the study area are marked with
different colors (Figure 3). Overall, the function of 83.3% of the buildings in the Haizhu District was
identified, leaving 16.7%, i.e., 3495, of the buildings unidentified. To verify the accuracy rate of building
function identification, we randomly selected a series of sample areas under two different spatial scales
and used satellite imagery, a street view map from Baidu, and information from field trips to determine
the actual building functions in the sample area. As shown in Table 2, we compared the function
identification results of the buildings in the sample areas with the actual functions. The results show
that the method proposed in this study achieved high accuracy rates (between 81.76% and 87.44%)
under the two different spatial scales. Furthermore, we used a confusion matrix to compare the actual
identification rate of each type of building function. It can be learned from Table 3 that in experiment
A, which combines both the spatiotemporal interaction characteristics among the buildings and the
building vitality characteristics, has an average OA of 85.66% and an average Kappa of 0.8174. As seen
in Figure 5, an identification accuracy rate close to or exceeding 80% was achieved in experiment A.
The identification of urban village buildings is the most accurate, while the identification of business
and service buildings is slightly lower than 80%.

The proposed scheme of identifying the building function is compared with a traditional method
proposed by Chen et al. [23], which assumed that the human activities in buildings with similar functions
have similar spatiotemporal patterns. Their method consists mainly of three steps. The spatiotemporal
distribution characteristics of the human activity in each building are first extracted based on the
real-time Tencent user density data; then, the dynamic time warping distance-based k-medoids method
is applied to group the buildings; finally, the buildings are labeled with different functions. In this
experiment, we used not only the spatiotemporal characteristic of the human activity extracted from
the real-time Tencent user density data but also the spatiotemporal density distribution characteristics
reflected by the taxi trajectory data, which represents the temporal variation of the pick-ups and
drop-offs associated with each building. The corresponding identification results are shown in
Figure 3D. Overall, the inferred building functions from the two different methods differ greatly in the
PF, HR and UV types. Table 4 shows the function identification accuracy of the traditional method.
The accuracy rates vary under different spatial scales and are consistently lower than those of the
proposed scheme. Moreover, from the results of the four sample areas, it can be seen clearly that PF
buildings are misclassified into UV, and some MR buildings are misidentified as HR. Based on the
above analysis, it can be concluded that the proposed scheme for building function identification is
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superior to the traditional method. The results also indicate that the spatial interaction of the human
activities reflected by the taxi trajectory data is more useful in identifying building functions than the
human spatiotemporal distribution characteristics reflected by the same data.

Table 2. The accuracy rate of identifying buildings at different spatial scales from the proposed scheme.

Spatial
Scale

Sample
Identification

Number of
Buildings

Number of
Unidentified

Buildings

Number of Correctly
Identified buildings

Identification
Rate

Accuracy
Rate

500 m*500 m

ISPRS Int. J. Geo‐Inf. 2019, 8, x FOR PEER REVIEW  12  of  18 

 

functions have  similar  spatiotemporal patterns. Their method  consists mainly of  three  steps. The 

spatiotemporal distribution characteristics of the human activity in each building are first extracted 

based on the real‐time Tencent user density data; then, the dynamic time warping distance‐based k‐

medoids method is applied to group the buildings; finally, the buildings are labeled with different 

functions.  In  this  experiment, we  used  not  only  the  spatiotemporal  characteristic  of  the  human 

activity extracted from the real‐time Tencent user density data but also the spatiotemporal density 

distribution  characteristics  reflected  by  the  taxi  trajectory  data,  which  represents  the  temporal 

variation  of  the  pick‐ups  and  drop‐offs  associated  with  each  building.  The  corresponding 

identification results are shown in Figure 3 (D). Overall, the inferred building functions from the two 

different methods differ greatly in the PF, HR and UV types. Table 4 shows the function identification 

accuracy of  the  traditional method. The accuracy rates vary under different spatial scales and are 

consistently lower than those of the proposed scheme. Moreover, from the results of the four sample 

areas, it can be seen clearly that PF buildings are misclassified into UV, and some MR buildings are 

misidentified as HR. Based on the above analysis, it can be concluded that the proposed scheme for 

building function identification is superior to the traditional method. The results also indicate that 

the spatial interaction of the human activities reflected by the taxi trajectory data is more useful in 

identifying building functions than the human spatiotemporal distribution characteristics reflected 

by the same data.   

Table  2. The  accuracy  rate  of  identifying  buildings  at different  spatial  scales  from  the proposed 

scheme. 

Spatial 

scale 

Sample 

identification 

Number of 

buildings 

Number of 

unidentified 

buildings 

Number of 

correctly 

identified 

buildings 

Identific

ation rate 

Accuracy 

rate 

500 m*500 

m 

170  11  130  0.9352  0.8176 

173  0  147  1  0.8497 

1 km*1 km 

520  13  438  0.975  0.8639 

207  0  181  1  0.8744 

Table 3. Overall building recognition rate based on different characteristics. 

Experiment 
Characteristics  Accuracy 

𝐁𝐅  𝐁𝐃  OA  Kappa  Identification rate 

A  √  √  0.8566  0.8174  0.8330 

B  √    0.7706  0.7094  0.8330 

C    √  0.3841  0.1940  0.9791 

Table 4. The accuracy rate of identifying buildings with different spatial scales using the traditional 

method. 

Spatial 

scale 

Samples 

identification 

Number of 

buildings 

Number of 

unidentified 

buildings 

Number of 

correctly 

identified 

buildings 

Identific

ation rate 

Accuracy 

rate 

170 11 130 0.9352 0.8176

ISPRS Int. J. Geo‐Inf. 2019, 8, x FOR PEER REVIEW  12  of  18 

 

functions have  similar  spatiotemporal patterns. Their method  consists mainly of  three  steps. The 

spatiotemporal distribution characteristics of the human activity in each building are first extracted 

based on the real‐time Tencent user density data; then, the dynamic time warping distance‐based k‐

medoids method is applied to group the buildings; finally, the buildings are labeled with different 

functions.  In  this  experiment, we  used  not  only  the  spatiotemporal  characteristic  of  the  human 

activity extracted from the real‐time Tencent user density data but also the spatiotemporal density 

distribution  characteristics  reflected  by  the  taxi  trajectory  data,  which  represents  the  temporal 

variation  of  the  pick‐ups  and  drop‐offs  associated  with  each  building.  The  corresponding 

identification results are shown in Figure 3 (D). Overall, the inferred building functions from the two 

different methods differ greatly in the PF, HR and UV types. Table 4 shows the function identification 

accuracy of  the  traditional method. The accuracy rates vary under different spatial scales and are 

consistently lower than those of the proposed scheme. Moreover, from the results of the four sample 

areas, it can be seen clearly that PF buildings are misclassified into UV, and some MR buildings are 

misidentified as HR. Based on the above analysis, it can be concluded that the proposed scheme for 

building function identification is superior to the traditional method. The results also indicate that 

the spatial interaction of the human activities reflected by the taxi trajectory data is more useful in 

identifying building functions than the human spatiotemporal distribution characteristics reflected 

by the same data.   

Table  2. The  accuracy  rate  of  identifying  buildings  at different  spatial  scales  from  the proposed 

scheme. 

Spatial 

scale 

Sample 

identification 

Number of 

buildings 

Number of 

unidentified 

buildings 

Number of 

correctly 

identified 

buildings 

Identific

ation rate 

Accuracy 

rate 

500 m*500 

m 

170  11  130  0.9352  0.8176 

173  0  147  1  0.8497 

1 km*1 km 

520  13  438  0.975  0.8639 

207  0  181  1  0.8744 

Table 3. Overall building recognition rate based on different characteristics. 

Experiment 
Characteristics  Accuracy 

𝐁𝐅  𝐁𝐃  OA  Kappa  Identification rate 

A  √  √  0.8566  0.8174  0.8330 

B  √    0.7706  0.7094  0.8330 

C    √  0.3841  0.1940  0.9791 

Table 4. The accuracy rate of identifying buildings with different spatial scales using the traditional 

method. 

Spatial 

scale 

Samples 

identification 

Number of 

buildings 

Number of 

unidentified 

buildings 

Number of 

correctly 

identified 

buildings 

Identific

ation rate 

Accuracy 

rate 

173 0 147 1 0.8497

1 km*1 km

ISPRS Int. J. Geo‐Inf. 2019, 8, x FOR PEER REVIEW  12  of  18 

 

functions have  similar  spatiotemporal patterns. Their method  consists mainly of  three  steps. The 

spatiotemporal distribution characteristics of the human activity in each building are first extracted 

based on the real‐time Tencent user density data; then, the dynamic time warping distance‐based k‐

medoids method is applied to group the buildings; finally, the buildings are labeled with different 

functions.  In  this  experiment, we  used  not  only  the  spatiotemporal  characteristic  of  the  human 

activity extracted from the real‐time Tencent user density data but also the spatiotemporal density 

distribution  characteristics  reflected  by  the  taxi  trajectory  data,  which  represents  the  temporal 

variation  of  the  pick‐ups  and  drop‐offs  associated  with  each  building.  The  corresponding 

identification results are shown in Figure 3 (D). Overall, the inferred building functions from the two 

different methods differ greatly in the PF, HR and UV types. Table 4 shows the function identification 

accuracy of  the  traditional method. The accuracy rates vary under different spatial scales and are 

consistently lower than those of the proposed scheme. Moreover, from the results of the four sample 

areas, it can be seen clearly that PF buildings are misclassified into UV, and some MR buildings are 

misidentified as HR. Based on the above analysis, it can be concluded that the proposed scheme for 

building function identification is superior to the traditional method. The results also indicate that 

the spatial interaction of the human activities reflected by the taxi trajectory data is more useful in 

identifying building functions than the human spatiotemporal distribution characteristics reflected 

by the same data.   

Table  2. The  accuracy  rate  of  identifying  buildings  at different  spatial  scales  from  the proposed 

scheme. 

Spatial 

scale 

Sample 

identification 

Number of 

buildings 

Number of 

unidentified 

buildings 

Number of 

correctly 

identified 

buildings 

Identific

ation rate 

Accuracy 

rate 

500 m*500 

m 

170  11  130  0.9352  0.8176 

173  0  147  1  0.8497 

1 km*1 km 

520  13  438  0.975  0.8639 

207  0  181  1  0.8744 

Table 3. Overall building recognition rate based on different characteristics. 

Experiment 
Characteristics  Accuracy 

𝐁𝐅  𝐁𝐃  OA  Kappa  Identification rate 

A  √  √  0.8566  0.8174  0.8330 

B  √    0.7706  0.7094  0.8330 

C    √  0.3841  0.1940  0.9791 

Table 4. The accuracy rate of identifying buildings with different spatial scales using the traditional 

method. 

Spatial 

scale 

Samples 

identification 

Number of 

buildings 

Number of 

unidentified 

buildings 

Number of 

correctly 

identified 

buildings 

Identific

ation rate 

Accuracy 

rate 

520 13 438 0.975 0.8639

ISPRS Int. J. Geo‐Inf. 2019, 8, x FOR PEER REVIEW  12  of  18 

 

functions have  similar  spatiotemporal patterns. Their method  consists mainly of  three  steps. The 

spatiotemporal distribution characteristics of the human activity in each building are first extracted 

based on the real‐time Tencent user density data; then, the dynamic time warping distance‐based k‐

medoids method is applied to group the buildings; finally, the buildings are labeled with different 

functions.  In  this  experiment, we  used  not  only  the  spatiotemporal  characteristic  of  the  human 

activity extracted from the real‐time Tencent user density data but also the spatiotemporal density 

distribution  characteristics  reflected  by  the  taxi  trajectory  data,  which  represents  the  temporal 

variation  of  the  pick‐ups  and  drop‐offs  associated  with  each  building.  The  corresponding 

identification results are shown in Figure 3 (D). Overall, the inferred building functions from the two 

different methods differ greatly in the PF, HR and UV types. Table 4 shows the function identification 

accuracy of  the  traditional method. The accuracy rates vary under different spatial scales and are 

consistently lower than those of the proposed scheme. Moreover, from the results of the four sample 

areas, it can be seen clearly that PF buildings are misclassified into UV, and some MR buildings are 

misidentified as HR. Based on the above analysis, it can be concluded that the proposed scheme for 

building function identification is superior to the traditional method. The results also indicate that 

the spatial interaction of the human activities reflected by the taxi trajectory data is more useful in 

identifying building functions than the human spatiotemporal distribution characteristics reflected 

by the same data.   

Table  2. The  accuracy  rate  of  identifying  buildings  at different  spatial  scales  from  the proposed 

scheme. 

Spatial 

scale 

Sample 

identification 

Number of 

buildings 

Number of 

unidentified 

buildings 

Number of 

correctly 

identified 

buildings 

Identific

ation rate 

Accuracy 

rate 

500 m*500 

m 

170  11  130  0.9352  0.8176 

173  0  147  1  0.8497 

1 km*1 km 

520  13  438  0.975  0.8639 

207  0  181  1  0.8744 

Table 3. Overall building recognition rate based on different characteristics. 

Experiment 
Characteristics  Accuracy 

𝐁𝐅  𝐁𝐃  OA  Kappa  Identification rate 

A  √  √  0.8566  0.8174  0.8330 

B  √    0.7706  0.7094  0.8330 

C    √  0.3841  0.1940  0.9791 

Table 4. The accuracy rate of identifying buildings with different spatial scales using the traditional 

method. 

Spatial 

scale 

Samples 

identification 

Number of 

buildings 

Number of 

unidentified 

buildings 

Number of 

correctly 

identified 

buildings 

Identific

ation rate 

Accuracy 

rate 

207 0 181 1 0.8744

Table 3. Overall building recognition rate based on different characteristics.

Experiment
Characteristics Accuracy

BF BD OA Kappa Identification Rate

A
√ √

0.8566 0.8174 0.8330
B

√
0.7706 0.7094 0.8330

C
√

0.3841 0.1940 0.9791

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 13 of 18 

 

500 m*500 

m 
 

170 11 100 0.9352 0.6289 

 

173 0 49 1 0.2832 

1 km*1 km 
 

520 13 210 0.975 0.4142 

 

207 0 34 1 0.1643 

 

Figure 5. Confusion matrix of the building function identification results. (A) Results derived by 

combining the spatiotemporal interactions among the buildings and the building vitality 

characteristics. (B) Results based on the spatiotemporal interaction characteristics only. (C) Results 

based on the building vitality characteristic only. 

5. Discussion 

5.1. Parameter Sensitivity Analysis 

In the iterative clustering algorithm, the number of clusters, K, determines the building function 

types in the study area. To find the optimal K value, we set the maximum number of iterations as 50 

and the convergence threshold as 0.001. By repeating the experiment with different K values (from 4 

to 10), we analyzed the proportion of changes in the building functions with the number of iterations. 

Figure 6(A) shows the relationships among the three parameters. When the K value is less than six, 

the curve tends to remain stable as the number of iterations increases. However, when the K value is 

greater than six, the proportion of changes in the building functions fluctuates. Furthermore, we 

calculate the DB indicator (Figure 6(B)). The larger DB values are distributed in clusters with K values 

greater than 6, indicating that values over six are not applicable to building clustering. The DB values 

for the curves of K=4, K=5 and K=6 are quite close. However, if we take the optimization goals, i.e., 

minimize the building function variation, a stable iterative convergence and an accurate building 

function identification, into consideration, it is obvious that six is the optimal K-cluster value. 

Figure 5. Confusion matrix of the building function identification results. (A) Results derived by
combining the spatiotemporal interactions among the buildings and the building vitality characteristics.
(B) Results based on the spatiotemporal interaction characteristics only. (C) Results based on the
building vitality characteristic only.



ISPRS Int. J. Geo-Inf. 2019, 8, 247 13 of 18

Table 4. The accuracy rate of identifying buildings with different spatial scales using the
traditional method.
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5. Discussion

5.1. Parameter Sensitivity Analysis

In the iterative clustering algorithm, the number of clusters, K, determines the building function
types in the study area. To find the optimal K value, we set the maximum number of iterations
as 50 and the convergence threshold as 0.001. By repeating the experiment with different K values
(from 4 to 10), we analyzed the proportion of changes in the building functions with the number of
iterations. Figure 6A shows the relationships among the three parameters. When the K value is less
than six, the curve tends to remain stable as the number of iterations increases. However, when the K
value is greater than six, the proportion of changes in the building functions fluctuates. Furthermore,
we calculate the DB indicator (Figure 6B). The larger DB values are distributed in clusters with K values
greater than 6, indicating that values over six are not applicable to building clustering. The DB values
for the curves of K = 4, K = 5 and K = 6 are quite close. However, if we take the optimization goals,
i.e., minimize the building function variation, a stable iterative convergence and an accurate building
function identification, into consideration, it is obvious that six is the optimal K-cluster value.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 14 of 18 
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5.2. Advantages of Combining the Spatiotemporal Interaction and Building Vitality Characteristics

Three sets of experiments were carried out to analyze the influences of different building
characteristics on the function identification, whose results are shown in Figure 3, Figure 5 and Table 3.
Figure 3 shows the building function identification results based on different characteristic combinations.
Table 3 shows the building function identification accuracy, while Figure 5 shows the confusion matrices
calculated for the three experiments. Table 3 indicates that the best identification accuracy can be
obtained by combining both the spatiotemporal interaction characteristics and the building vitality
characteristics. Figure 5 shows that the accuracy rate of building function identification can be improved
by incorporating the building vitality characteristics into the spatiotemporal interaction characteristics.

When using only the spatiotemporal interaction characteristics, the rates of correct identification
are quite low for public facilities, high-rise residential buildings and business and service buildings.
Some public facilities were misidentified as commercial services buildings or urban villages. Figure 7A
shows the enlarged #1 area in Figure 3A, which is the campus of Sun Yat-sen University. A large
proportion of the campus buildings were misidentified as urban villages. This may be caused by
the low density of the passengers getting on/off taxis on the campus. Compared to using only the
spatiotemporal interaction characteristics, the incorporation of the building vitality characteristics can
help effectively distinguish the public facilities from other building types (Figure 7B). The confusion
matrix can also be greatly improved. The accuracy rate of identifying public facilities increased from
0.7037 to 0.8235, thanks to the differences in their varied population distribution characteristics (as
shown in Figure 4 for cluster 1 and cluster 5). Similarly, the accuracy rate of identifying business and
service buildings was also significantly improved (0.5784 vs. 0.7829), although the improved rate is
slightly lower than those of other building types. This is probably caused by the “1st floor commerce”
model in some high-rise residential buildings. From Figure 5, we also find that the spatiotemporal
interaction characteristics present a great advantage in the identification of urban villages, with the
highest accuracy rate reaching more than 0.88. In this case, the incorporation of the building vitality
characteristics can only slightly improve the identification accuracy.

When considering only the spatiotemporal distribution characteristics of building vitality, 97.91%
of the buildings in the study area can be marked with the corresponding functional type. In contrast,
the accuracy rate for each function type is rather low when only the building vitality characteristic
is used. For example, the residential buildings, both multistore and high-rise, cannot be effectively
distinguished. Only 11.11% of the high-rise residential buildings can be correctly identified, while 55.6%
of these buildings are multistore residential buildings. Compared to other residential buildings, urban
villages can be easily identified. The accuracy rate of the business and service buildings, which is
only 0.2488, is mainly affected by the different types of residential buildings, especially the high-rise
residential buildings. Generally, the accuracy of identifying the building functions based only on
the building vitality characteristics is quite low. However, this may be due to the classification
system. We found that the optimal K-cluster value changes to three when using only the building
vitality characteristics. The corresponding three building function types are business/service buildings,
residential buildings and public facilities. Under this classification system, the OA can increase to
0.6321. These results indicate that the method using the building vitality characteristics only has a
relatively lower accuracy rate in identifying the detailed building functions, although it can identify
most of the buildings.

Using both the spatiotemporal interactions among the different functional buildings and the
building vitality characteristics, more detailed demographic information can be provided for the
identification of the building functions, thus improving the accuracy rates. However, there are still
some errors in the identification results, such as the #2 area in Figure 3A, which in fact is an industrial
site. This is mainly because we only considered the spatial interactions of people who use taxis,
which are not adequate to reveal all the interaction characteristics among all the buildings.
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5.3. Limitations of the Proposed Method

In this paper, the proposed scheme obtained a better accuracy rate in identifying the building
functions. Admittedly, there are still some limitations that should be considered in future studies. First,
the accuracy of identifying the building functions depends highly on the quantity of taxi GPS trajectory
data and real-time Tencent user density data. For example, the function of some buildings cannot be
determined due to the lack of taxi data in the neighboring areas; these buildings were categorized as
unclassified buildings. Secondly, taxis are not the most representative transport mode for certain trip
purposes. For example, educational trips may not be well represented by taxi trajectories. However,
the taxi trajectory data have one great advantage, the pick-up and drop-off locations can be easily
related to the source and destination buildings. For other transportation modes, such as buses or
metros, it would be rather difficult to do this because there may be a long distance between the
source/destination building and the bus station or metro station. Thirdly, there are certain peculiarities
in regard to both the Tencent data and the study area, which may limit the applicability of the proposed
scheme in other counties. According to the statistical reports on Internet development in China,
smartphone users account for approximately 59% of the total population in mainland China. For the
first-tier cities, i.e., Beijing, Shanghai, Guangzhou and Shenzhen, the ratio is definitely much higher.
The smartphone user group includes a certain percentage of low-income and elderly people due to the
availability of inexpensive smartphones and affordable telecom services. Moreover, most smartphone
users in China are also users of Tencent apps. These peculiarities make the Tencent data suitable for
representing the human spatiotemporal activities in the study area. However, the proposed scheme for
identifying the building functions may not apply well in regions without so many smartphone and
social media app users. Fourth, many buildings in cities have more than one function. The proposed
scheme can only identify one function for each building for now. Further research is still required to
solve this problem.

6. Conclusions

In big data-based urban geography research, the spatial distribution and spatial interactions of
human activities are considered two effective means to measure the similarity of urban land uses
and urban spatial structures. In this study, we explored the application of the spatial interaction
characteristics at the building-level scale and proposed a new method to identify the building
functions from the perspective of the spatial distribution and spatial interactions of human activities.
The spatiotemporal interaction characteristics among different functional buildings were extracted
from taxi trajectory data, while the spatiotemporal distribution characteristics of the population density
were extracted from real-time high spatiotemporal resolution Tencent user density data. Combining
both characteristics, the iterative clustering method was then introduced to identify the building
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functions. A case study was carried out in the Haizhu District of Guangzhou, which also includes
a comparison with traditional methods and an analysis of the different characteristics’ advantages
and disadvantages.

The following conclusions can be drawn from the analysis of the study results: (1) the spatial
interaction characteristics extracted from the taxi trajectory data could provide critical information from
the perspective of the spatial interactions of human activities among different functional buildings,
which is more useful than the spatiotemporal density distribution characteristics reflected by the
taxi trajectory data. (2) Coupling the spatiotemporal interactions with the distribution characteristics
of the building vitality and using the iterative clustering method proves to be an effective way of
identifying the building functions. Compared with using only one of the characteristics, the coupling
method can obtain the highest identification accuracy (OA = 0.8566, Kappa = 0.8174), which indicates
that the building characteristics from multiple sources can help to identify the building functions
more accurately. (3) When used solely, the spatiotemporal interaction characteristics can help to
produce more accurate building function classification results than the building vitality characteristics.
Identification of the urban village buildings has the highest accuracy rate of 0.8827, while the accuracy
rates for the other building types are slightly lower. (4) As much as 97.91% of the buildings can be
identified by using only the building vitality characteristics, but with very low accuracy, especially for
multistore and high-rise residential buildings. This indicates that the building vitality characteristics
are not effective enough to identify the building functions in a more detailed way. (5) The combination
of the spatiotemporal interactions and the building vitality characteristics can reduce the confusion
of identifying the public facilities, high-rise residential buildings and business and service buildings
effectively, thus improving the accuracy of identifying the different building function types.

The method proposed in this paper for identifying the building functions has great potential
for application. It can address the difficulty of identifying buildings with different functions but
similar temporal activity characteristics, and provide an objective way of determining the building
characteristics and an easy-to-use iterative clustering method. Future research may focus on obtaining
the daily activity characteristics of different groups from multisource spatiotemporal big data, such
as transportation smart card data, and the linkage between human activities and building functions.
The proposed scheme also requires further improvement to infer the mixed functions of buildings.
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