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Abstract: It is still a major challenge to select appropriate variables from remote sensing sensors,
which implicates finding reliable selection methods that can maximize the performance of chosen
variables in regression models. In this study, we compare the performance of stepwise variable
selection based on Akaike information criterion and an approach that integrates relative importance
techniques and the decomposition criteria of R2 using two different remote sensing data: SPOT-5
and RapidEye images, with the purpose of selecting suitable variables in multiple linear regression
models to estimate aboveground biomass. The obtained accuracy of the regression models was
evaluated by triple cross-validation. We carried out this study in a mixed pine–oak forest of central
Mexico where intensive wood extraction occurs and therefore different levels of degradation are
found. We estimated aboveground biomass from field inventory data at the plot level (n = 52) and
used well-established allometric equations. The results showed that a better fit was obtained with
the explanatory variables selected from the RapidEye image (R2 = 0.437 with stepwise variable
selection based on the Akaike information criterion approach and R2 = 0.420 with relative importance
techniques) and the approach that integrates the relative importance can generate better regression
models to estimate forest biomass with a reduced number of variables and less error in the estimates.

Keywords: rapideye; SPOT-5; linear regression model; mixed forests; cross validation

1. Introduction

Forest ecosystems are recognized as containing the largest proportion of air and underground
terrestrial biomass reserves [1,2]. Consequently, its estimation, the way in which it is distributed
spatially and its monitoring, is of fundamental importance for its application in bioenergy policies,
the sustainable management of forests, and in the global carbon cycle, in the context of global warming
and climate change [3,4]. The estimation of aboveground biomass (AGB) from satellite images has
been, to date, a practical option due to the increasing availability of satellite data and the need for less
costly, more efficient approaches with certain and reliable AGB estimation (i.e., validated) and it has
implications at different levels (global, regional, local) [5–7].

Several studies have been carried out to estimate AGB using satellite images with data sampled
in the field. Those studies can be roughly grouped into four groups: studies that combine spectral
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responses and image textures to improve the performance of AGB estimation [8–10]; studies with
adequate algorithms for estimating biomass at different scales [11–15]; studies using vegetation
stratification methods to improve the accuracy of AGB estimation [16,17]; and some other works that
use methods for the selection of the suitable predictive and explanatory variables of AGB [18–21].
These studies reflect the importance and efforts to design AGB estimation models with high
performance and accuracy. In addition, understanding and identifying the main uncertainties at
different stages of the biomass estimation and approaches to reduce these uncertainties are also
critical [22]. However, the methods for selecting suitable variables from satellite images and the
development of adequate estimation models for specific studies are still poorly understood [6].

The selection of variables in regression models has been an important factor that determines the
accuracy of AGB estimation from remote sensing imagery. There exists a great number of biophysical,
spectral and textural variables that can be retrieved from remote sensing data and associated with
fieldwork data to estimate AGB. For that reason, it is often a major challenge to select a few key variables
that are able to explain most variations in the regression models and render highly accurate AGB
estimations. Stepwise regression models have been used to select explanatory variables within ecology
and behavioral science [23]; this approach has also been widely used for AGB studies [20,21,24–27].
The stepwise selection methods are techniques that simplify models with the minimum number of
predictor variables that operate by successive addition or elimination of significant or non-significant
variables (forward selection and backward elimination, respectively), and those that operate by forward
selection and also check the previous term to see if it can be eliminated (stepwise regression) [23].
However, stepwise selection methods have weaknesses when variables that have weak correlations
are included and usually result in models that have too many variables, suffer collinearity, and have
an increase in the bias when selecting the best model or when they make inferences with small sample
sizes [28,29]. Other studies suggest using the Akaike information criterion (AIC) method to overcome
the weaknesses of the stepwise selection methods. Although the best model can be obtained with the
AIC method in terms of the associated likelihood and the number of estimated parameters, it has been
suggested to use the AIC weights to compare a set of biologically plausible and statistically sound
models, that is, those that have passed a rigorous diagnosis [30]. The stepwise method based on AIC,
can be easily managed and can be applied to generalized models, such as generalized linear models,
non-linear models and non-normal distribution data [31]. The relative importance analysis has been
used to measure the contribution of predicting variables in multiple regression models. Three methods
have been proposed to measure the relative importance: single-analysis methods, the multiple-analysis
model, and the variable transformation model [32]. In the variable transformation method, Johnson’s
relative weights [33] are advisable because they represent the proportional contribution of each
predictor to the model and consider both individual and combined effects of a predictor. In addition,
relative weights can be calculated much more quickly than other methods, for example, dominance
analysis is the only option available when the number of predictors is greater than fifteen [34].

In this sense, to measure the relative importance based on relative weights, the averaging
over orderings (LMG) proposed by Lindeman et al. [35] and then implemented by Chevan and
Sutherland [36], known as hierarchical partition, proposes the use of the sequential sum of squares
of the linear model and allows a global evaluation to be obtained by averaging all the orders of the
regressors. Additionally, a new method proposed by Feldman [37] introduces the “decomposition of
the proportional marginal variance (PMVD)” which is a weighted analogue of LMG. Grömping [38]
presented the R package ‘relaimpo’ that calculates the analyzed metrics and later evaluates its
theoretical and empirical properties, emphasizing that LMG and PMVD are the most recommended
methods based on relative weights of relative importance, but with intensive computational
requirements [39]. However, the methods of analysis of relative importance could also be used
to reduce and identify variables in the prediction and construction of a model [40]. There is a lack of
research using methods of analysis of relative importance as a variable selection method in the linear
regression model aimed at estimating forest structural parameters such as AGB.
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Various studies have been carried out to estimate the AGB at global and regional levels
using medium resolution remote sensing sensors along with field data (e.g., Landsat TM/
ETM+) [14,15,27,41,42]. To enable a reliable estimation of the AGB in a mixed forest, it is suitable
to use high spatial resolution images (e.g., 2 m–10 m) related to field data that allow the structural
parameter characterization of forests at a local scale. Remote sensing sensors such as SPOT-5 and
RapidEye have a high spatial resolution (10 and 5 m, respectively, in multispectral mode and 2.5 for
SPOT-5 in panchromatic mode), and a medium high temporal resolution that allows several images
to be captured within a year to characterize the information of vegetation phenology. Those sensors
are potentially useful for the estimation of the forest structure parameters due to their relatively large
imaging swath and accessible cost [43].

Considering that this relative importance analysis for variable selection can be potentially useful
for the estimation of the AGB and other forest parameters with reduced uncertainty and collinearity
between variables, the objectives of the present study are (1) to compare the performance of a stepwise
method based on the AIC variable selection method (STEPWISE-AIC) and an approach that integrates
relative importance techniques (RI) to select variables in multiple linear regression models in terms
of its adjustment and uncertainty to explain and predict AGB. Also, these two variable selection
approaches are tested with different images (SPOT-5 and RapidEye) to (2) evaluate the ideal spatial
resolution and spectral response of the variables selected by the estimation models of AGB.

2. Materials and Methods

2.1. The Study Area

This study was carried out in an ‘ejido’ of central Mexico (19◦44’00” N, 101◦52’00” W) with
an altitude between 2300 and 3300 m.a.s.l. The study area was mountainous with highly porous
volcanic soil. It has a sub-humid temperate climate that rains in summer with a temperature varying
between 10 ◦C and 15 ◦C. The average annual precipitation is about 1274 mm that concentrates in the
months from June to October. The vegetation is comprised mainly of pine–oak forest that dominates
in the Mexican transition zone in the central part of the country that forms part of the study area.
The intensive use of wood and a lack of forest management plan in the last three decades have caused
the decline of the forest cover in the study area.

2.2. Fieldwork Data

Field data collection was carried out under the scheme of a participatory forest inventory carried
out by local inhabitants. In this sense, the dates for the inventory by local inhabitants were determined
based on the best time of year to sample the forest. Thus, the dates for the participatory forest inventory
were specified in two periods, June 2013 and October 2014. The participatory forest inventory was
carried out using a non-aligned systematic sampling design.

Seven structural parameters of the forest were measured in 52 circular plots of 500 m2 each in a
nested type (radius of 12.62 m) with a concentric circle of 100 m2 (Figure 1). For each plot, trees with
diameter of breast height (DBH) >5 cm and the regeneration of trees with 5 m > DBH > 2.5 cm were
measured. The AGB obtained from the terrestrial inventory data were used as a dependent variable in
the regression analysis. To estimate the AGB with the surveyed data, allometric equations from the
literature were used, adapted for the forest genus that characterize the temperate forest in the Mexican
Transition zone (Table 1).
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Figure 1. The location of the study area and the sampling sites.

Table 1. The applied allometric equations for the calculation of the aboveground biomass (AGB).

Common Name Genus Allometric Equation DBH Range (cm) R2

Pine Pinus Y = 0.1229DBH2.3964 5.7–57.4 0.91 [44]
Oak Quercus Y = 0.0890DBH2.5226 7.6–62.5 0.95 [44]
Oak with sprouts Quercus Y = 0.0342DBH2.759 3.8–26.6 0.94 [45]
Tepamo Alnus Y = 0.1649DBH2.2755 10.0–40.0 0.97 [46]
Cedar Cupressus Y = 0.5266DBH1.7712 5.0–50 0.93 [47]
Madroño and other genus Arbutus Y = 0.0890DBH2.5226 7.6–62.5 0.94 [44]

DBH = diameter of breast height.

2.3. Satellite Images

One scene of the multiespectral SPOT-5 from 9 February 2014 was obtained, with four spectral
bands (green: 500–590 nm, red: 610–680 nm, near infrared (NIR): 780–890 nm, mid-infrared:
1580–1750 nm) and a spatial resolution of 10 m in the multispectral bands and 2.5 m in the panchromatic
band (Figure 2). The scene was orthorectified using control points extracted from the orthophotos
with spatial resolution of 2 m and from the digital elevation model with spatial resolution of 15 m.
Also, one scene of the RapidEye sensor (orthorectified) from 15 February 2013 was obtained with
five spectral bands (blue: 440–510 nm, green: 520–590 nm, red: 630–685 nm, red edge: 690–730 nm,
and near infrared (NIR): 760–850 nm), and 5 m spatial resolution. Both SPOT-5 and RapidEye images
were corrected atmospherically and topographically with the ATCOR3 module which is a radiometric
correction method suitable for mountainous areas [48].
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Figure 2. (a) SPOT-5 image with 10 m spatial resolution. (b) RapidEye image with 5 m spatial resolution.

2.4. Independent Variables

From each satellite image, the potential variables were obtained to explain the AGB estimated
by the field survey data. The spectral values of the five bands of the RapidEye sensor and the four
bands of the SPOT-5 image were explored, and the principal components were calculated. Based on
the spectral bands, thirteen vegetation indices (Table 2) and four variables of elevation model (altitude,
slope, orientation and solar radiance) were generated. For each spectral band, eight indices of GLCM
(grey-level co-occurrence matrix) textures, namely mean, variance, correlation, dissimilarity, entropy,
second moment, contrast and homogeneity, were calculated using the package ‘glcm’ of the statistical
software R [49]. To calculate the texture information, various window sizes were experimented (from
3 × 3 to 15 × 15 pixels) [9]. The optimal window size for the calculation of the texture information
was selected based on the correlation with the AGB; for SPOT 5 image, the optimal window size
that allowed for the highest correlation coefficient is 7 × 7 and for RapidEye it is 3 × 3. The texture
index has been widely cited in the literature for having a strong association with structural forest
parameters [50–52] and AGB [53]. The computing of these metrics resulted in 55 variables derived
from the SPOT-5 image (See Table A1) and 67 from the RapidEye image (See Table A2). In a first step,
a correlation analysis was made to these variables and the less significant variables were discarded
based on critical correlation values from Pearson and the number of data sampled [54]. In a second step,
regression models were generated under the two approaches proposed in this study, Stepwise with
AIC and techniques of relative importance, selecting the regression model with the best performing
explanatory variables.

Table 2. Applied vegetation indices in this study.

Normalized difference vegetation (NDVI) NIR−red
NIR+red [55]

Ratio index (RI) green∗rededge
red [56]

NIR/red reflectance ratio index (RATIO) NIR
red [57]

NIR/green reflectance ratio index (GR) NIR
green [58]

green–red reflectance ratio index (VI) green
red [59]

Brightness blue+green+red+rededge+NIR
5 [60]

Normalized difference red edge (NDRE) NIR−rededge
NIR+rededge [61]

Soil adjusted vegetation index (SAVI) NIR−red
NIR+red ∗ (1 + L) [62]

Transformed vegetation index (TVI)
√

NIR−red
NIR+red + 0.5 [63]

Corrected transformed vegetation index (CTVI) NDVI+0.5
|NDVI+0.5| ∗

√
|(NDVI + 0.5)| [64]

Thiam’s transformed vegetation index (TTVI)
√
|(NDVI + 0.5)| [65]

Ratio vegetation index (RVI) red
NIR [66]

Normalized ratio vegetation index (NRVI) RVI−1
RVI+1 [67]
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2.5. Statistical Methods

2.5.1. Correlation Analysis and Model Assumptions

The Pearson correlation coefficient analysis was carried out to select the variable with the highest
coefficient and to discard the presence of multi-collinearity in the group of the textural variables and
the vegetation indices. In this way, the variables with the highest coefficient were selected and the
total number of variables used in the equation was reduced. Afterwards, the remaining variables
proposed initially were included and those related significantly (p-value < 0.05 and < 0.01) with
the AGB were selected. The statistical test of normality (Shapiro–Wilk) and the homoscedasticity of
the residuals models (Breush–Pagan) were applied, and the calculation of the inflation factor of the
variance was carried out to detect the possible problems of the multicollinearity between independent
variables. In order to eliminate the heteroscedasticity or the lacking of the normality in the residuals,
transformation of the dependent variable was carried out. Diagnostic graphics and the distance Cook
were carried out to identify the observations with high residual values or possible leverages and a
robust regression analysis [68,69].

2.5.2. Variable Selection Methods

The methods of STEPWISE-AIC and RI were applied to select the appropriate explanatory
and predictive variables. Both methods were implemented in the statistical software R with the
packages ‘stats’ and ‘relaimpo’ [70,71]. The method by steps (STEPWISE) has been widely used for
the selection of variables by being easily managed and widely extended to more generalized models
(e.g., linear/non-linear models, abnormal data distribution) [31]. On the other hand, the criterion of
the Akaike (AIC) provides the model and the maximum likelihood estimation of the parameters and
gives the minimum of the AIC [72]. The criterion of the Akaike is defined as Equation (1).

AIC = −2 lnL[θ̂(k)] + 2k, (1)

where L[θ̂(k)] is the likelihood function of the observations, θ̂(k) is the maximum likelihood estimation
of the parameter vector θ, k is the number of the adjusted independent parameters within the model,
and ln denotes natural logarithm [73]. When comparing various models, the parameters estimated by
the maximum likelihood method and the AIC values are calculated and compared in order to find
a model with the minimum AIC value. This procedure is called the minimum AIC procedure [74].
Thus, the most reliable model is the less complicated one, or the one with a major information gain.
In this case, transformation of the AIC method in the form of STEPWISE was used and the best
model with the lowest AIC value was selected in function with the AGB variable for the two types of
satellite images.

The relative importance of an explanatory variable in a regression model is defined as the
proportional contribution of each predictor for R2, considering both direct effect (meaning its
correlation with the criterion) and the effect when combined with other variables in the regression
equation [32]. In this study, three relative importance matrices were used: the proportional marginal
decomposition (PMVD), the simple marginal decomposition (LMG) and the FIRST metric. PMVD is
defined as the weighted average of the contributions of the regressors in the model, in which each
order of those receives a weight depending on the data [37,39]. It is defined as Equation (2):

PMVD(xk) =
1

(p!) ∑ rpermutationsp(r)seqR2 ({xq
}
| r
)

. (2)

where p(r) is the weight and seqR2 is the explained variance of the model added sequentially.
LMG is defined as the average of the contributions of all the orders of the regressors, based on

the sum of the squared sequential of the linear model whose size depends on the order of the regressor
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in the model. A global evaluation is obtained by averaging an overall assessment of all systems of the
regressors [35]. This metric is defined as Equation (3):

LMG(xk) =
1

(p!) ∑ rpermutationsseqR2 ({xq
}
| r
)

. (3)

In this method, the same weight is given to each order of the regressors. This method
has been used as hierarchical partition, generalized by Chevan and Sutherland [36]; Walsh and
MacNally [75] provided a package in the software R (hier.part) using this approach. In the present
study, the similarities of the PMVD and LMG weights were evaluated to select regressors without
correlation based on the studies of Gromping [38] and Gromping [39] that demonstrate that the LMG
and PMVD weights coincide for the uncorrelated regressors, provided that the coefficients β of the
regressors are very similar or have correlations close to 0. Otherwise, the regressors were selected
based on the weights of the PMVD and FIRST metrics.

FIRST is a simple RI metric that denotes the R2 that explains the regressor on its own. This metric
was equivalent to calculating the square of the regressor correlation with the response variable [38].
If the regressors were correlated, the sum of these individual contributions was higher than the total
of the R2 of the model with all the regressors together. One way to see the relative importance was
to compare which regressor alone was able to explain the model, comparing the R2 of the regression
models with a single regressor. In this study, FIRST was used to evaluate the weight of the regressors
for the case in which all regressors are correlated. The regressor with the highest FIRST weight
was selected.

The package ‘relaimpo’, in the software R, uses six metrics (first, last, betasq, pratt, pmvd y lmg)
to evaluate the relative importance of the variables in a linear model; of those, this study used first
(FIRST), pmvd (PMVD) and lmg (LMG) metrics.

2.5.3. Validation of the Regression Models

To evaluate the explanatory and predictive performance of the model, a crossed validation
approach was applied [76], which was the most practical way to predict and evaluate the error rate in
the biomass estimation models [30], and applied when the quantity of the data for training and testing
is limited [77,78].

A variation of this approach was the method of triple cross validation (TFOLD), in which the data
were divided in three approximately equally sized partitions; each one was used for testing and the
rest of the data were used for training. This procedure was repeated three times in a way that in the
end all the cases were used only once for the testing. To obtain a reliable performance in the prediction
of the regression models, the TFOLD procedure was repeated 10 times, reorganizing and stratifying
the data before each round [79].

The validation results were evaluated by the mean absolute percentage error (MAPE), proposed
by Sileshi [30] widely used in the prediction and comparison of the ecological and environmental
evaluation models. The MAPE is defined by the following Equation (4):

100
n

n

∑
i=1

|Mo−Mp|
Mo

, (4)

where Mo and Mp are observed and predicted biomass values, respectively, and n is the number of
sampling sites. The explanatory model was selected with the lowest MAPE using all the data sets
and in addition cross-validation was applied to evaluate the variables of the learning model [80].
To evaluate the predictive variables, the models were generated with the variable selection methods
within the triple crossed validation methods in order to compare the MAPE results between the
variable selection methods.
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3. Results

3.1. State and Structure of the Forest

A summary of the basic information obtained from the analyses described above is given in
Table 3. During the field campaign, eight forest genus with the highest AGB values were sampled.
The percentage of each sampled forest genus was Pinus 44%, Quercus 35%, Alnus 15%, Cupressus 3%,
Arbutus 2% and the rest of the genus 1%. In total, 79% of the AGB was represented by the first two
genus.

Table 3. Descriptive statistics of the variables sampled in the field (n = 52).

Parameters Average Standard Deviation Standard Error (RMS) Min Max

AGB (ton ha−1 ) 116 66 9 24 323
basal area ( m2 ha−1 ) 19 9 1 4 42
tree height (m) 15 6 0 4 32
diameter of breast height (DBH) (cm) 22 7 1 11 48
woodland density (trees ha−1) 700 433 57 100 1940
stumps density (stumps ha−1 ) 163 134 17 0 480
regeneration height (cm) 30 20 2 0 70

3.2. Correlation Analysis

From the 55 variables (See Table A1) derived from the SPOT-5 images, only four variables
were significantly correlated (Table 4) with AGB (AGB-Spot5), based on critical values for Pearson’s
Correlation [81] (Figure 3) and 10 variables from the 67 derived (See Table A1) from the RapidEye
images (AGB-RapidEye).

Table 4. Correlation coefficients for the linear regression of the AGB comparing with the variables
(spectral reflectance, textures, vegetation index, and topographics) derived from SPOT5 and
RapidEye images.

Variables SPOT-5 RapidEye

Blue band −0.489 **
Green band −0.393 **
Red band −0.511 **
Red edge −0.323 *
Principal component 1 (PC1) −0.354 **
Principal component 2 (PC2) −0.320 *
Principal component 3 (PC3) −0.423 **
Principal component 5 (PC5) 0.423 **
Green–red vegetation index (VI) 0.535 **
Transformed vegetation index (TVI) 0.276 *
3 × 3 variance red texture (VAR) −0.486 **
7 × 7 second moment NIR (SEC) −0.247 *
Altitude (DEM) 0.275 * 0.275 *

* p-value < 0.05, ** p-value < 0.01.
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Figure 3. Correlations between variables derived from SPOT-5 image and the AGB from the
field sample.

For SPOT-5 image, the variable principal component 2 (PC2) shows the highest correlation with
the AGB and for the RapidEye image it was the variable green–red vegetation index (VI) (Figure 4).
The correlation between AGB and the variables derived from the RapidEye image presented the
highest correlation coefficients. The spectral bands of the SPOT-5 images did not have a significant
correlation with the AGB while the RapidEye images obtained high and negative coefficients with
the first four spectral bands (blue, green, red and red edge). Of the principal components for the
RapidEye image, the principal component 5 (PC5) showed the highest coefficient with 0.535, while for
the SPOT-5 image, only the principal component 3 (PC3) showed a significant coefficient of −0.320.
The transformed vegetation index (TVI) from the SPOT-5 image was significantly correlated with AGB
(0.276) and green–red VI from RapidEye image showed a significant coefficient of 0.535 with AGB.
The texture indices that had a significant correlation with AGB were the second moment NIR (SEC)
from Spot5 and variance red (VAR) from RapidEye. The altitude variable from both images enabled
significant results. Satellite Images
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Figure 4. Correlations between variables derived from a RapidEye image and the AGB from the
field samples.

3.3. Estimation of the AGB

The initially selected variables through linear regression and the adjustments of the regression
models by the variable selection method are shown (Table 5) for each image. All the estimated
parameters were significant (p value < 0.1, p < 0.05 or p < 0.01).

STEPWISE-AIC selected three explanatory variables for the SPOT-5 image and five for the
RapidEye image, while RI selected three for the SPOT-5 image and two for the RapidEye image
(Table 5). The model that showed the highest determination coefficient R2 and lowest standard
residual errors (SRE) were the models generated from the RapidEye image for both STEPWISE-AIC
(R2 = 0.437, SRE = 0.431) and RI (R2 = 0.420, SRE = 0.423) proposed approaches. The models with
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the lowest R2 and highest SRE were for the models generated with variables of the SPOT-5 image for
both STEPWISE-AIC (R2 = 0.359, SRE = 0.451) and RI (R2 = 0.359, SRE = 0.451) proposed approaches.
The variables derived from the SPOT-5 image that enabled significant results for both selection methods
were TVI, SEC Y DEM, while for the RapidEye image the variables were the red band, red edge, some of
the principal components for the estimated model with the STEPWISE-AIC method and the component
CP5 and VI with the method RI.

The fitted data of the models are shown in Figure 5. They were identified as lacking normality
and homoscedasticity, caused by the symmetry found in the distribution of the samples in all the
regression models with the original variables, and they were eliminated by transforming the variables
to the format of the natural logarithm. The analysis of the outlier values and the leverage in the
observations and the robust regression analysis showed that three observations had a notable effect in
the adjustment of the models. Two observations with very low AGB values were found in the areas of
the open forest and so the reflectance value does not correspond only to the forest. One observation
was represented by a very high AGB value located in a private plot with the trees designated to rubber
extraction (trees with more than 100 cm of the DBH and older than 70 years).

Figure 5. The observed AGB against the predicted AGB, determined by variable selection approaches
and two satellite images.
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Table 5. Variables selected from both SPOT-5 and RapidEye images by STEPWISE-Akaike information
criterion (AIC) and relative importance (RI) approaches for AGB regression models.

Variables
SPOT-5 Image RapidEye Image

STEPWISE-AIC RI STEPWISE-AIC RI

Red band 0.005 (0.003)
Red edge 0.012 * (0.006)
PC1 -0.008 * (0.004)
PC3 -0.008 * (0.004)
PC5 0.011 ** (0.005) 0.002 (0.001)
TVI 11.032 *** (2.768) 11.032 *** (2.768)
VI 2.195 *** (0.523)
SEC −3.075 ** (1.484) −3.075 ** (1.484)
DEM 0.001 * (0.0004) 0.001 * (0.0004)
Constant −11.966 *** −11.966 *** 7.645 *** 2.365 **
Observations 49 49 49 49
R2 0.359 0.359 0.437 0.420
Adjusted R2 0.317 0.317 0.317 0.394
Standard residual error (SRE) 0.451 (df = 45) 0.451 (df = 45) 0.431 (df = 43) 0.423 (df = 46)
F statistics 8.414 *** (df = 3; 45) 8.414 *** (df = 3; 45) 6.668 (df = 5; 43) 16.632 *** (df = 2; 46)

STEPWISE-AIC: the stepwise method based on AIC approach. RI: the relative importance approach.

3.4. Validation of the Regression Models

The results of the triple cross validation of the regression models are shown in Table 6.
From SPOT-5, the lowest MAPE value was 38.04 in both methods, and the range between MAPE
values was 5.17. From RapidEye, the lowest MAPE was 34.47 in the RI method, and the range between
MAPE values was 11.71. Comparing the two sensors, RapidEye showed lower MAPE values and
a smaller range than SPOT-5. Among the methods used with the RapidEye sensor, the RI method
obtained the lowest MAPE values.

Table 6. Root mean square error (RMSE) and mean absolute percentage error (MAPE) of the triple
crossed validation from the regression models by replica for images of RapidEye and SPOT-5.

RapidEye Image

Iteration STEPWISE-AIC RI

RMSE MAPE RMSE MAPE
1 55.77 40.97 55.60 38.08
2 58.89 44.61 58.39 40.56
3 68.53 44.25 61.78 41.61
4 57.75 39.11 58.74 39.54
5 57.89 41.93 56.96 38.19
6 64.21 46.18 53.41 34.47
7 54.39 39.33 57.49 39.65
8 56.21 38.18 53.73 35.77
9 54.92 38.18 53.50 35.59
10 55.37 39.69 54.06 38.71

SPOT-5 image

Iteration STEPWISE-AIC RI

RMSE MAPE RMSE MAPE
1 55.79 39.51 55.79 39.51
2 56.46 40.24 56.46 40.24
3 61.20 43.21 61.20 43.21
4 59.40 41.77 59.40 41.77
5 58.25 40.89 58.25 40.89
6 56.85 38.38 56.85 38.38
7 55.66 38.04 55.66 38.04
8 59.15 39.81 59.15 39.81
9 56.07 39.17 56.07 39.17
10 57.67 40.12 57.67 40.12

STEPWISE-AIC: the stepwise method based on the AIC approach. RI: the relative importance approach.
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The results of the selection of variables and generation of the regression model within the
triple cross validation for both images are shown in Tables 7 and 8. For the SPOT-5 image with
the STEPWISE-AIC approach, the minimum MAPE value obtained was 29.44 with three selected
variables and the maximum MAPE value obtained was 62.36 with four selected variables and a range
between MAPEs of 32.92. for the SPOT-5 image with the RI approach. The minimum MAPE value
obtained was 29.44 with three selected variables and the maximum MAPE value obtained was 57.94
with three selected variables and a range between MAPEs of 28.5. For the RapidEye image with the
STEPWISE-AIC approach, the lowest MAPE value obtained was 31.86 with five variables selected
and the maximum MAPE obtained was 64.54 with seven variables selected. For the RapidEye image
with the RI approach, the lowest MAPE value obtained was 30.73 with a variable selected and the
maximum MAPE value obtained was 56.63 with two variables selected and a range between MAPEs
of 25.9.

Table 7. Regression models generated with STEPWISE-AIC and RI in the triple cross validation and
corresponding MAPE for the SPOT-5 image.

Iteration STEPWISE-AIC MAPE Iteration RI MAPE

Fold 1

1 AGB ∼ PC2 50.59 1 AGB ∼ PC2 + DEM 44.32
2 AGB ∼ TVI + DEM 30.36 2 AGB ∼ TVI + DEM 30.36
3 AGB ∼ TVI + SEC + DEM 53.84 3 AGB ∼ TVI + SEC + DEM 53.84
4 AGB ∼ PC2 + SEC + DEM 45.12 4 AGB ∼ PC2 + SEC + DEM 45.12
5 AGB ∼ TVI + DEM 38.65 5 AGB ∼ TVI + SEC + DEM 32.6
6 AGB ∼ TVI + SEC 45.48 6 AGB ∼ TVI + SEC 45.48
7 AGB ∼ TVI + DEM 52.62 7 AGB ∼ TVI + SEC + DEM 45.61
8 AGB ∼ PC2 46.66 8 AGB ∼ PC2 + SEC 41.87
9 AGB ∼ TVI + DEM 45.28 9 AGB ∼ TVI + DEM 45.28
10 AGB ∼ PC2 + DEM 37.97 10 AGB ∼ PC2 + SEC + DEM 36.36

Fold 2

1 AGB ∼ TVI + SEC 43.79 1 AGB ∼ TVI + SEC 43.79
2 AGB ∼ TVI + SEC + DEM 29.44 2 AGB ∼ TVI + SEC + DEM 29.44
3 AGB ∼ PC2 + DEM 55.61 3 AGB ∼ PC2 + SEC+ DEM 54.56
4 AGB ∼ TVI + DEM 52.79 4 AGB ∼ TVI + SEC + DEM 49.52
5 AGB ∼ TVI + SEC + DEM 54.42 5 AGB ∼ TVI + SEC + DEM 54.42

AGB ∼ PC2 + DEM 35.43 6 AGB ∼ PC2 + DEM 35.43
7 AGB ∼ PC2 + SEC + DEM 43.03 7 AGB ∼ PC2 + SEC + DEM 43.03
8 AGB ∼ PC2 + TVI + SEC + DEM 53.51 8 AGB ∼ PC2 + SEC + DEM 54.27
9 AGB ∼ PC2 + SEC + DEM 47.57 9 AGB ∼ PC2 + SEC + DEM 47.57
10 AGB ∼ PC2 + SEC + DEM 48.34 10 AGB ∼ PC2 + SEC +DEM 48.34

Fold 3

1 AGB ∼ TVI + SEC + DEM 42.54 1 AGB ∼ PC2 + SEC + DEM 41.17
2 AGB ∼ PC2 + TVI + SEC + DEM 62.36 2 AGB ∼ PC2 + SEC + DEM 57.94
3 AGB ∼ TVI + SEC 31.94 3 AGB ∼ TVI + SEC 31.94
4 AGB ∼ PC2 + SEC 40.86 4 AGB ∼ PC2 + SEC 40.86
5 AGB ∼ PC2 + DEM 43.33 5 AGB ∼ PC2 + SEC + DEM 41.59
6 AGB ∼ TVI + SEC + DEM 49.65 6 AGB ∼ TVI + SEC + DEM 49.65
7 AGB ∼ TVI + SEC + DEM 38.84 7 AGB ∼ TVI + SEC + DEM 38.84
8 AGB ∼ TVI + DEM 31.33 8 AGB ∼ TVI + DEM 31.33
9 AGB ∼ TVI + SEC 49.82 9 AGB ∼ TVI + SEC 49.82
10 AGB ∼ TVI + SEC + DEM 51.47 10 AGB ∼ TVI + SEC + DEM 51.47

STEPWISE-AIC = The stepwise method based on AIC approach; RI = The relative importance approach; AGB:
aboveground biomass; PC2: principal component 2; DEM: altitude; TVI: transformed vegetation index; SEC: 7 × 7
second moment NIR.
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Table 8. Regression models generated with STEPWISE-AIC and RI in the triple cross validation and corresponding MAPE for the RapidEye image.

Iteration STEPWISE-AIC MAPE Iteration RI MAPE

Fold 1

1 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 + VAR + DEM 62.04 1 AGB ∼ VI + b3 + PC1 + PC5 52.93
2 AGB ∼ b4 + PC1 + PC5 39.14 2 AGB ∼ b4 + PC3 + PC5 39.14
3 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 + VI + VAR 59.46 3 AGB ∼ b3 + PC5 56.63
4 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 + VAR + DEM 38.12 4 AGB ∼ VI + b4 + VAR + DEM 32.07
5 AGB ∼ b4 + PC1 + PC3 + PC5 38.61 5 AGB ∼ VI + b4 42.35
6 AGB ∼ b3 + PC1 + PC5 + VI 55.96 6 AGB ∼ VI 41.97
7 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 34.26 7 AGB ∼ VI + PC5 39.65
8 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 39.43 8 AGB ∼ VI + b3 + PC1 + PC5 44.03
9 AGB ∼ b4 + PC1 + PC3 + PC5 45.23 9 AGB ∼ VI + PC5 44.38
10 AGB ∼ b4 + PC1 + PC3 + PC5 + VAR 42.45 10 AGB ∼ VI 33.47

Fold 2

1 AGB ∼ b4 + PC1 + PC5 44.43 1 AGB ∼ b3 + PC5 43.52
2 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 59.52 2 AGB ∼ VI 48.01
3 AGB ∼ b3 + b4 + VI 35.47 3 AGB ∼ VI + DEM 30.14
4 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 + VI 51.70 4 AGB ∼ VI + PC1 + PC5 55.98
5 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 + VI 54.64 5 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 + VI 54.64
6 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 + DEM 40.26 6 AGB ∼ VI + PC5 + DEM 34.56
7 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 + VAR + DEM 39.28 7 AGB ∼ VI + PC5 + DEM 33.49
8 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 + VI + VAR + DEM 55.14 8 AGB ∼ VI 32.31
9 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 35.48 9 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 35.48
10 AGB ∼ b4 + PC1 + PC3 + VI 50.12 10 AGB ∼ VI + b3 + PC1 + PC5 52.95

Fold 3

1 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 31.86 1 AGB ∼ VI + PC5 31.2
2 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 + VAR 41.57 2 AGB ∼ VI 30.73
3 AGB ∼ b4 + PC1 + PC5 52.02 3 AGB ∼ PC5 + b3 + PC1 52.82
4 AGB ∼ b4 + PC1 + PC3 + VI 37.41 4 AGB ∼ VI + PC5 35.07
5 AGB ∼ b4 + PC1 + PC3 + PC5 + VI 60.39 5 AGB ∼ VI + b4 + PC1 + PC3 46.68
6 AGB ∼ b3 + b4 + PC1 49.76 6 AGB ∼ b3 + VAR 38.68
7 AGB ∼ VI 49.09 7 AGB ∼ VI 49.09
8 AGB ∼ b3 + PC1 44.29 8 AGB ∼ b3 41.60
9 AGB ∼ VI 38.59 9 AGB ∼ VI 38.59
10 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 + VI + DEM 64.54 10 AGB ∼ b3 + b4 + PC1 + PC3 + PC5 + DEM 53.80

AGB: aboveground biomass; b3: red band; b4: red edge; PC1: principal component 1; PC3: principal component 3; PC5: principal component 5; DEM: altitude; VAR: 3 × 3 variance red
texture; VI: green–red vegetation index; TVI: transformed vegetation index.
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4. Discussion

4.1. Correlation Analysis

The correlations between the AGB and four variables for the SPOT-5 images and ten variables for
the RapidEye images were significant (p value < 0.1, p < 0.05 or p < 0.01), though not particularly high.
The bands of blue, green, red, and red edge of the RapidEye image showed a significant correlation
with the AGB, especially the red band that had the highest correlation coefficient (−0.511) compared
with the rest of the multispectral bands. It is shown that the visible spectral bands of the RapidEye
image and the band of the red edge can be sensitive to the reflectance with the AGB. No studies were
found in which the multispectral bands of the RapidEye image were included as predictive variables
for biomass estimation, however, studies such as Ojoyi et al. [82] estimated the AGB with a vegetation
index that included those bands as predictive variables and Wallner et al. [16] estimated the parameters
of the forest structure using the visible spectral bands and the vegetation indices. The 7 × 7 second
moment NIR (SEC) variable from SPOT-5 image and the 3 × 3 Variance Red Texture (VAR) variable
from RapidEye image showed a significant correlation (Table 4), independently of not being selected
in any regression model. This is consistent with Wallner et al. [16] and Castillo-Santiago et al. [9]
that texture information is related to AGB when using SPOT-5 images and RapidEye images and can
improve results as variables in regression models.

The 3 × 3 variance red texture (VAR) variable from the RapidEye image showed the highest
correlation in the correlation analysis. However, it was not selected in the regression models with any
approach because there is a strong dependence on VAR with the Red Band and green–red vegetation
index (VI); these variables showed a higher correlation coefficient than VAR. It is the opposite case for
variables selected from the SPOT-5 image, in which the models selected the variables in the absence of
collinearity between independent variables, caused by the reduced set of variables that resulted from
the previous correlation analysis. We conclude that texture information can improve AGB estimates
in mixed forests based on three considerations: (1) correlation analyses of the variables generated
by both SPOT-5 and RapidEye images show texture variables with high correlation coefficients and
therefore, potentially suitable variables for a multiple regression model for the estimation of AGB;
(2) in both models and in the absence of collinearity, the textural variable second moment NIR (SEC) of
the SPOT-5 image was selected, even with a low correlation coefficient, which tells us the importance of
this variable together with the other variables in a multiple regression model; otherwise, it would have
been discarded; (3) similar studies such as Wallner et al. [16] and Castillo–Santiago et al. [9] indicate
the relevance of textural variables in estimates of AGB and structural parameters. The principal
components (PCs) showed a high correlation for both images. The sensibility of the reflectance in the
PCs for the identification of the variation of both the vegetation and the biomass is demonstrated [83,84].
It is also proved that the PC bands from the high spatial resolution images such as RapidEye can
be useful to estimate the AGB. Tian et al. [21] confirmed that PC bands can be used as variables,
in combination with other predictive variables, to estimate the AGB. The vegetation indices were
significant with AGB (TVI for the SPOT-5 image and VI for the RapidEye image) by being narrowly
related with the quantity of the chlorophyll and the vegetation structure, such as the VI calculated by
the green and the red bands in which the vegetation reflects and absorbs the electromagnetic radiation
by the pigment of the plants and the TVI calculated by the red and NIR bands, in which the reflectance
is controlled by the plant structures [85]. In this study, the high values of the two indices—TVI
and VI—indicate the increase of the forest density. This finding was supported by the studies of
Aguirre–Salado et al. [11], Aguirre–Salado et al. [86], and Muñoz–Ruiz et al. [87], for temperate forest
with similar characteristics. This study showed the high sensibility of the vegetation indices generated
by the RapidEye image for AGB estimation. As expected, the topography has an effect on the biomass
distribution of mixed pine–oak forests, which is confirmed by the models generated by variables from
the SPOT-5 image that include DEM as a predictive variable. The results of this study are consistent
with those from the studies of Ojoyi et al. [82] and Xie et al. [20].



ISPRS Int. J. Geo-Inf. 2019, 8, 245 16 of 23

4.2. Estimation of the AGB

Studies that predict the structural variables of the forest and the AGB generally report the
determination coefficient of R2 and/or the root mean squre error (RMSE) as indicators of the adjustment
of the correlation between the variables derived from the satellite images and those measured from
the field survey. In this study the results obtained from the regression models for the SPOT-5 and
RapidEye images are within or nearest the fit ranges of models in studies estimating AGB and forest
structural parameters implemented with different methodologies. Estimates with determination
coefficients between 0.45–0.69 in the Tian et al. [21] study using variables derived from the SPOT
5 image and variables derived from other sources, 0.44–0.60 in the Ojoyi et al. [82] study using
topo-edaphic variables and vegetation indices derived from the RapidEye image and 0.19–0.63 in
the Wallner et al. [16] study using texture variables derived from the RapidEye image. Other studies
closely related to the conditions of the study area, for example the Aguirre–Salado et al. [86] study
obtained determination coefficients between 0.14–0.76 and the Zhao et al. [27] study obtained values
between 0.34–0.53. However, in our study the low results of R2 values is because of a fewer set of
ground plots, with respect to AGB variability, which depend on: (1) the generalization in the age
and size of the trees in the allometric equations with which the aerial biomass was estimated and the
restriction of the range that includes only a part of the tree [30]; (2) the shadows generated due to
the mountainous relief of the region mask trees with wide canopies [88] and the fragmentation of the
forest combined with the lack of management in the study area which increases the error and therefore
decreases the R2; (3) the date of acquisition of the satellite images were slightly different from the date
of the field survey, introducing the seasonal effect. In this study the dates of acquisition of images were
in February and the survey was carried out in June and October; (4) the collection of data unstratified
in the plots causes biased estimates of standard errors and decreases the total variance explained in
the model [17]. However, they could improve by increasing the size of the sample and applying a
stratification by forest type [16,17].

The “stepwise” method and the criterion of the Akaike (AIC) have been utilized to select variables
in factorial analysis, regression models and time series analysis [20,21,25,89,90]. One of the limitations
of applying AIC is that when using small- or medium-sized samples, it tends to select more parameters
than are necessary [91]. Also, it assumes independence between variables and, sometimes, it can
generate regression models with high R2 but that explain the variable of interest poorly due to
multi-collinearity. This study shows that, for the RapidEye image, the STEPWISE-AIC method selected
five parameters, in comparison with the RI method, which selected only two parameters; it has a lower
R2, but obtained a higher adjusted R and lower Residual Error. In the case of the SPOT-5 image, most of
the variables were discarded in the correlation analysis and a reduced set of explanatory variables was
used. The metrics in the analysis of relative importance allow the quantification of the contribution of
a regressor in a multiple regression model and have been applied by various authors [32,37,40,70,75];
however, in this study, these metrics were used to select the best predictive variables according to the
contribution to the regression model, to reduce the number of parameters and also to eliminate the
multi-collinearity phenomenon. The combination of the metrics of relative importance used in this
study can help to select independent predictive variables that allow regression models with acceptable
fitting to be generated.

4.3. Validation of the Regression Models

The predictive capacity of the regression models generated with the proposed approaches was
compared based on their MAPE and the evaluation of the spectral response between the SPOT-5 and
RapidEye images. For both SPOT-5 and RapidEye images, AGB estimation with the RI approach had
a generally lower MAPE and smaller dispersion of error values than the STEPWISE-AIC approach,
although relatively large RMSE values are displayed in all iterations (Tables 6–8). This is explained
by the greater forest fragmentation in the unmanaged la Mojonera forest area, which increases the
variance in the spectral response of the variables and thus the error. The lower RMSE and MAPE
values are most probably due to the smaller range of reference biomass values and the homogeneity
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(in terms of the volume of the trees) that remains in some areas of the la Mojonera temperate forest.
In addition, we observed similar values in terms of the dispersion MAPE values of both images, which
indicates that the difference in spatial resolution between five (RapidEye) and 10 (SPOT-5) meters does
not influence the explanatory and predictive capacity of the generated biomass models, under the
biophysical and management conditions presented in the study area. The minimum and range values
in the triple cross validation of this study show that the IR approach for both images can improve the
predictive performance of regression models to estimate forest aboveground biomass. The RI approach
showed smaller MAPE in each one of the iterations than the STEPWISE-AIC approach. It also selected
regression models with fewer variables and, therefore, parsimonious models, thus guaranteeing the
absence of collinearity between variables, unlike the STEPWISE-AIC approach, which selected more
variables in all the iterations of the cross-validation for both images. The use of MAPE in this study
limited the comparison with other methods of selection of variables used in other studies [30], so it
was difficult to define a universal cutoff for what constitutes a large bias (or MAPE), for the selection
of the objective model and consistent information, so the lowest MAPE value was chosen as the best
model for the estimation of AGB. Regression models are built by randomly selecting a subset of AGB
ground plots (calibration set), fitted against satellite derived variables at the same locations so they can
be used to produce wall to wall estimates of AGB. The accuracy of regressions models can be tested by
comparing regression estimations against the remaining subset of plots (validation set). The form and
accuracy of regression models can vary depending on which calibration plots are selected in the first
place. The larger the variation, the less reliable are estimations as these will depend to some extent
on the selection of calibration plots. By iteratively selecting calibration plots, we built an array of
regression models using two methods for variables selections (RI and AIC approaches) and two sensors
(RapiEye and Spot-5). However, using the relative importance approach for selecting non-correlated
variables resulted in equations with lower errors in average as measured by MAPE.

5. Conclusions

This study compares two methods for selecting independent variables in regression models
for estimating aboveground forest biomass in a mixed temperate forest in central Mexico. To our
knowledge, the relative importance method is not commonly used for estimating aboveground
forest biomass. However, our results suggest that this method could perform better than AIC in
situations with few biomass ground plots; something frequent in community managed forests across
the global south. Likewise, we consider that both SPOT-5 and RapidEye images can be used to
generate predictive variables for the estimation of aboveground forest biomass, under biophysical
and management conditions such as those presented in the study area. This study highlights the need
to combine field data with remote sensing to obtain cost-effective estimates of aboveground forest
biomass. It also highlights the use of appropriate methodologies for the selection of suitable variables
to generate accurate predictive models. Since our study shows predictive models for estimating
biomass with a reduced set of variables, lower errors and no correlation between predictive variables,
it can be concluded that the approach based on relative importance metrics is suitable in estimating
aboveground forest biomass. However, the error of the estimates was relatively high, which can be
attributed to the mountain relief of the region and the fragmentation of the forest coupled with the
lack of management in the study area. It is recommended that stratification by forest type and the
generation and insertion of predictor variables from different sensors can considerably improve the
results and increase the reliability of the estimates.
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Appendix A

We analyze the relationship between the dependent variable AGB and the independent variables.
Fifty-five potential variables derived from the SPOT-5 image (Table A1) and 67 derived from the
RapidEye image (Table A2). The Pearson’s correlation coefficient was calculated for each pair (p-value
< 0.05 and < 0.01).

Table A1. Independent variables generated from the SPOT-5 image.

Spectral Bands

Green band
Red band
NIR band
SWIR band

Principal Components

Principal component 1 (PC1)
Principal component 2 (PC2)
Principal component 3 (PC3)
Principal component 4 (PC4)

Vegetation indices

Normalized difference vegetation index (NDVI )
NIR/red reflectance ratio index (RATIO)
NIR/green reflectance ratio index (GR)
Green–red reflectance ratio index (VI)
Ratio vegetation index (RVI)
Brightness index (Brightness)
Soil adjusted vegetation index (SAVI)
Transformed vegetation index (TVI)
Corrected transformed vegetation index (CTVI)
Thiam’s transformed vegetation index (TTVI)
Normalized ratio vegetation index (NRVI)

Digital Elevation Model

Altitude
Slope
Orientation
Solar Radiance

7 × 7 GLCM(grey-level co-occurrence matrix) textures per band

Mean (green band, red band, NIR band, and SWIR band)
Variance (VAR) (green band, red band, NIR band, and SWIR band)
Correlation (green band, red band, NIR band, and SWIR band)
Dissimilarity (green band, red band, NIR band, and SWIR band)
Entropy (green band, red band, NIR band, and SWIR band)
Second moment (SEC) (green band, red band, NIR band, and SWIR band)
Contrast (green band, red band, NIR band, and SWIR band)
Homogeneity (green band, red band, NIR band, and SWIR band)



ISPRS Int. J. Geo-Inf. 2019, 8, 245 19 of 23

Table A2. Independent variables generated from the RapidEye image.

Spectral Bands

Blue band
Green band
Red band
Red edge band
NIR band

Principal Components

Principal component 1 (PC1)
Principal component 2 (PC2)
Principal component 3 (PC3)
Principal component 4 (PC4)
Principal component 5 (PC5)

Vegetation indices

Normalized difference vegetation index (NDVI)
NIR/red reflectance ratio index (RATIO)
NIR/green reflectance ratio index (GR)
Green–red reflectance ratio index (VI)
Ratio vegetation index (RVI)
Brightness index (Brightness)
Soil adjusted vegetation index (SAVI)
Transformed vegetation index (TVI)
Corrected transformed vegetation index (CTVI)
Thiam’s transformed vegetation index (TTVI)
Normalized ratio vegetation index (NRVI)
Normalized difference red edge (NDRE)
Ratio index (RI)

Digital Elevation Model

Altitude
Slope
Orientation
Solar Radiance

3 × 3 GLCM(grey-level co-occurrence matrix) textures per band

Mean (blue band, green band, red band, NIR band, and red edge band)
Variance (VAR) (blue band, green band, red band, NIR band, and red edge band)
Correlation (blue band, green band, red band, NIR band, and red edge band)
Dissimilarity (blue band, green band, red band, NIR band, and red edge band)
Entropy (blue band, green band, red band, NIR band, and red edge band)
Second moment (SEC) (blue band, green band, red band, NIR band, and red edge band)
Contrast (blue band, green band, red band, NIR band, and red edge band)
Homogeneity (blue band, green band, red band, NIR band, and red edge band)
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