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Abstract: Station-free bike sharing systems (BSSs) are a new type of public bike system that has been
widely deployed in China since 2017. However, rapid growth has vastly outpaced the immediate
demand and overwhelmed many cities around the world. This paper proposes a heuristic bike
optimization algorithm (HBOA) to determine the optimal supply and distribution of bikes considering
the effect of bicycle cycling. In this approach, the different bike trips with separate bikes can be
connected in space and time and converted into a continuous trip chain for a single bike. To improve
this cycling efficiency, it is important to properly design the bicycle distribution. Taking Shenzhen
as an example, we implement the algorithm with OD matrix data from Mobike and Ofo, the two
large bike sharing companies which account for 80% of the shared bike market in Shenzhen, over two
days. The HBOA results are as follows. 1) Only one-fifth of the bike supply is needed to meet the
current usage demand if the bikes are used efficiently, which means a large number of shared bikes in
Shenzhen remain in an idle state for long periods. 2) Although the cycling demand is high in many
areas, it does not mean that large numbers of bikes are needed because the continuous inflow caused
by the cycling effect of bikes will meet most of the demand by itself. 3) The areas with the highest
demands for optimal bikes are residential, followed by industrial, public transportation, official and
commercial areas, on both working and non-working days. This algorithm can be an objective basis
for city related departments to manage station-free BSSs and be applied to design the layout of bikes
in small-scale spatial units to help station-free BSSs operate efficiently and minimize the need to
relocate the bikes without reducing the level of user satisfaction.

Keywords: station-free BSS; HBOA; oversupply; use efficiency

1. Introduction

The station-free bike sharing system (BSS), also known as the free-floating or fourth generation
BSS, is a new type of public bike system that has been widely deployed in China since 2017 and
expanded to other countries. In this system, bikes can be selected using private apps and parked in the
appropriate places. Comparing the traditional station-based BBS, the station-free BSS can expand the
bike sharing service with lower cost as the high initial capital investment required for the docking
stations is not needed. Due to the freedom and convenience the BSS provides, it has attracted a large
number of consumers requiring “last mile” transportation.

However, rapid growth has vastly outpaced the immediate demand and overwhelmed Chinese
cities, where infrastructures and regulations were not prepared to handle a sudden flood of millions of
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shared bikes [1]. In many cities, adequate parking facilities for bikes are not available, city officials lack
the regulation experience for this mode of transportation, and normal social behaviors have not been
established [2]. It is very common to have more than one operating company for the station-free BSS in
a city. From an operational perspective, the most important goal is to occupy the market, which is why
many companies would prefer to provide more bikes and exceed the demand [3]. On the other hand,
large bike fleets are associated with a waste of resources because many bikes would remain idle for
long periods, making the system inefficient.

In response to these problems, more and more Chinese cities such as Shanghai, Hangzhou,
Guangzhou, Shenzhen, have banned the addition of further shared bikes [4]. A series of strict
regulations for bike share providers are being implemented in China and European countries, including
orderly parking, quality and timely maintenance of the bikes, license system for operators and fleet
size control [5,6]. However, a fundamental unsolved problem is determining how many station-free
bikes are sufficient to effectively meet the needs of users?

The Bike Sharing Planning Guide provides guidelines for the fleet size of a station-based BSS,
which are 10–16 stations per km2, 10–30 bicycles for every 1000 residents within coverage area, and
202.5 docking spaces for every bicycle [7]. However, they are for the station-based BSS, not the station
free BBS. Moreover, these quantities are rough indications and mainly depend on the characteristics of
city built-environment, such as land use, population density, and road conditions.

To determine the optimal fleet size and distribution of station-free BBS, this paper proposes a
heuristic bike optimization algorithm (HBOA) considering the efficiency of bike cycling. It can be an
objective basis for city related departments to issue the total control policy and be applied to design
the layout of bikes in small-scale spatial units to improve the system’s efficiency.

2. Literature Review

In past decades, many studies have focused on three main issues related to public bike systems
with docking stations: the spatial structure of a city [8–11], the inflow and outflow of vehicles at
each station [12–14], and the rebalancing of the vehicles among stations [15–18]. In a station-based
BSS, the supply of the vehicles must be compatible with the scale of the fixed stations. Once the
construction of the stations is complete, the system is difficult to change. Therefore, extensive research
on station-based BSSs has focused on the locations and capacities of stations to optimize the efficiency
of these systems [19–22].

Station-free BSSs completely differ from station-based BSSs. The characteristics of a station-free
BSS allow the system scale to be enlarged by providing many vehicles without station capacity
constraints. Because vehicle parking is scattered and the spatial distribution is changing all the time,
the demand for rebalancing might increase in some cases, and predictions of potential imbalances are
relatively complex. There are no predetermined stations in these systems, so scheduling schemes are
often unclear, even if the real-time parking distribution is known. Furthermore, sometimes relocation
occurs based on spur-of-the-moment changes without following a specific strategy [23].

Most research on relocation in station-free BSSs has extended the ideas and methods applied to
stationed-based BSSs, and studies have focused on the effects of urban features [24,25], spatiotemporal
patterns of biking behavior [26,27], and relocation or rebalancing of shared bikes [28–31]. For example,
by setting virtual traffic zones, each traffic area is treated as a bike sharing station, and the first
distribution and relocation scheme of the BSS are designed according to the demand model combined
with the vehicle outflows and inflows in the traffic zone. Some studies have proposed algorithms
to achieve efficient relocation strategies for stationed-based BSSs from both static and dynamic
perspectives [32,33]. Other studies used OD matrix data from bike sharing companies to analyze and
simulate bike sharing travel patterns [34]. In another study, the demand was forecasted with deep
learning methods to predict the gap between the inflow and outflow of sharing bike trips at a TAZ [35].
These studies based on virtual stations have helped simplify the analysis process, but they fail to take
full advantage of the unique use characteristics of free-floating BSSs to a large extent. First, due to
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the randomness of parking with no docking stations, it is difficult to set a fixed TAZ for relocation.
In the division of virtual traffic zones, zones that are too large may not reflect the reality of operation,
and zones that are too small will make relocation complicated. Second, a very important difference
between a stationed-based BSS and station-free BSS is that the chain of travel can more easily occur at a
smaller scale because of the spontaneous usage in the station-free BSS.

Due to the large number and usage frequency of shared bikes, the randomness of shared bikes
movement and spacing is high. From the perspective of complex systems, the behaviors of users can
be regarded as a self-organizing process. On the one hand, the hidden reasons behind user behaviors
are worth studying compared to the inherent system randomness. On the other hand, it is important
to identify which factors in the complex system are critical to the self-organizing process. For example,
Chen et al. simulated the interactions between supply and demand based on agent-based modeling
and suggested that the key aspects of the sustainable development of the bicycle-sharing market are
twofold: the reliability of the supply must be improved, and the uncertainty in the demand must
be reduced. Standardizing the distribution of shared bikes and fixing their locations could solve the
disorder issue associated with excessive supply [36]. Vazifeh et al. proposed a solution to address the
minimum fleet-size problem at the urban scale for the general case of taxi trips based on the demand
mobility [37]. This study combined applied mathematics and graph algorithms from computer science
field and transformed the minimum fleet problem into a minimum path coverage problem based on
the directed graphs, which led to breakthroughs in operational efficiency. If the chain of travel is
considered, it is possible to optimize and simplify the relocation of bikes and improve the efficiency of
the station-free BSS. However, unlike taxis, the principle of shared bikes is that individuals can use bikes
“as-needed” by finding the surrounding bikes instead of dispatching vehicles on demand. Taxi drivers
can actively choose the optimal route, but a shared bike must be selected by a user according to the
location and parking time and is controlled by the user.

Therefore, based on the construction of a shared bike trip chain with actual riding data for a
certain period of time, this paper develops a heuristic algorithm to determine the optimal demand for
public bikes with little operation intervention required. This method is then applied for multi-company
cycling data analysis in the megacity of Shenzhen, China. The results indicate that the algorithm can
reveal the mobility patterns of shared bikes and provide useful information for shared bikes to improve
the use efficiency at the city scale.

3. Methodology

Similar to the solution for the minimum fleet-size problem, the purpose of this study is to improve
the operational efficiency of a shared bike system by constructing a shared bike trip chain. In areas
with high cycling requirements, it is not always necessary to supply more bikes. If the number of
cycling-in bikes is always greater than the number of cycling-out bikes, then it means that the demand
does not exceed the supply. The more bikes there are in a system, the greater the inefficiency of the
shared bikes. As shown in Figure 1, there are six consecutive cycling trips among the three sites. In the
ideal scenario, one bike at site A is sufficient for all trips. However, in the oversupply scenario, for
example, two bikes are required at each site, and the six trips may be completed by up to six different
bikes. However, no matter how many different bikes are being used, the bike stock at site A is always
greater than 1, and the numbers of bikes at sites B and C are always greater than 2. When the volume of
shared bikes is greater than the cycling requirement, bikes will remain unused, and road space will be
wasted. Within a certain time interval and space range, the number of bikes in stock is always greater
than zero, regardless of the possibility of damage to the bikes; therefore, the supply is greater than the
demand, and there are no more bikes potentially needed. The key to improving the self-organization
process of cycling is to fix the initial positions of the shared bikes at the optimal positions.
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Figure 1. Bike movement and stocks in different scenarios: 1) only one bike at site A and 2) two bikes 
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bikes. The time-space distribution characteristics of these optimized bikes can be used as a 
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Figure 1. Bike movement and stocks in different scenarios: (1) only one bike at site A and (2) two bikes
at each site.

Fixed boundaries are not suitable for shared bikes because of the random nature of user behavior
and the unrestricted parking of station-free bikes. Therefore, we propose a heuristic bike optimization
algorithm (HBOA). The core concept of the HBOA is to use the fewest number of bikes to meet all
cycling requirements. The principle of using shared bikes is “first come, first served”. If the ending
position of one trip is close to the starting position of another trip, the ending time of the last trip and
the starting time of the next trip can be continuous in time; thus, in theory, the same bike can be used
for both trips.

To obtain a more reasonable number of optimized bikes, we set the minimum time interval for
cycling requirements between the ending time of the last trip and the starting time of next trip to
10 min, and the maximum Euclidean distance between the ending position of the last trip and the
starting position of the next trip is 100 m. That is, after completing the last trip, the optimized bike
would service the closest trip at that time within 100 m of the ending position. Finally, the number of
optimized bikes could be considered the ideal delivery scale of shared bikes in meeting all cycling
requirements. The initial positions of these bikes can also be considered an optimal configuration for
delivering or dispatching the shared bikes.

The calculation process of the HBOA is shown in Figure 2. We set all the data from valid cycling
trips as data set C, including O, D, Ts, and Te information. O is the original position of trip Ci, D is the
destination position of trip Ci, Ts is the starting time of trip Ci, and Te is the ending time of trip Ci.
First, one of the earliest cycling trips is selected randomly and recorded as the first trip for optimized
bike Bj,m(O, D, Ts, Te), where (j = 1, m = 1). Then, the trips within 100 m of Bj,m(D) are searched, and
the closest trip at given starting time is identified as the next trip Bj, m + 1. This process continues
until it is impossible to identify another trip for this optimized bike. The search for the earliest cycling
trips in the unmarked cycling data set continues. The first trip for a new optimized bike is identified
as Bj,m(O, D, Ts, Te), where (j = j + 1, m = 1). All subsequent trips are also analyzed. The process
of searching is repeated until each trip is marked as one trip for an optimized bike. Obviously, the
result of this algorithm is not unique. However, considering the size of the data set and the aim of the
HOBA, the result does not need to be the best solution to improve the usage efficiency of shared bikes.
The time-space distribution characteristics of these optimized bikes can be used as a configuration
reference for initial bike delivery.
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Figure 2. The calculation process of the HBOA.

4. Study Area and Data Preprocessing

Shenzhen, the youngest megacity in China, was founded only 40 years ago. By the end of 2017,
the city had 12.52 million people in an area of 1997.27 km2 [38]. According to a report, there were
approximately 10 shared bike companies in Shenzhen with approximately 890 thousand shared bikes
in the market in August 2017. In September, a new shared bike policy was released by the Shenzhen
government that suspended the launch of new shared bike systems in the city [39].

Through the API ports of shared bike apps, the positions of all vacant bikes are given in real
time. Therefore, we scanned the positions of vacant bikes for two companies, Ofo and Mobike, which
account for more than 80% of the shared bike market. Limited by the app client, we only obtained 2
days of scanning data from 6–7 May 2018. These dates fall on a Sunday and Monday, representing
non-working and working days. The weather conditions were similar on these two days, with sporadic
light rain. We found approximately 306 thousand different Mobike bikes and 434 thousand Ofo bikes
by scanning the entire city, accounting for over 80% of the total number of shared bikes.

Because it took approximately ten minutes to scan the entire city, the time interval of scanning
was ten minutes. By comparing the positions of the vacant bikes at different times, it can be
determined whether a bike moved, and the origin-destination positions and trip times can be obtained.
Correspondingly, we can obtain the Euclidean distance and speed of these trips. However, there may be
two types of data errors. The first type of error is equipment error. According to an actual test, the error
of the GPS for a vacant bike returned to the same position can reach approximately 100 m. The second
type of error is inference error. For example, some shared bike companies use motor vehicles to
manually dispatch bikes, and the speed of cycling trips is too fast in these cases. Additionally, it is
also possible that some bikes are missed during the scanning process, resulting in a long trip time.
Therefore, data cleaning was performed for the original data. First, trips with Euclidean distances less
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than 200 m were considered invalid, or walking was considered a more reasonable alternative. Second,
trips with an average speed greater than 25 km/h may involve the manual dispatching of bikes by
motor vehicles instead of normal cycling. Other trips with low speeds are indistinguishable and were
retained for use in the HBOA. After cleaning, only 640 thousand available movements remained, and
the average usage time of each bike was less than one. Nearly 340 thousand shared bikes did not move
in two days.

In addition, two types of databases were used in this paper, as shown in Figure 3. One database
includes the transportation routes in Shenzhen 2018, as well as the metro stations and bus stations.
The other database includes building information from 2015, such as outline and usage information
for residential buildings, urban village buildings, industrial buildings, commercial buildings, official
buildings, and others. Among these buildings, urban village buildings are a special type of low-cost
residential building in Shenzhen. These data will help us further analyze the temporal and spatial
distribution characteristics of optimized bike use. Urban area in Shenzhen has gradually transformed
from a belt shape within the original Special Economic Zone (including Luohu, Futian, Nanshan and
Yantian districts) into an outward radial shaped city in the past three decades, which, to some extent,
deviates a multi-center development pattern [40]. Six central areas are selected to compare with the
spatial distribution of shared bikes. Three of them are public service centers, including Baoan center
area, Futian center area and Luohu center area. Two commercial centers are Nanshan center area and
Huaqiang center area. One is an official employment center, High-tech center area in Nanshan district.
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5. Results and Discussion

5.1. Optimized and Actual Bike Availability

The HBAO indicated that only 137,216 bikes were needed to complete all valid trips on 6 May
2018, and 154,625 bikes were needed on 7 May 2018. The average usage number of an optimized bike
on each day was 4.6 and 4.2. Overall, less than 1/5 of all shared bikes were used.

As shown in Figure 4, there are bikes in almost every land unit (200 m * 200 m) in Shenzhen
built environment. However, over 99% of these units, the actual number of bikes is higher than the
number of optimized bikes, which indicates that the supply is higher than the demand. In particular,
the number of bikes in the central area exceeds the number of optimized bikes by more than 100.
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The result of the HOBA showed that only 219 optimized bikes are needed around Houhai station
exits. The idling of a large number of bikes is a waste of resources and road space. High cycling
requirements do not necessarily correspond to the need for more bikes, especially in areas where the
cycling requirements re self-balanced by user activities. Shared bicycle companies tend to delivery
more bikes in high cycling requirement area to occupy the market. However, for areas with a higher
frequency of use, if the cycling in and out could reach equilibrium, more delivery means less efficiency.
It is more worthwhile to see where the bikes heading to these areas come from. As mentioned earlier,
the key to improving the self-organization process of cycling is to fix the initial positions of the shared
bikes at the optimal positions. Therefore, we would compare the high requirements space of cycling
and the spatial distribution of optimized bikes’ initial positions in the next section.

5.2. Spatial Requirements of Cycling and Spatial Distribution of Optimized Bikes’ Initial Positions

We used the kernel density estimation to compare the requirement space and the ideal supply
space of shared bikes. We defined the origin positions distribution of all valid trips as the requirement
space of cycling, and the initial positions distribution of all optimized bikes as the ideal space of supply
demand. As shown in Figure 6, we find that the requirement spaces are similar on working days
and non-working days, and the correlation coefficient was 0.942 (p < 0.001). The supplying demand
spaces optimized bikes on working days and non-working days has a high correlation coefficient too
(0.862, p < 0.001). We picked the areas with expected values of greater than 25 uses per hectare as
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high requirement areas and those with expected values of greater than 5 bikes per hectare as the high
supply areas for optimized bikes. It can be seen that these areas are consistent or adjacent to the central
areas of each district in Shenzhen.
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Overlay analysis is applied for these spaces, including overlays of the transportation and building
data (Figure 7). The overlay results suggest that: (1) the area with high requirement for cycling is
more consistent with the central areas of the city. Except for the central area of Luohu, other high
requirement areas basically contain the central areas; (2) most of areas with high requirement for
cycling are not necessarily consistent with high supply-demand space, but adjacent, such as Baoan
and Futian central areas; (3) There are also some very stable areas with high demand and supply
both in working or non-working days, especially in Nanshan district. It is easy to understand that
the central areas often bring a lot of cycling requirements because of its high vitality. And due to its
non-residential properties and attractive features to the surrounding area, a large number of cycling in
bikes could meet the cycling requirements without the need of a large supply of shared bikes. One of
the distinguishing features of the Nanshan District, which is different from other central areas, is that
the number of metro stations and lines through it are less than those of other districts. But it is still
difficult to explain why some areas have higher stability of supply demand than others. And these
areas should be our most noteworthy space, because the initial bikes in these areas would result in
higher efficiency. In the next section, we will focus on the initial position of each optimized bike and its
surrounding traffic and the built environment.
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5.3. The Temporal and Spatial Characteristics of the Initial Position of Each Optimized Bike

In this section, the temporal and spatial characteristics of the initial positions of all optimized
bikes are discussed. There are two main reasons for assigning an optimized bike: the departure time
of cycling out is relatively early, or the numbers of cycling in bikes couldn’t meet the demand for
cycling out. Therefore, finding the initial departure time and its surrounding built environment of
these optimized bikes could help us better understand their supply needs. In order to easy statistics,
we set a simple proximity priority for optimized bikes. First of all, the optimized bikes closest to the
public transport facility are considered as demand of transfer. Among the remaining optimized bikes,
public transportation is preferred too. Metro connections are assumed for those bikes within 100 m of
all metro station exits. Bus connections are assumed for those within 50 m of all bus stations. Finally,
the closest building to each remaining unused bike is assumed to be related to the use of that bike.

As shown in Table 1, about 45% of optimized bikes are closest to residential buildings and urban
village buildings. This is because most of the first trip in one day starts from the residence. What’s
interesting is that the area nearby industrial buildings also a significant need for optimized bikes.
Although the metro stations have higher cycling requirements as mentioned by other literature [41],
only 5% of optimized bikes is needed within 100 m of all metro stations. The previous analysis in
Section 5.1 also proved it.
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Table 1. The number and percentage of optimized bikes nearby public transportation facilities and
different buildings.

Near Type
05/06 05/07

Optimized Bikes Percentage Optimized Bikes Percentage

Near metro stations (<100 m) 6902 5.13% 7478 4.91%

Near bus stations (<50 m) 10,693 7.95% 12,664 8.32%

Closest to residential building 34,519 25.65% 33,266 21.86%

Closest to urban village building 29,293 21.77% 35,141 23.09%

Closest to industrial building 24,660 18.32% 25,575 16.80%

Closest to official building 8893 6.61% 11,589 7.61%

Closest to commercial building 7784 5.78% 9894 6.50%

Closest to other building 11,838 8.80% 16,590 10.90%

Total 134,582 100% 152,197 100%

Combining the nearby spatial characteristics and temporal characteristics of the first trip for all
optimized bikes, we obtained Figure 8. In addition to the early peak at 7–9 a.m., there is also a small
peak during the night from 0:00 to 1:00 a.m. This peak is partially because the algorithm searches
for the earliest trip starting at 0:00 a.m., another reason may be the public transportation stoppage
and high taxi prices during the nighttime. Another finding is that industrial buildings, like living
buildings, have the same night peaks and early peak demand both on working and non-working day.
One possible explanation is that these factories implement a three-shift switching working system
which resulted in higher demand for optimized bikes at midnight and early peak time. In general, the
distribution of optimized bikes is mainly in areas where the first trip of cycling out earlier or the number
of cycling in bikes is less than the demand for cycling out. Correspondingly, major destinations for
cycling in, such as commercial buildings and official buildings have less demand for optimized bikes.
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Furthermore, we compare the spatial distributions of optimized bikes in various nearby areas to
identify the specific characteristics of the spatial demand for optimized bikes.

As shown in Figure 9, on working and non-working days, the spatial distribution of optimized bikes
near public transportation facilities displays some spatial characteristics. The metro stations around
the central areas have relatively high optimized bike demands on both working and non-working days,
especially in Nanshan district. Our study found that 53.3% of the employed population in Nanshan
high-tech area lives within 5 km. However, the layout of metro lines in Nanshan district is seriously
mismatched with the commuter corridor [42]. The bus line has similar problems, mainly along the
east-west strip, while the commuter corridor in Nanshan district is north-south. The high demand for
optimized bikes at these public transportation facilities shows that the direct accessibility of public
transportation is poor and require more transfer in the last mile.
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the earliest trip starting at 0:00 am, another reason may be the public transportation stoppage and 
high taxi prices during the nighttime. Another finding is that industrial buildings, like living 
buildings, have the same night peaks and early peak demand both on working and non-working day. 
One possible explanation is that these factories implement a three-shift switching working system 
which resulted in higher demand for optimized bikes at midnight and early peak time. In general, 
the distribution of optimized bikes is mainly in areas where the first trip of cycling out earlier or the 
number of cycling in bikes is less than the demand for cycling out. Correspondingly, major 
destinations for cycling in, such as commercial buildings and official buildings have less demand for 
optimized bikes. 

Furthermore, we compare the spatial distributions of optimized bikes in various nearby areas to 
identify the specific characteristics of the spatial demand for optimized bikes. 
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Similar to the previous analysis, we compared the spatial distribution of optimized bikes in
adjacent buildings to find these relatively stable areas with high demand for shared bikes. As shown
in Figure 10a), urban village buildings next to the central areas have a significantly high demand for
optimized bikes. There is no such obvious spatial characteristic in residential buildings (Figure 10b),
except for the buildings in Nanshan District. Among the industrial buildings, Bantian industrial zone in
Longhua District is very special area which is an industrial production base for electronic information,
biotechnology and new materials in Shenzhen (Figure 10c). Whether the three-shift working system
generally occurs here needs further investigation. For official and commercial buildings, there are also
some such particularly stable areas with relatively high demand for optimized bikes both on weekdays
and non-working days (Figure 10d,e).
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Due to data limitations, we only analyzed the spatial distribution of optimized bikes on two days
and found that the results exhibited high consistency on both working and non-working days. If the
proposed algorithm was applied to a long-term data, more spatial characteristics may be identified to
help us understand the complementary relationship between public transportation and shared bikes
or direct shared bikes for more scientific and effective delivery.

6. Conclusions

The boom of station-free BSSs has increased customer convenience but also caused inefficiency
due to the excessive supply of bikes. It presents regulation challenges for city officials. What is the
optimal fleet size of the station-free BSS which can fully meet the needs of users and make bicycles
be used efficiency as well? How should these bikes be spatially distributed on this supply scale?
This paper, which is based on actual travel data from the station-free BSS in Shenzhen, proposes an
algorithm to construct a travel chain and determine the optimal bike demands in different spatial units.

Our results show that in Shenzhen city, only one-fifth of shared bikes is needed to meet the current
usage demand if the bikes are used efficiency. With a population of 12.52 million in Shenzhen in 2017,
the average number of bikes per 1000 people is 13 vehicles, which is in the range of 10–30 vehicles/1000
people recommended by the Bike Sharing Planning Guide. Correspondingly, our optimized results
increase the average usage number of each bikes from below 1 to above 4, which greatly improved the
efficiency of shared bikes.

Our results also identify some areas with the high spatial requirements of cycling and the ideal
spatial distribution of optimized bikes’ initial positions. If the initial distribution is established
according to this demand, the trips that occur throughout the day can be completed with as few bikes
as possible without reducing the level of user satisfaction. Obviously, the spatial distribution of bikes
will change dramatically at the end of the day. In response to this situation, the operator can relocate
the bikes to the initial distribution using a static strategy at night. Thus, this approach establishes both
a benchmark for the layout of station-free bikes and a target strategy for relocation.

The proposed HBOA is simple in principle, and the calculations are convenient to perform.
Although the calculation results may not be optimal at all times, this information can be used to
significantly improve the use efficiency of shared bikes. Thus, the results could be used by companies
to meet the maximum coverage demand with the smallest number of bikes and as a tool for urban
planners to scientifically manage the station-free BSS. From the perspective of the city as a whole, the
total supply of shared bicycles should be kept at an optimal level to improve the overall operational
efficiency of the urban traffic system. In this sense, it is necessary to break the barriers between different
operators of the overall station-free BSS and enable users to rent and return bikes among different
station-free BSSs. The two-day analysis results reflected the stability of bike use patterns and some
specific differences between working and non-working days. If long-term data from more companies
could be analyzed, the results would be more reliable and further improve the system efficiency by
minimizing the size of the shared bike with the HBOA. In this case, additional physical infrastructure
is not needed, but the current infrastructure could be more intelligently managed.
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