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Abstract: Automation in point cloud data processing is central in knowledge discovery within
decision-making systems. The definition of relevant features is often key for segmentation and
classification, with automated workflows presenting the main challenges. In this paper, we propose a
voxel-based feature engineering that better characterize point clusters and provide strong support to
supervised or unsupervised classification. We provide different feature generalization levels to permit
interoperable frameworks. First, we recommend a shape-based feature set (SF1) that only leverages
the raw X, Y, Z attributes of any point cloud. Afterwards, we derive relationship and topology between
voxel entities to obtain a three-dimensional (3D) structural connectivity feature set (SF2). Finally, we
provide a knowledge-based decision tree to permit infrastructure-related classification. We study
SF1/SF2 synergy on a new semantic segmentation framework for the constitution of a higher semantic
representation of point clouds in relevant clusters. Finally, we benchmark the approach against
novel and best-performing deep-learning methods while using the full S3DIS dataset. We highlight
good performances, easy-integration, and high F1-score (> 85%) for planar-dominant classes that are
comparable to state-of-the-art deep learning.

Keywords: 3D point cloud; voxel; feature extraction; semantic segmentation; classification; 3D
semantics; deep learning

1. Introduction

Extracting knowledge from raw point cloud data is actively driving academic and industrial
research. There is a great need for automated processes that can speed up and make existing frameworks
faster and more reliable. It often integrates a classification step to extract any relevant information
regarding one application domain. However, one classification approach cannot efficiently satisfy all of
the domains as the semantic concepts that are attached to objects and the location can vary, depending
on uses (e.g., considering a chair as an object, or its legs). Therefore, ensuring that such information is
transferable to benefit other applications could provide a great opening on point cloud data usage.
Yet, this is a non-trivial task that necessitates highly interoperable reasoning and a flexible way to
handle data, relationships, and semantics. Our method considers the Gestalt’s theory [1], which states
that the whole is greater than the sum of its parts, and that relationships between the parts can yield
new properties/features. We want to leverage the human visual system predisposition to group sets
of elements.

In this paper, the first goal is to provide a point cloud parsing unit to extract the semantic clusters
through a voxel-based partitioning of the dataset. It permits flexible usage in different domains,
such as Architecture, Engineering, and Construction (AEC), Building Information Modelling (BIM),
Facility Management (FM), indoor navigation, and robotics. The module acts as a standalone within
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a Smart Point Cloud Infrastructure [2]—a set-up where point data is the core of decision-making
processes—and it handles point clouds with heterogeneous characteristics. Indeed, the possibility
to incorporate Knowledge-Extraction routines in existing frameworks has become essential for an
efficient international research cooperation for the sake of interoperable data management. As such,
we investigate an objective solution for versatile 3D point cloud semantic representation transparent
enough to be usable on different point clouds and within different application domains. We propose to
structure a point cloud in Connected Elements that is further refined in Semantic patches using efficient
and low-level voxel-related features. This is primarily motivated by the limitations of point-based
approach, where the amount of data, the redundancy, and the absence of relationships within points
are great performance issues.

In order to assess the possibilities given by the 3D clustering scheme, a semantic segmentation
solution is developed to leverage feature sets that retain both shape and relationship information.
This permit benchmarking the performances and results against the best-performing state of the
art deep-learning methods. Indeed, with the rise in computing power, promising machine learning
techniques, as detailed in [3–15], are a great opening to more reliable and robust 3D objects classification.
However, ground-truth extraction and dataset labelling to create training data are the main drawbacks
in supervised learning. Manually annotating and ensuring the quality of such datasets is a heavily
dauting task. Hence, ways to alleviate these mechanisms through automated tools are essential for
new findings and in training new models.

The experiments were conducted on the full S3DIS [16] indoor dataset as (e.g., Figure 1), but it is
generalizable to outdoor environments with man-made objects/characteristics.
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Figure 1. Voxel-based three-dimensional (3D) semantic segmentation. From left to right: Raw point
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Briefly, this paper makes the following three main contributions:

• a new interoperable point cloud data clustering approach that account variability of domains for
higher-end applications;

• a novel point cloud voxel-based featuring developed to accurately and robustly characterize a
point cloud with local shape descriptors and topology pointers. It is robust to noise, resolution
variation, clutter, occlusion, and point irregularity; and,

• a semantic segmentation framework to efficiently decompose large point clouds in related
Connected Elements (unsupervised) that are specialized through a graph-based approach: it is
fully benchmarked against state-of-the-art deep learning methods. We specifically looked at
parallelization-compatible workflows.

The reminder of this paper is structured, as follows. Section 2 briefly reviews recent related works
dealing with point cloud feature extraction, segmentation, and classification. Section 3 gives the details
of the proposed voxel-based featuring and semantic segmentation. In Section 4, we present the S3DIS
dataset that is used for the different experiments and benchmarks. In Section 5, we study the impact of
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features over the results and analyse the performance of the approach against high-yielding supervised
learning. In Section 6, we discuss our findings and highlight limitations as research directions.

2. Related Works

Feature design occupies a central position in knowledge representation and classification
approaches. As expressed in Section 1, the Gestalt’s theory [1] is fundamental to understand how our
visual cognition systems perceive our surrounding when trying to feed a classifier with information.
It is often very hard to translate the factors into algorithms, while many of them make intuitive sense
(e.g., Figure 2).
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This gives an edge to deep learning approaches, where the emphasis is toward training the
dataset’s constitution rather than feature engineering. In this section, we cover both problematics,
i.e., feature- engineering and point-cloud supervised learning, which is further linked to Sections 3
and 5. First, the features and methods that work well for extracting relevant information from point
clouds are investigated. Subsequently, relevant references and recent works (2015+) that deal with
point clouds semantic segmentation are given to the reader. We specifically look at voxel approaches
and features that already made their proof over complex point cloud artefacts.

2.1. Point Cloud Feature Extraction

In this sub-section, we analyse low-level shape-based approaches that try to extract local descriptors
from the 3D neighbourhood [17]. We refer initially to the pertinent work of Ghorpade et al. [18], which
proposes a review of two-dimensional (2D) and 3D shape representation and it is a good introduction
to obtaining an idea of the landscape of features in use.

The work of Bueno et al. [19] focuses on the detection of geometric key-points and its application
to point cloud registration. The authors primarily study data subsampling to keep the key points
for coarse alignment purposes. These points are obtained using an approach that is mainly based
on the features of eigen entropy, change of curvature, and planarity. Indeed, they state that these
provide a good representation in both, visual, and mathematical value of the point clouds. This is
found in many recent works, such as [20,21], where authors also use local eigen-based features for
disaster damage detection through synergistic use of deep learning. The work of Blomley et al. [22]
provides larger insights on the common geometric (e.g., eigen-based) covariance features in varying
scale scenarios. In 2018, Thomas et al. proposed a semantic classification of 3D point clouds in [8],
which also employs eigen-based features as well as colour derived feature. The specificity lies in
the definition of a multiscale neighbourhoods, which allows for the computation of features with a
consistent geometrical meaning. The authors in [23] also uses several eigen-based feature, spectral and
colour-derived features for the classification of aerial LiDAR point clouds. The features, coupled with
their approach, provide good results, and therefore orient our choice of features toward eigen-based
features, for they are representative of local neighbourhood as well as low-knowledge requirement.

Other recent works for learning local structures [24] or local shape properties [14] highlighted
the wide acceptation of normals. In [24], Shen et al. present two new operations to improve
PointNet [25]—one of the earliest deep learning reference for point cloud semantic segmentation—with
a more efficient exploitation of local structures. The first one focuses on local 3D geometric structures.
In analogy to a convolution kernel for images, they define a point-set kernel as a set of learnable 3D
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points that jointly respond to a set of neighbouring data points according to their geometric affinities,
as measured by kernel correlation. The second one exploits local high-dimensional feature structures
by recursive feature aggregation on a nearest-neighbour-graph computed from 3D positions. They
specifically state that “As a basic surface property, surface normals are heavily used in many areas
including 3D shape reconstruction, plane extraction, and point set registration” [26–30]. The paper
of Song et al. [31] provides a comparison of normal estimation methods, which can also be achieved
via neural networks, such as PCPNet [14]. In this last article, Guerrero et al. propose a deep-learning
method for estimating the local 3D shape properties in point clouds. The approach is especially
well-adapted for estimating local shape properties, such as normals (both unoriented and oriented) and
curvature from raw point clouds in the presence of strong noise and multi-scale features. Therefore,
we will specifically integrate normal within our workflow, while looking at performance issues during
its computation.

Edge-based features have also been investigated in [32] or [33], but their applicability is mostly
oriented toward point cloud line tracing. Thus, we confront large performance issues due to analysing
geometric properties of each point’s neighbourhood, and combining RANSAC [34,35] and angular gap
metrics to detect the edges. While extended in [36] to contour the extraction of large 3D point clouds,
we will specifically avoid region growing approaches due to performance limitations.

2.2. Semantic Segmentation Applied to Point Clouds

The first challenge in pure segmentation frameworks is to obtain group of points that can describe
with the organization of the data by a relevant clustering enough detachment. The work of Papon et al.
have provided the first approach of using relationships while conserving the point-based flexibility [32].
They propose an over-segmentation algorithm using ‘supervoxels’, an analogue of the superpixel
approach for 2D methods. Based on a local k-means clustering, they try and group the voxels with
similar feature signatures (39-dimensional vector) to obtain segments. The work is interesting because
it is one of the earliest to try and propose a voxel-clustering with the aim of proposing a generalist
decomposition of point cloud data in segments. Son et Kim use such a structure in [37] for indoor
point cloud data segmentation. They aim at generating the as-built BIMs from laser-scan data obtained
during the construction phase. Their approach consists of three steps: region-of-interest detection to
distinguish the 3D points that are part of the structural elements to be modelled, scene segmentation
to partition the 3D points into meaningful parts comprising different types of elements while using
local concave and convex properties between structural elements, and volumetric representation.
The approach clearly shows the dominance of planar features in man-made environments.

Another very pertinent work is [38], which proposes a SigVox descriptor. The paper first categorizes
object recognition task following the approach of: (1) model-fitting based (starts with segmenting
and clustering point cloud, followed by fitting point segments); (2) semantic methods (based on a set
of rule-based prior knowledge); and, (3) shape-based methods (shape featuring from implicit and
explicit point clusters). They use a 3D ‘EGI’ descriptor to differentiate voxels that only extract specific
values from a Principal Component Analysis (PCA) [39]. The approach proves useful for MLS point
clouds, grouping points in object candidates, following the number. Another voxel-based segmentation
approach is given in [40,41] while using a probabilistic connectivity model. The authors use a voxel
structure, in which they extract local contextual pairwise-connectivity. It uses geometric “cues” in
a local Euclidean neighbourhood to study the possible similarity between voxels. This approach
is similar to [42], where the authors classify a 2.5D aerial LiDAR point cloud multi-level semantic
relationships description (point homogeneity, supervoxel adjacency, class-knowledge constraints).
They use a feature set, among others, composed of the elevation above ground, normal vectors,
variances, and eigen-based features. Another analogous approach can be found in [43] for building
point detection from vehicle-borne LiDAR data based on voxel group and horizontal hollow analysis.
Authors present a framework for automatic building point extraction, which includes three main steps:
voxel group-based shape recognition, category-oriented merging, and building point identification by
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horizontal hollow ratio analysis. This article proposes a concept of “voxel group”, where each group is
composed of several voxels that belong to one single class-dependent object. Subsequently, the shapes
of point clouds in each voxel group are recognized and this shape information is utilized to merge the
voxel group. This article efficiently leverages a sensory characteristic of vehicle-borne LiDAR building
data but specializes the approach in consequence.

The references [44,45] are built upon a graph-based over-segmentation methodology that
is composed of a local 3D variation extraction, a graph construction, descriptor computation,
and edge-wise assignment, followed by sequential subgraph criteria-based merging. The used
descriptors are mainly RGB, location and normal vectors on top of the fast point feature histogram [46].
While the approach is domain-related, it offers some additional insight regarding the power of relational
approaches between local point patches for the task of semantic segmentation. However, as shown
in [10], using a multi-scale voxel representation of 3D space is very beneficial, even in complexity
reduction of terrestrial lidar data. The authors propose a combination of point and voxel generated
features to segment 3D point clouds into homogenous groups in order to study the surface changes
and vegetation cover. The results suggest that the combination of point and voxel features represent
the dataset well, which shows the benefit of dual representations. The work of [17] uses Random
Forests for aerial Lidar point cloud segmentation, which aims at extracting planar, smooth, and rough
surfaces, being classified using semantic rules. This is interesting to answer specific domains through
ontology formalization.

These methodologies contrast with deep learning approaches, as they try to solve the semantic
segmentation problem by first understanding which set of features/relations will be useful to obtain the
relevant results. The following methodologies directly start with the data and will learn by themselves
how to combine the initial attributes (X, Y, Z, R, G, B . . . ) into efficient features for the task at hand.
Following PointNet [25] and PointNet++ [47], which are considered as a baseline approach in the
community, other work applied deep learning to point set input or voxel representations.

The end-to-end framework SEGCloud [48] combines a 3D-FCNN, trilinear interpolation, and CRF
to provide class labels for 3D point clouds. Their approach is mainly performance-oriented when
compared to state-of-the-art methods that are based on neural networks, random forests, and graphical
models. Interestingly, they use a trilinear interpolation, which adds an extra boost in performance,
enabling segmentation in the original 3D points space from the voxel representation. Landrieu and
Simonovsky provide another promising approach for large scale Point Cloud semantic segmentation
with Superpoint graphs [49]. In the article, the authors propose a deep learning-based framework
for semantic segmentation of point clouds. They initially postulate that the organization of 3D point
clouds can be efficiently captured by a structure (Superpoint graph), which is derived from a partition
of the scanned scene into geometrically homogeneous elements. Their goal is to offer a compact
representation of the contextual relationships between object parts to exploit through convolutional
network. In essence, the approach is similar to [2,50], through a graph-based representation. Finally,
the works of Engelmann et al. in [12,51] provides very interesting performances by including the spatial
context into the PointNet neural network architecture [51] or providing an efficient feature learning
and neighbourhood selection strategy [12]. These works are very inspiring, and they have the potential
to become de-facto methodologies for a wide variety of application through transfer learning. As such,
they comprise very good methodologies for benchmarking semantic segmentation approaches.

We highlighted three different directions that will drive our methodology in this state-of-the-art
review of pertinent related work. First, it is important that we identify the key points in a point cloud that
can retain a relevant connotation to domain-related objects. Secondly, we noted that, for gravity-based
scenes, these elements have a space continuity and often feature homogeneity. Third, specifically,
man-made scenes retain a high proportion of planar surfaces that can host other elements (floor,
ceiling, wall . . . ) [52]. Therefore, detecting these constitutes a central first step in our methodological
framework, but they must be quick, scalable, robust, reliable, and flexible. It is important to note that
the global context may be lost if working with relatively small neighbourhood samples.
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3. Materials and Methods

In this section, we describe a point cloud parsing method to extract semantic clusters (Connected
Elements [50]), which can be refined in application-dependent classes.

Our automatic procedure is serialized in seven steps, as illustrated in Figure 3 and described in
the four following sub-sections. In Section 3.1, we describe the voxel grid constitution. In Section 3.2,
we cover feature extraction processes for low-level shape descriptors (Section 3.2.1) and relational
features (Section 3.2.2). Subsequently, in Section 3.3 we provide a connected-component system using
extracted feature sets SF1 and SF2, followed by a point-level refinement within each voxel to obtain
Semantic patches. Finally, we propose a graph-based assembly for the constitution of Connected
Elements [2] and a classification routine to obtain labelled point data (Section 3.4) benchmarked in
Section 5.
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dataset (red square).

3.1. Voxelisation Grid Constitution

Our approach proposes integrating different generalization levels in both feature space and spatial
space. First, we establish an octree-derived voxel grid over the point cloud and we store points at the
leaf level. As stated in [53–55], an octree involves recursively subdividing an initial bounding-box into
smaller voxels until a depth level is reached. Various termination criteria may be used: the minimal
voxel size, predefined maximum depth tree, or a maximum number of sample points within a voxel. In
the proposed algorithm, a maximum depth tree is used to avoid the computations necessitating domain
knowledge early on. We study the impact of tree depth selection over performances in Section 5,
starting at a minimum level of 4 to study the influence of the design choice. The grid is constructed
following the initial spatial frame system of the point cloud to account for complex scenarios where
point repartition does not precisely follow the axes.

Let pi be a point in Rs, with s the number of dimensions. We have a point cloud P =
{
pi
}n
i=1 with

n the number of points in the point cloud. LetVi, j,k be a voxel of P identified by a label Li, containing
m points from P.

The cubic volume, defined by a voxel entity, provides us with the advantage of fast yet uniform
space division, and we hence obtain an octree-based voxel structure at a specific depth level. Our
approach, similarly to [56], is constructed using indexes to avoid overhead. The constituted voxel grid,
with the goal of creating Connected Elements discards, empty voxels to only retain points-filled voxels.
However, for higher end applications, such as pathfinding, the voxel-grid can be used as a negative to
look for empty spaces. Subsequently, we construct a directed graph }, defined by a set v(}) of inner
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nodes, a set e(}) of edges, and a set ve(}) of leaf nodes, with each representing a non-empty voxel at an
octree level, illustrated over a room sample of the S3DIS dataset in Figure 4.
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Once each point has been assigned to a voxel regarding the defined grid within the R3 Euclidean
space along

→
ex,
→
ey,
→
ez, we consider the leaf nodes ve(}) of } as our representative primitive.

3.2. Feature Extraction

We aim at extracting a robust feature set for general semantic segmentation frameworks, as a single
object of the resulting feature vector is hardly interpretable [57]. To insure interoperable workflows,
we used descriptors that were thoroughly studied and made their proof in various works referred in
Section 2.

Our new voxel-primitive serves as an initial feature host, and it acts as a point neighbourhood
selection approach. These can then be transferred following the structure of }, permitting feature
transfer at every octree depth level extended to the point-storage (Figure 5).
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Figure 5. Feature transfer between octree levels. We note that each non-empty node describes a voxel
which can then permit a point-level access for example to compute feature sets (here, a planar voxel
and a corresponding SF1 sample, and a transition voxel and its corresponding SF1 sample).

This permits a flexible and unconstrained feature-based point cloud parsing, which can process
raw data (i.e., pure X, Y, Z Euclidean sets). In the next Section 3.2.1, we present several low-level
shape-based features that are used to construct our SF1 feature set. Afterwards, we explain our
relationship-level feature set (SF2) that permits leveraging local topology and relationships at different
cluster levels.
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3.2.1. Low-Level Shape-Based Features (SF1)

The first group of low-level features is mainly derived from Σ, our data covariance matrix of points
within each voxel for the low memory footprint and fast calculation, which, in our case, we define as:

Σ =
1

m− 1

m∑
i=1

(
Xi −X

)(
Xi −X

)T
(1)

where X is the mean vector X =
m∑

i=1
pi.

From this high yielding matrix, we derive eigen values and eigen vectors through Singular Value
Decomposition [58] to increase the computing efficiency, which firstly correspond to modelling our voxel
containment by a plane, showing to largely improve performances. We follow a Principal Component
Analysis (PCA) to describe three principal axes describing the point sample dispersion. Thus, we
rely heavily on eigen vectors and eigen values as a feature descriptor at this point. Therefore, their
determination needs to be robust. This is why we use a variant of the Robust PCA approach presented
in the article [59] to avoid miscalculation. We sort eigenvalues λ1, λ2, λ3, such as λ1 > λ2 > λ3, where
linked eigen vector

→
v1,

→
v2,

→
v3, respectively, represent the principal direction, its orthogonal direction,

and the estimated plane normal. These indicators, as reviewed in Section 2, are interesting for deriving
several eigen-based features [23], as following:

λa = (λ1 − λ3)/λ1 (2)

λl = (λ1 − λ2)/λ1 (3)

λp = (λ2 − λ3)/λ1 (4)

λv = λ3/
3∑

i=1

λi (5)

λo =
3

√√√ 3∏
i=1

λi (6)

λs = λ3/λ1 (7)

λe = −
3∑

i=1

λi ∗ ln(λi) (8)

where for the voxelVi, j,k, λa is its anisotropy, λl its linearity, λp its planarity, λv its surface variation,
λo its omnivariance, λs its sphericity, and λe its eigen entropy. Table 1 summarizes the first set of
eigen-based features.

Table 1. Eigen-based features part of the SF1 feature set.

Eigen-Based Feature Description

λ1,λ2,λ3 Eigen values ofVi, j,k where λ1 > λ2 > λ3
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We extract a second geometry-related set of features (Table 2), starting withVix, Viy, Viz the
mean value of points within a voxelVi, j,k.

Table 2. Geometrical features part of the SF1 feature set.

Geometrical Feature Description

Vix, Vi y, Viz
Mean value of points inVi, j,k respectively

along
→
ex,
→
ey,
→
ez
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σix
2, σi y

2, σiz
2 Variance of points in voxelVi, j,k

VAp Area of points inVi, j,k along
→

nV (
→
v3)

VA Area of points inVi, j,k along
→
ez

m Number of points inVi, j,k

VV Volume occupied by points inVi, j,k

DV point density within voxelVi, j,k

The area features VAp, VA are obtained through a convex hull (Equation (10)) analysis,

respectively, along
→
v3 and

→
ez. The third is the local point density within the segment, which is

defined as follows:
DV =

m
VV

(9)

where VV is the minimum volume calculated through a 3D convex hull, such as:

Conv(P) = {
|P|∑
i=1

αiqi|(∀i : αi ≥ 0)∧
|P|∑
i=1

αI = 1} (10)

VV =
1
3

∣∣∣∣∣∣∣∣
m∑

j=1

(
→

QF.
→
nF

)
area(F)

∣∣∣∣∣∣∣∣ (11)

We standardize their values from different dynamic ranges into a specified range, in order to
prevent outweighing some attributes and to equalize the magnitude and variability of all features.
There are three common normalization methods, as referred in [10]: Min-max, Z-score, and decimal
scaling normalization. In this research, we use Min-max method that has been found to be empirically
more computationally efficient in normalizing the multiple features F in FN, normalized feature in a
[0 : 1] range:

FN =
F−min(F)

max(F) −min(F)
(12)

We combine eigen-based features and geometrical features for easier data visualization in two
separate spider charts (e.g., in Tables 1 and 2). Subsequently, we plot normalized distributions
per-voxel category (e.g., in Figure 6) to better understand the variations within features per
element category.



ISPRS Int. J. Geo-Inf. 2019, 8, 213 10 of 34

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  9 of 35 

 

Table 2: Geometrical features part of the SF1 feature set. 

Geometrical 
Feature Description , ,  Mean value of points in , ,  respectively 

along , ,   
 , ,  Variance of points in voxel , ,   

 Area of points in , ,  along  ( )  
 Area of points in , , along   
 Number of points in , ,   
 Volume occupied by points in , ,    
 point density within voxel , ,   

The area features ,  are obtained through a convex hull (Eq. 10) analysis, respectively, 
along  and . The third is the local point density within the segment, which is defined as follows: =  (9) 

where  is the minimum volume calculated through a 3D convex hull, such as: = ∑| | ∀ : 0 ∧ ∑ = 1| |  (10) = 13 .  (11) 

We standardize their values from different dynamic ranges into a specified range, in order to 
prevent outweighing some attributes and to equalize the magnitude and variability of all features. 
There are three common normalization methods, as referred in [10]: Min-max, Z-score, and decimal 
scaling normalization. In this research, we use Min-max method that has been found to be 
empirically more computationally efficient in normalizing the multiple features  in , 
normalized feature in a 0: 1 	range:  = min	max min	  (12) 

We combine eigen-based features and geometrical features for easier data visualization in two 
separate spider charts (e.g. in Table 1 and Table 2). Subsequently, we plot normalized distributions 
per-voxel category (e.g. in Figure 6) to better understand the variations within features per element 
category. 

  
Figure 6: Box plot of primary elements feature variation. 

We note that, for the example of Primary Elements (mostly planar, described in Section 3.3), 
there is a strong similarity within the global voxel feature sets, except for orientation-related features 
(Normals, Position, Centroids). 

3.2.2. Connectivity and Relationship Features (SF2) 

Figure 6. Box plot of primary elements feature variation.

We note that, for the example of Primary Elements (mostly planar, described in Section 3.3),
there is a strong similarity within the global voxel feature sets, except for orientation-related features
(Normals, Position, Centroids).

3.2.2. Connectivity and Relationship Features (SF2)

There are very few works that deal with explicit relationship feature extraction within point
clouds. The complexity and exponential computation to extract relevant information at the point-level
mostly justify this. Thus, the second set of proposed feature set (SF2) is determined at several octree
levels. First, we extract a 26-connectivity graph for each leaf voxel, which appoints every neighbour
for every voxel. These connectivity are primarily classified regarding their touch-topology [60], which
either is vertex.touch, edge.touch, or face.touch (Figure 7).
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Each processed voxel is complemented through new relational features to complement this
characterization of voxel-to-voxel topology. Immediate neighbouring voxels are initially studied
to extract Fg (geometrical difference) while using the log Euclidean Riemannian metric, which is a
measure of the similarity between adjacent voxels covariance matrices:

Fg = ‖ log Σvi − log Σv j‖F (13)

where log(.) is the matrix logarithm operator and ‖.‖F is the Frobenius norm.
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If the SF1 feature set is available (non-constrained through computational savings) and, depending
on the desired characterization, these are favoured for an initial voxel tagging.

We estimate concavity and convexity between adjacent voxels to get higher end characterization
while limiting the thread surcharge to a local vicinity. It refines the description of the graph edge
between the processed node (voxel) and each of its neighbours (Algorithm 1). We define αV the angle
between two voxelsVi andV j, as:

αV =
→

nVi · (
→

ΣVi −
→

ΣV j) (14)

Algorithm 1. Voxel Relation Convexity/Concavity Tagging

Require: A voxelVi and its direct vicinity
{
V j

}26

j=1
expressed as a graph }.

1. For eachV j , ∅ do
2. αV ← angle between normal of voxels
3. if αV < 0 then
4. ei j(})← edge betweenVi andV j is tagged as Concave
5. else ei j(})← edge betweenVi andV j is tagged as Convex
6. end if
7. end for
8. end
9. return (})

Third, we extract four different planarity-based relationships (Figure 8) between voxels, being:

• Pure Horizontal relationship: ForVi, if an adjacent voxelV j has a
→
v3 colinear to the main direction

(vertical in gravity-based scenes), then the edge e
(
vi, v j

)
is taggedH∇. If two adjacent nodes vi

and v j hold an H∇ relationship and both
→
v3 are not colinear, they are connected by a directed

edge, ed
(
vi, v j

)
, where vi is the starting node. In practice, voxels that are near horizontal surfaces

hold this relationship.

• Pure Vertical relationship: ForVi, if an adjacent voxelV j has a
→
v3 orthogonal to the main direction

(vertical in gravity-based scenes), then the edge e
(
vi, v j

)
is taggedVe. If two adjacent nodes vi and

v j are connected throughV∇ and both
→
v3 are coplanar but not colinear, then they are connected

by a directed edge, ed
(
vi, v j

)
. In the case that we are in a gravity-based scenario, they are further

refined following
→
v1 and

→
v2 axis. These typically includes voxels that are near vertical surfaces.

• Mixed relationship: ForVi, if within its 26-connectivity neighbours, the node vi presentsVe and
H∇ edges, then vi is tagged asM∇. In practice, voxels near both horizontal and vertical surfaces
hold this relationship.

• Neighbouring relationship. If two voxels do not hold one of these former constraining relationships
but are neighbours, then the associated nodes are connected by an undirected edge without tags.
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Illustrated on the S3DIS dataset, Figure 9 is an example of the different voxel-categories:
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Figure 9. S3DIS points within categorized voxels. (a) Full transition voxels, (b) vertical group of points,
(c) horizontal group of points, and (d) mixed group of points.

Finally, the number of relationships per voxel is accounted as the edge weights pondered by the
type of voxel-to-voxel topology, where vertex.touch = 1, edge.touch = 2, and face.touch = 3. We obtain
a feature set SF2, as in Table 3:

Table 3. Relational features of the SF2 feature set for three-dimensional (3D) structural connectivity.

Relational Feature Description

g26(i)
Graph of voxel entity i and its neighbours retaining voxel topology

(vertex.touch, edge.touch, face.touch)
Fg Geometrical difference

g26−cc(i) g26(i) retaining Convex/Concave tags.
g26−cc−p(i) g26−cc(i) retaining planarity tags (H∇,V∇,M∇).
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This is translated into a multi-set graph representation to give a flexible featuring possibility to
the initial point cloud. As such, extended vicinity is then a possible seed/host of new relationships that
permit a topology view of the organization of voxels within the point cloud (e.g., Figure 10).
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These relationships are represented in different groups to extract different features completing the
relationship feature set. Graphs are automatically generated through full voxel samples regarding the
Category tags and Convex-Concave tags.

3.3. Connected Element Constitution and Voxel Refinement

Based on the feature sets SF1 and SF2, we propose a connected-component workflow that is
driven by planar patches. Connected-component labelling is one of the most important processes for
image analysis, image understanding, pattern recognition, and computer vision, and it is reviewed
in [61]. Being mostly applied for 2D data, we extend it to our 3D octree structure for efficient processing
and parallelization compatibility. We study the predominance of planar surfaces in man-made
environments and the feature-related descriptor, which provides segmentation benefits. The designed
feature representations that are described in Section 3.2 are used as a mean to segment the gridded
point cloud into groups of voxels that share a conceptual similarity. These groups are categorized
within four different entities: Primary Elements (PE), Secondary elements (SE), transition elements
(TE), and remaining elements (RE), as illustrated in Figure 11.

We start by detecting the PE using both feature sets. Initially, we group the voxels that answer a
collinearity condition with the main direction. This condition is translated by comparing the angle of
normalized vectors against a threshold due to the normal dispersion in voxel sets (which has no exact
collinear match):

αv < tha with αv = cos−1


→

v3(i).
→

v3( j)

‖

→

v3(i).
→

v3( j)‖

 (15)

We then cluster linked nodes through connected-component labelling using SF2. PE mainly
presents clusters of points that are the main elements of furniture (table top, chair seat . . . ) or ceiling
and ground entities.
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SE are constituted of voxels that hold
→
v3 orthogonal to the main direction, being further decomposed

along
→
v1 and

→
v2. As such, they are usually constituted of elements that belong to walls, and horizontal

planar-parts of doors, beams . . .
The “edges” voxels that are within the set of tagged voxels

{
H∇,V∇,M∇

}
are seeds to constitute

TE, which are then further decomposed (voxel refinement) in semantic patches with homogeneous
labelling, depending on their inner point characterization. As such, they play an important role in
understanding the relationships between the primary, secondary, and remaining elements. They are
initially grouped based on Fg and clustered in connected-components using g26−cc−p(i) (SF2). The voxels
containing “edges” (e.g., in Figure 12) or multiple possible points that should belong to separate objects
are further subdivided by studying the topology and features with their neighbouring elements.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  13 of 35 

 

 
Figure 11: Elements detection and categorization. A point cloud is search for Primary Elements (PE), 
the rest is searched for Secondary elements (SE). The remaining from this step is searched for 
transition elements (TE), leaving remaining elements (RE). TE permits extracting graphs through SF2 
analysis with PE, SE, and RE. 

We start by detecting the PE using both feature sets. Initially, we group the voxels that answer a 
collinearity condition with the main direction. This condition is translated by comparing the angle of 
normalized vectors against a threshold due to the normal dispersion in voxel sets (which has no 
exact collinear match): 				 				 = cos ..  (15) 

We then cluster linked nodes through connected-component labelling using SF2. PE mainly 
presents clusters of points that are the main elements of furniture (table top, chair seat…) or ceiling 
and ground entities. 

SE are constituted of voxels that hold  orthogonal to the main direction, being further 
decomposed along  and . As such, they are usually constituted of elements that belong to 
walls, and horizontal planar-parts of doors, beams …  

The “edges” voxels that are within the set of tagged voxels , ,  are seeds to 
constitute TE, which are then further decomposed (voxel refinement) in semantic patches with 
homogeneous labelling, depending on their inner point characterization. As such, they play an 
important role in understanding the relationships between the primary, secondary, and remaining 
elements. They are initially grouped based on  and clustered in connected-components using 

 (SF2). The voxels containing “edges” (e.g. in Figure 12) or multiple possible points that 
should belong to separate objects are further subdivided by studying the topology and features with 
their neighbouring elements.  

 
Figure 12: Edges elements to be decomposed in TE and RE. 

Finally, the remaining voxels are labelled through connected-components as RE, and their 
SF1-similarity is aggregated as a feature descriptor. For each element within the Connected Elements 

Figure 12. Edges elements to be decomposed in TE and RE.

Finally, the remaining voxels are labelled through connected-components as RE, and their
SF1-similarity is aggregated as a feature descriptor. For each element within the Connected Elements
(CEL) set {PE, SE, TE, RE}, the voxel features are aggregated to obtain a global SF1 and SF2 feature
set per CEL, being updated through voxel refinement. Implementation-wise, CEL are sorted by
occupied volume after being sorted per category, Relationships exist between primary, secondary,
edges, and remaining elements due to their voxel-based direct topology. This proximity is used to
refine voxels (thus elements) by extracting points within voxel neighbours of an element εi, which
belongs to an element ε j based on defined SF1 features of εi-voxel. This permit leveraging planar-based
dominance in man-made scenes using, for example, eigen-based features. Thus, we extract a new
connectivity graph between CEL where the weight of relationships is determined using the number
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of connected voxels. This allows for refining the transition voxels based on their local topology and
connectivity to the surrounding elements. Therefore, the global element’s features play the role of
reference descriptors per segment, and the points within targeted voxels for refinement are compared
against these. If within voxel points justify belonging to another Connected Element, then the voxel is
split in semantic patches, which each retains a homogeneous CEL label. The final structure retains
unique CEL labels per leaf, where the leaves that are called semantic patches are either pure voxel or
voxel’s leaf.

We obtain a graph-set composed of a general CEL graph, a PE graph, a SE graph, a TE graph,
a RE graph, and any combination of PE, SE, TE, and RE (e.g., Figure 13):
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We establish a graph-based semantic segmentation over these CEL in order to estimate the impact
of designed features, as described in Section 3.4.

3.4. Graph-based Semantic Segmentation

We first employ a multi-graph-cut (set of edges whose removal makes the different graphs
disconnected) approach depending on the weight of edges defining the strength of relations for every
CEL in the graph-set, where the associated cut cost is:

cut
(
εi, ε j

)
=

∑
pεεi,qεε j

wpq (16)

where wpq is the weight of the edge between nodes p and q. We use normalized cut by normalizing for
the size of each segment in order to avoid min-cut bias:

Ncut
(
εi, ε j

)
=

cut
(
εi, ε j

)∑
kεeεi (g) wk

+
cut

(
εi, ε j

)∑
kεeε j (g) wk

(17)

where eεi(g) are the edges that touches εi, and eεi(g) are the edges that touches ε j.
Our approach was thought as a mean of only providing a first estimate of the representativity of

CELs in semantic segmentation workflows, especially to differentiate big planar portions. As such,
the provided classifier is very naïve, and it will be the subject of many improvements in the near future
for better flexibility and to reduce empirical knowledge. It was constructed for indoor applications.
For example, a segment with the largest membership to the ceiling might belong to beam or wall,
and a segment with the largest membership to floor might belong to the wall or door. To handle such
semantic mismatches, the graph gCEL, that was previously constructed is used to refine the sample
selection using the following rules and the search sequence starting from the class floor, and it is
followed by the class ceiling, wall, beam, table, bookcase, chair, and door. Once a node is labelled
with one of these classes, it is excluded from the list of nodes being considered in the sample selection.
The definition of thresholds was directly extracted from knowledge regarding the dimension of
furniture objects from the European Standard EN1729-1:2015. As for the concepts at hand, these were
defined regarding the Semantic Web resources, mainly the ifcOWL formalized ontology representing
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the Industry Foundation Classes application knowledge [62]. It is important to note that the furniture
(chair, table, bookcases) models were extracted from these rules and we then simulated the scan
positions to obtain simulated data. Indeed, sensors artefacts produce noisy point clouds, which can
then slightly change the definition of thresholds. The obtained samples were then looked against five
objects of the S3DIS to ensure consistency with the device knowledge.

(1) A node is tagged “floor” when for a primary element pεi and all primary elements pε:

VA(pεi) ∈ maximas(VA(pε)) &
∑

k

epεi

(
gpε

)
∈ maximas() & Zpεi ∈ maximas

(
Zpε

)
(18)

with
∑

k epεi

(
gpε

)
being the sum of edge weights of all outgoing edges and incoming edges.

(2) The “ceiling” is similar to the “floor” labelling, with the difference that Zpεi is searched among
minimas of pε.

(3) Once all of the ceiling and floor segments are identified, the nodes in the graph gsε of secondary
elements are searched for “wall” segments by first identifying all of the nodes that are connected to the
ceiling or floor nodes through the edges of the designated relationships. The area feature guides the
detection through thresholding to exclude non-maxima to handle complex cases.

(4) To identify “beams”, a sub-graph gr−pε−sε composed of remaining non-classified elements from
PE and SE is generated. A connected-component labelling is performed guided by transition elements.
It is then searched for nodes that are connected to the ceiling and the walls, which are then classified as
“beam” segments.

(5) The “table” segments are extracted by the remaining elements of primary elements, if its SF1
feature set presents a correspondence of more than 50% with a sample table object. We note that
the predominant factor is the height that is found within 70 and 110 cm from the ground segment.
The feature correspondence is a simple non-weighted difference measure between the averaged SF1
features between the sample and the compared element. The sample element is constructed by
following the domain concepts and thresholds, as explained previously.

(6) We identify “bookcases” if it presents a direct SF2 connectivity to wall segments and a SF1
feature correspondence of more than 50% from the remaining elements of RE.

(7) Subsequently, RE and remaining PE are aggregated through connected components and tagged
as “chair” if their mean height above ground is under 100 cm.

(8) All of the unclassified remaining nodes are aggregated in a temporary graph and a
connected-component labelling is executed. An element is tagged as “door” if the bounding-box
element’s generalization intersect a wall segment.

(9) Every remaining element is classified as “clutter”.
By using the above nine rules, ceiling, floor, wall, beam, table, chair, bookcase, door, and clutter

classes are looked for, going from raw point cloud to a classified dataset as illustrated in Figure 14.
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4. Dataset

We evaluated feature performance in one application context to test our approach: 3D semantic
segmentation for the indoor environment. We used the S3DIS dataset [16] from the Matterport
sensor [63]. It is composed of six areas that are each subdivided in a specific number of rooms
(Table 4) for a total of 270 sub-spaces [50]. These areas show diverse properties and include 156 offices,
11 conference rooms, two auditoriums, three lobbies, three lounges, 61 hallways, two copy rooms, three
pantries, one open space, 19 storage rooms, and nine restrooms. One of the areas includes multiple
floors, whereas the rest have one, and is very representative of building indoor spaces. The dataset is
very noisy, presents imprecise geometries, clutter, and heavy occlusion. We noted that some points
were mislabelled in the ground-truth labels during the tests, and that several duplicate points (points
where the distance is inferior to 10−9 m from one another) add an extra bias. However, it was chosen,
as it is a big dataset that provides a high variability of scene organization and it is currently used
for benchmarking new algorithms. It is a very interesting opportunity to evaluate the robustness of
our approach and to study the impact of features and their robustness to hefty point cloud artefacts.
We remind the readers that the goal is to obtain relevant semantic patches constituting Connected
Elements in a Smart Point Cloud Infrastructure.

Table 4. The S3DIS dataset and its six areas used for testing our methodology.

Area-1 Area-2 Area-3 Area-4 Area-5 Area-6
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#Points 43 956 907 470 023 210 18 662 173 43 278 148 78 649 818 41 308 364
Area (m2) 965 1100 450 870 1700 935

Rooms (nb) 44 40 23 47 68 48

We consider nine out of 13 classes in the S3DIS dataset, which hold 88.5% of the total number
of segments representing both moveable and structural elements. The choice was motivated by the
colour-dependence of the remaining classes. Indeed, in this article, we focus on a general approach
with minimal input and, as such, we filtered the initial dataset before computing metrics for every
point initially assigned to one of the following classes: column, window, sofa, and board. Thus, our
approach runs on the full dataset, but we compare only these classes as accounted in Table 5:
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Table 5. S3DIS per-area statistics regarding the studied classes.

Method
Ceiling Floor Wall Beam Door Table Chair Bookcase Others

0 1 2 3 6 7 8 10 12

Area 1 56 45 235 62 87 70 156 91 123
Area 2 82 51 284 62 94 47 546 49 92
Area 3 38 24 160 14 38 31 68 42 45
Area 4 74 51 281 4 108 80 160 99 106
Area 5 77 69 344 4 128 155 259 218 183
Area 6 64 50 248 69 94 78 180 91 127

Full
S3DIS 391 290 1552 215 549 461 1369 590 676

5. Results

5.1. Metrics

Existing literature has suggested several quantitative metrics for assessing the semantic
segmentation and classification outcomes. We define the metrics regarding the following terms
that were extracted from a confusion matrix C of size n× n (with n the number of labels, and each term
denoted ci j):

• True Positive (TP): Observation is positive and is predicted to be positive.
• False Negative (FN): Observation is positive but is predicted negative.
• True Negative (TN): Observation is negative and is predicted to be negative.
• False Positive (FP): Observation is negative but is predicted positive.

Subsequently, the following metrics are used:

IoUi =
TPi

FPi + FNi + TPi
equivalent to IoUi =

cii
cii +

∑
j,i ci j +

∑
k,i cki

(19)

IoU =
TP

FP + FN + TP
equivalent to IoU =

∑n
i=1 IoUi

n
(20)

oAcc =

∑n
i=1

TPi
FPi+TPi

n
equivalent to oAcc =

∑n
i=1 cii∑n

j=1
∑n

k=1 c jk
(21)

precision =
TP

TP + FP
, recall =

TP
TP + FN

, F1−score =
2TP

2TP + FP + FN
(22)

The Overall Accuracy (oAcc) is a general measure on all observation about the performance of
the classifier to correctly predict labels. The precision is the ability of the classifier not to label as
positive a sample that is negative, the recall is intuitively the ability of the classifier to find all of the
positive samples, The F1-score can be interpreted as a weighted harmonic mean of the precision and
recall, thus giving a good measure of how well the classifier performs. Indeed, global accuracy metrics
are not appropriate evaluation measures when class frequencies are unbalanced, which is the case
in most scenarios, both in real indoor and outdoor scenes, since they are biased by the dominant
classes. In general, the Intersection-Over-Union (IoU) metric tends to penalize the single instances
of bad classification more than the F1-score, even when they can both agree that this one instance
is bad. Thus, the IoU metric tends to have a “squaring” effect on the errors relative to the F1-score.
Henceforth, the F1-score in our experiments gives an indication on the average performance of our
proposed classifier, while the IoU score measures the worst-case performance.
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5.2. Quantitative and Qualitative Assessments

5.2.1. Feature Influence

Our first experiment independently uses SF1 and combined with SF2 to highlight performances
and influence consequences on a representative sample from the S3DIS dataset. Table 6 lists the results
regarding timings, number of CEL, elements (PE, SE, TE, RE) extracted and global metrics.

Table 6. Analyses of the impact of feature sets over samples of the S3DIS dataset.

Method Zone Time (min) CEL number mIOU oAcc F1-score

SF1 Room 0.7 214 0.53 0.73 0.77
Area 1 42.4 10105 0.35 0.58 0.63

SF1SF2 Room 1.0 125 0.83 0.95 0.95
Area 1 55.0 5489 0.47 0.75 0.75

We note that SF1SF2 takes 30% longer, but permits obtaining 12 IoU points overall for Area-1,
as well as 17 overall accuracy points and 12 F1-score points. For some rooms where the connectivity
predicates are predominant, we can obtain more than a 30 IoU point increase. It is also very important
to limit over-segmentation problematics while being versatile enough, depending on the different
application needs. Thus, if we look at both the room and area 1 S3DIS samples, we note that the global
number of CEL drops significantly, which permits classifier to reach a more representative detection
(e.g., Table 7 gives an SF1SF2 instance detection comparison to ground truth).

Table 7. Quantitative CEL segmentation compared to nominal number of elements per class for both a
room (Conference room) and area (area 1).

CEL Number
Ceiling Floor Wall Beam Door Table Chair Bookcase

0 1 2 3 6 7 8 10

Room 1 1 1 4 1 1 1 13 1
Tagged CEL 1 1 4 1 1 1 11 1

Area 1 56 44 235 62 87 70 156 91
Tagged CEL 52 44 146 47 23 67 129 70

We then applied our specific knowledge-based classification approach over both SF1 alone
and SF1SF2.

Table 8 shows the metrics per class over the Area 1.

Table 8. Global per-class metrics concerning the Area-1 of the S3DIS dataset. SF1 alone and combined
SF1SF2 are compared.

Global Metrics
Area-1

Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter

0 1 2 3 6 7 8 10 12

SF1 IoU 0.81 0.75 0.61 0.39 0.10 0.24 0.06 0.02 0.14
SF1 Precision 0.99 0.99 0.84 0.67 0.11 0.96 0.09 0.15 0.32

SF1 Recall 0.82 0.75 0.69 0.48 0.57 0.25 0.14 0.03 0.20
SF1 F-1 score 0.90 0.86 0.76 0.56 0.18 0.39 0.11 0.05 0.24

SF1SF2 IoU 0.95 0.92 0.67 0.49 0.14 0.32 0.32 0.15 0.31
SF1SF2 Precision 0.98 0.95 0.79 0.88 0.29 0.9 0.69 0.2 0.41

SF1SF2 Recall 0.97 0.97 0.82 0.53 0.2 0.33 0.37 0.37 0.56
SF1SF2 F-1 score 0.97 0.96 0.8 0.66 0.24 0.48 0.48 0.26 0.47

If we look at the IoU scores, combining SF1 and SF2 permits obtaining between +6 and +26 points
(+13 points in average) when compared to SF1 alone, which is a notable increase of performances.
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The highest growth is achieved for the ‘chair’ class, and the lowest for the ‘door’ class. The 3D
connectivity information given by SF2 through {PE, RE} isolation and clustering mostly explains
the ‘chair’ detection rate increase, which permits overcoming SF1 matching limitations due to large
varying signatures within voxels. Concerning doors, the low increase is explained by its low SF2
connectivity information as within the S3DIS dataset, door elements do not show any clear ‘cuts’ with
wall elements, and therefore are not clearly identified within RE. This can be solved by accounting for
colour information to better segment the point cloud, or by using the spatial context and empty voxels
within the wall segments. Additionally, the high recall score for bookcase shows that the combination
permits better accounting for the right number of bookcase elements. Overall, while we notice a slight
precision score decrease for planar-based classes (ceiling, floor, wall), the recall rates largely increase
between SF1 and SF1SF2. This highlights the ability of our classifier to better identify all of the positive
samples. This is translated in F1-scores, which are superior for all classes up to +37 points.

Subsequently, we studied the impact of influential factors over the results and performance of the
algorithm (experiments were run 50 times each to validate the time output), as shown in Figure 15.
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We observe that our different metrics rise in a similar manner, with a greater score increase from
octree level 4 to 5 (38 IoU points), and then not a distinctive increase. On the other end, we see
an increase in the processing time from octree level 5 to 6, and a great increase from octree 6 to 7.
This orients our choice towards a base process at octree level 5, sacrificing some score points for an
adequate performance.

5.2.2. Full S3DIS Benchmark

We see that combining both SF1 and SF2 outperform a sole independent use of SF1 feature sets.
Therefore, SF1SF2 method is compared against the state-of-the-art methodologies. We related our
knowledge-based procedure to the best-performing supervised architectures due to the rise of deep
learning approaches.

We first tested our semantic segmentation approach on the most complex area, Area 5, which
holds a wide variety of rooms with varying size, architectural elements, and problematic cases. This is
our worst-case scenario area. It holds different complex cases that the knowledge-based classification
approach struggles to handle, and the results can be found in Appendix A. Concerning the performances
and calculation times for Area-5 (68 rooms), our approaches finish in 59 min (3538.5 s) on average
(10 test-run), whereas the well-performing SPG approach [49] allows for the classification of the Area
(78 649 682 points) in 128.15 min (7689 s). Thus, while the results have a large improving margin for
non-planar elements, the approach (without parallelization and low optimization) is very efficient.
We provide more details in Section 5.3.

Subsequently, we execute our approach on the full S3DIS dataset, including varying problematic
cases of which non-planar ceiling, stairs, heavy noise, heavy occlusion, false-labelled data, duplicate
points, clutter, and non-planar walls comprise (see Appendix B for examples). This is a very good
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dataset for obtaining a robust indicator of how well a semantic segmentation approach performs and
permitted to identify several failure cases, as illustrated in Figure 16.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  20 of 35 
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We did not use any training data and our autonomous approach treats points by using only X, Y,
Z coordinates. Again, we first use IoU metric to get an idea of the worst-case performances achieved
by our classifier based on established Connected Elements summarized in Table 9.

Table 9. Benchmark results of our semantic segmentation approach against best-performing
deep-learning methods.

IoU
Ceiling Floor Wall Beam Door Table Chair BookcaseClutter

0 1 2 3 6 7 8 10 12

PointNet [25] 88 88.7 69.3 42.4 51.6 54.1 42 38.2 35.2
MS+CU(2) [51] 88.6 95.8 67.3 36.9 52.3 51.9 45.1 36.8 37.5
SegCloud [48] 90.1 96.1 69.9 0 23.1 75.9 70.4 40.9 42
G+RCU [51] 90.3 92.1 67.9 44.7 51.2 58.1 47.4 39 41.9

SPG [49] 92.2 95 72 33.5 60.9 65.1 69.5 38.2 51.3
KWYND [12] 92.1 90.4 78.5 37.8 65.4 64 61.6 51.6 53.7

Ours 85.4 92.4 65.2 32.4 10.5 27.8 23.7 18.5 23.9

We note that our approach proposes IoU scores of 85.4, 92.4 and 65.2 respectively for the ceiling,
floor and wall classes. It is within a 3% to 15% range of achieved scores by every state-of-the-art method.
This gives enough range for further improvements as discussed in Section 6. The ‘table’ elements
present meagre performances explained by looking at Table 11 (high precision, low recall). Concerning
bookcases our approach achieves poorly, partly due to the limitations of the knowledge-based approach.
Indeed, the definition of a bookcase in Section 3.4 is not very flexible and doesn’t allows a search for
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hybrid structures where clutter on top of a bookcase hides planar patches thus classifying a bookcase
as clutter and impacting IoU score of both classes. Yet, the ground-truth dataset presents a very high
variability and discussable labelling as illustrated in Figure 16. The lowest score achieved concerns
doors as identified previously. These elements are often misclassified as clutter, due to their SF1
signature and low SF2 characterization. Overall, our classification approach is comparable to the best
deep learning approaches, and the very low computational demand as well as promising improvement
flexibility due to the nature of Connected Elements will be further discussed in Section 6. Indeed,
while the score is in general lower than the best performing deep-learning approaches, this is mainly
due to the classification approach.

It is interesting to note that the deep learning architecture in Table 9 make use of colour information,
whereas ours solely considers X, Y, Z attributes. A small benchmark is executed to account for this and
provided in Table 10.

Table 10. Benchmark results of our semantic segmentation approach against deep-learning methods
without any colour information used.

Method
Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter

0 1 2 3 6 7 8 10 12

PointNet 84 87.2 57.9 37 35.3 51.6 42.4 26.4 25.5
MS+CU(2) 86.5 94.9 58.8 37.7 36.7 47.2 46.1 30 31.2

Ours 85.4 92.4 65.2 32.4 10.5 27.8 23.7 18.5 23.9

We see that we outperform PointNet when using only X, Y, Z data for ceiling, floor, and wall
classes. To better understand where our classifier presents shortcomings, we studied F1-scores per
Area and per class to obtain insights on problematic cases and possible guidelines for future works.
The analysis can be found in Appendix C.

To summarize SF1SF2 performances, we present in Table 11 and the associated confusion matrix
(Figure 17) per class scores over the full S3DIS dataset.

Table 11. Per class metrics for the full S3DIS dataset using our approach.

S3DIS Class
Metrics

Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter Average

0 1 2 3 6 7 8 10 12

Precision 0.94 0.96 0.79 0.53 0.19 0.88 0.72 0.28 0.33 0.75
Recall 0.90 0.96 0.79 0.46 0.19 0.29 0.26 0.36 0.47 0.72

F1-score 0.92 0.96 0.79 0.49 0.19 0.43 0.38 0.31 0.39 0.72

We note that we obtain in average a precision score of 0.75, a recall score of 0.72 thus a F1-score of
0.72. These are relatively good metrics considering the complexity of the test dataset, and the naïve
classification approach. The largest improvement margin is linked to the ‘door’ and ‘bookcase’ classes
as identified earlier and confirmed in Table 11. While for horizontal planar-dominant classes being
ceiling and floor, the F1-scores of 0.92 and 0.96 give little place for improvement. It orients future
work toward problematic cases handling (presented in Appendix B), and irregular structures targeting.
The wall class detection scores of 0.79 gives a notable place for improvements, aiming both at a more
precise and coherent classification approach. While table and chair precision are relatively good, their
recall rate orients future work to better account for the full number of positive samples ignored with
the present classification iteration. Looking at the normalized confusion matrix (denominator: 695 878
620 points in S3DIS), a large proportion of false positives are given to the clutter concerning all classes,
which also demands a better precision in the recognition approach.
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Figure 17. Normalized Confusion matrix of our semantic segmentation approach over the full
S3DIS dataset.

While the above metrics were compared against best-performing deep learning approaches,
Table 12 permits to get a precise idea about how good the classifier achieves against the well-performing
unsupervised baseline accessible in [16].

Table 12. Overall precision on the full S3DIS dataset against non-machine learning baselines.

Overall Precision
Ceiling Floor Wall Beam Door Table Chair Bookcase

0 1 2 3 6 7 8 10

Baseline (no colour) [16] 0.48 0.81 0.68 0.68 0.44 0.51 0.12 0.52
Baseline (full) [16] 0.72 0.89 0.73 0.67 0.54 0.46 0.16 0.55

Ours 0.94 0.96 0.79 0.53 0.19 0.88 0.72 0.2

The used feature sets SF1/SF2 largely outperforms the baseline for the ceiling, floor, wall, table,
and chair classes, permitting satisfying results, as illustrated in Figure 18.
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However, we identified issues with the class ‘bookcase’ and ‘door’ where our approach performs
poorly when compared to both the baseline with all features and without the colour. While the initial
lack of SF2-related connectivity information mostly explains the door performance is mostly explained,
as stated previously, the latter (bookcase) is partially linked to the variability under which it is found
in the dataset and our too specialized classifier (indeed, we mostly consider ground-related bookcases
which complicates the correct detection of wall-attached open bookcases). We thus noticed that several
points were tagged as bookcase, whereas they are specifically desks or clutter (e.g., Figure 16).

5.3. Implementation and Performances Details

The full autonomous parsing module was developed in Python 3.6. A limited number of libraries
were used in order to easily replicate the developing environment, and thus the experiments and
results. As such several functions were developed and will be accessible as open source for further
research. All of the experiments were performed on a five years old laptop with a CPU Intel Core
i7-4702HQ CPU @ 2.20Ghz, 16 Gb of RAM, and an Intel HD Graphics 4600. As currently standing
(no optimization and no parallel processing), the approach is quite efficient and it permits processing,
on average, 1.5 million points per minute. This allows offline computing to include in server-side
infrastructures. Our approach is 54% faster if we compare its performance to a state-of-the-art approach,
like [49] (2018), it does not necessitate any GPU, and it does not need any (important) training data.

By looking at the relative temporal performances (Figure 19), we note that the first computational
hurdle is the creation of Connected Elements. This is mainly explained by the amount of handled points
without any parallel computing, which can majorly reduce the needed time. Subsequently, it is followed
by the classification approach, but, as our main goal was to provide a strong 3D structural connectivity
structure for a Smart Point Cloud parsing module, we did not target the classification performances.
Loading/Export times can be reduced if the input files are in the last format. The voxelisation approach
and following steps until the semantic leaf extraction can also be parallelized for better performances.
In the current version, 1.5 million points per minute are processed, on average, while using the above
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configuration without any GPU acceleration. It uses around 20% of the CPU and 900 Mb of RAM
under full load. As it stands, it is therefore deployable on low-cost server-side infrastructures while
giving the possibility of processing 90 million points per hour on average.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  24 of 35 

 

 
Figure 19: Relative temporal performances of our automatic semantic segmentation workflow. 

By looking at the relative temporal performances (Figure 19), we note that the first 
computational hurdle is the creation of Connected Elements. This is mainly explained by the amount 
of handled points without any parallel computing, which can majorly reduce the needed time. 
Subsequently, it is followed by the classification approach, but, as our main goal was to provide a 
strong 3D structural connectivity structure for a Smart Point Cloud parsing module, we did not 
target the classification performances. Loading/Export times can be reduced if the input files are in 
the .las format. The voxelisation approach and following steps until the semantic leaf extraction can 
also be parallelized for better performances. In the current version, 1.5 million points per minute are 
processed, on average, while using the above configuration without any GPU acceleration. It uses 
around 20% of the CPU and 900 Mb of RAM under full load. As it stands, it is therefore deployable 
on low-cost server-side infrastructures while giving the possibility of processing 90 million points 
per hour on average. 

6. Discussion 

From the detailed analysis provided in Section 5, we first summarize the identified strengths in 
the sub-section 6.1 and we then propose five main research directions for future work addressing the 
limitations in sub-section 6.2. 

6.1. Strengths 

First, the presented method is easy to implement. It is independent from any high-end GPUs, 
and mainly leverages the processor and the Random-Access Memory in its current state (around 1 
Gb). This is crucial for a large number of companies that do not possess high-end servers, but rather 
web-oriented (no GPU, low RAM, and intel Core processors). As such, it is easily deployable on a 
client-server infrastructure, without the need to upgrade the server-side for offline computations. 

Secondly, the approach is majorly unsupervised, which gives a great edge over (supervised) the 
machine learning approaches. Indeed, there is currently no need for a huge amount of training data, 
which thus avoids any time-consuming process of creating (and gathering) labelled datasets. This is 
particularly beneficial if one wants to create such a labelled dataset, as the provided methodology 
would speed-up the process by recognizing the main “host” elements of infrastructures, mainly 
leaving moveable elements supervision.  

Third, on top of such a scenario, the approach provides acceptable results for various 
applications that mainly necessitate the determination of structural elements. As such, it can be used 
for extracting the surface of ceilings, walls, or floors if one wants to make digital quotations; it can 
provide a basis for extracting semantic spaces (sub-spaces) organized regarding their function; it can 
be used to provide a basis for floor plans, cut, section creation or visualization purposes [64,65]. 

Figure 19. Relative temporal performances of our automatic semantic segmentation workflow.

6. Discussion

From the detailed analysis provided in Section 5, we first summarize the identified strengths
in the Section 6.1 and we then propose five main research directions for future work addressing the
limitations in Section 6.2.

6.1. Strengths

First, the presented method is easy to implement. It is independent from any high-end GPUs,
and mainly leverages the processor and the Random-Access Memory in its current state (around
1 Gb). This is crucial for a large number of companies that do not possess high-end servers, but rather
web-oriented (no GPU, low RAM, and intel Core processors). As such, it is easily deployable on a
client-server infrastructure, without the need to upgrade the server-side for offline computations.

Secondly, the approach is majorly unsupervised, which gives a great edge over (supervised) the
machine learning approaches. Indeed, there is currently no need for a huge amount of training data,
which thus avoids any time-consuming process of creating (and gathering) labelled datasets. This is
particularly beneficial if one wants to create such a labelled dataset, as the provided methodology
would speed-up the process by recognizing the main “host” elements of infrastructures, mainly leaving
moveable elements supervision.

Third, on top of such a scenario, the approach provides acceptable results for various applications
that mainly necessitate the determination of structural elements. As such, it can be used for extracting
the surface of ceilings, walls, or floors if one wants to make digital quotations; it can provide a basis for
extracting semantic spaces (sub-spaces) organized regarding their function; it can be used to provide a
basis for floor plans, cut, section creation or visualization purposes [64,65].

Fourth, the provided implementation delivers adequate performances regarding the time that is
needed for obtaining results. As it stands, without deep optimizations, it permits offline automatic
segmentation and classification, and the data structure provides a parallel-computing support.

Fifth, there is a low input requirement that only necessitate unstructured X, Y, Z datasets, contrary
to benchmarked Deep Learning approaches that leverage colour information and provide a complete
directed graph of the relations within CELs or classified objects. This information permits reasoning
services to use the semantic connectivity information between objects and subspaces for advanced
queries using both spatial and semantic attributes.

Finally, the unsupervised segmentation and rule-based classification is easily extensible by
improving the feature determination, enhancing the performances, or providing a better and more
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flexible classifier. For example, one can differentiate clutter based on connectivity and proximities to
further enhance the classification (e.g., clutter on top of a table may be a computer; clutter linked to the
ceiling and in the middle of the room is a light source . . . ). Some of these potentials are addressed as
research tracks for future works, as presented in the following Section 6.2.

6.2. Limitations and Research Directions

First, we note that the new relational features are very useful in the task of semantic segmentation.
Plugged to a basic knowledge-based graph, it permits good planar-elements detection, such as floor,
ceiling, and wall. At this point, it is quite useful for the creation of Connected Elements as all of the
remaining points mainly cover remaining “floating” elements, which can then be further defined
through classification routines. This is a very interesting perspective for higher end specialization per
application, where the remaining elements are then looped for accurate refinement depending on the
level of specialization needed, as expressed in [52]. Future work will also further study learning-based
feature extraction, such as the ones presented in [66,67], proposing a design of the shape context
descriptor with spatially inhomogeneous cells. The parsing methodology can also be extended through
other domain ontologies, such as the CIDOC-CRM, as presented in [68], which highlight the flexibility
to different domains.

Secondly, the creation of links between CEL is a novelty that provides interesting perspectives
concerning reasoning possibilities that play on relationships between elements. Indeed, the extracted
graph is fully compatible with the semantic web and it can be used as a base for reasoning services,
and provide counting possibilities, such as digital inventories [68] and semantic modelling [59].
Additionally, the decomposition in primary, secondary, transition, and rest elements is very useful
in such contexts, as one can specialize or aggregate elements depending on the intended use and
application [50]. Indeed, the approach permits obtaining a precise representation of the underlying
groups of point contained within Connected Elements and homogenized in Semantic Patches.

Third, the extended benchmark proved that untrained schemes could reach a comparable
recognition rate to the best-performing deep learning architectures. Particularly, detecting the main
structural elements permits achieving a good first semantic representation of space, opening the
approach to several applications. However, the scores for ‘floating’ CEL (moveable elements) is poor
in its current version. Shortcomings are linked to the naïve knowledge-based classifier, which lacks
flexibility/generalization in its conception and gives place for major improvements in future works.
Specifically, it will undergo an ontology formalization to provide a higher characterization and moving
thresholds to better adapt the variability in which elements are found in the dataset.

Fourth, some artefacts and performances hurt the approach due to the empirical octree-based
voxelization determination and enactment, but, as it stands, it provides a stable structure that is
robust to aliasing and the blocking effect at the borders. Further works in the direction of efficient
parallel computing will permit an increase in time performances and deeper depth tree selection
(thus better characterization). Additionally, the octree definition will be looked at for variable octree
depth, depending on pre-define sensor-related voxel leaf size. Other possibilities include using a local
voxelated structure, such as that proposed in [54] to encode the local shape structure into bit string by
point spatial locations without computing complex geometric attributes. On the implementation side,
while the dependency to voxelization is limited due to the octree structure to allow a constant point
density per voxel, on average, it will be further studied to avoid exponential time explosion when
changing the deepness level. As such, the structure is already ready for parallel computing and it will
be studied in future works.

Finally, while our dedicated approach was tested on the S3DIS dataset, it can easily be adapted to
other point clouds that provide an additional research direction. The approach will be tested against
indoor and outdoor point clouds from different sensors and the classification could be adapted to
account for various well-established classes. As such, a large effort is currently undergoing to create
accurate labelled datasets for AEC and outdoor 3D mapping applications, to be shared as open-data.
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Our focus is driven by a general global/local contextualization of digital 3D environments, where
we aim at providing a flexible infrastructure that should be able to scale up to different generalization
levels. As such, the proposed unsupervised segmentation approach in Connected Elements and
Semantic patches acts as a standard module within the Smart Point Cloud Infrastructure and permit
obtaining a full autonomous workflow for the constitution of semantically rich point clouds [2].

7. Conclusions

In this article, a point cloud parsing module for a Smart Point Cloud Infrastructure was presented.
It provides a semantic segmentation framework that groups points in a voxel-based space, where
each voxel is studied by analytic featuring and similarity analysis to define the semantic clusters
that retain highly representative SF1 and SF2 signatures. This process is conducted regarding
an initial connected component from multi-composed graph representations after automatically
detecting different planar-dominant elements leveraging their prevalence in man-made environments.
A classification approach to automatically detect main classes in the S3DIS dataset and obtain a measure
of performance against best-performing deep learning approaches is provided. While the method is
well performing for the floor, ceiling, and wall classes, extended research is needed if one wants to use
the classification as a robust approach for moveable elements detection.

Author Contributions: Conceptualization, Florent Poux; Methodology, Florent Poux; Software, Florent Poux;
Validation, Florent Poux; Formal Analysis, Florent Poux; Investigation, Florent Poux; Resources, Florent Poux;
Data Curation, Florent Poux; Writing-Original Draft Preparation, Florent Poux; Writing-Review & Editing, Florent
Poux & Roland Billen; Visualization, Florent Poux; Supervision, Florent Poux & Roland Billen.

Funding: This research received no external funding.

Acknowledgments: We would like to thank the research community in general for their interest in point cloud
semantic segmentation, and to permit a rapid evolution of the technology.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We decided to hold IoU metrics to get an idea of the worst possible scores and compare them with
the three methods listed in Table A1:

Table A1. Intersection-over-Union on Area 5 of our methodology compared to PointNet [25],
SegCloud [48] and SuperPoint Graphs (SPG [49]).

IoU for Area-5
Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter

0 1 2 3 6 7 8 10 12

PointNet [25] 88.8 97.33 69.8 0.05 10.76 58.93 52.61 40.28 33.22
SegCloud [48] 90.06 96.05 69.86 0 23.12 70.4 75.89 58.42 41.6

SPG [49] 91.49 97.89 75.89 0 52.29 77.4 86.35 65.49 50.67

Ours 85.78 92.91 71.32 0 7.54 31.15 29.02 23.48 21.91

We see that scores obtained for the floor and the ceilings are comparable to the ones obtained by
the three deep learning approaches. However, the wall detection ratio outperforms both PointNet and
SegCloud, but SPG are still showing better performances. This is explained by the high level of noise
and irregular structure. The beam presents a null score (as benchmarked methods) due to the very
little number of points and specificity of the 3 beams in the ground truth dataset labelled containing
22 424 points.
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Appendix C

We provide the summary of our analysis conducted per area in Table A2.

Table A2. Summary of the 6 areas using our semantic segmentation approach.

F1-score
Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter

0 1 2 3 6 7 8 10 12

Area-1 0.97 0.96 0.80 0.66 0.24 0.48 0.48 0.26 0.47
Area-2 0.85 0.94 0.70 0.15 0.22 0.11 0.12 0.26 0.32
Area-3 0.98 0.98 0.78 0.61 0.21 0.41 0.61 0.38 0.50
Area-4 0.90 0.97 0.78 0.00 0.12 0.25 0.40 0.24 0.35
Area-5 0.92 0.96 0.83 0.00 0.14 0.48 0.45 0.38 0.36
Area-6 0.95 0.97 0.78 0.58 0.24 0.54 0.53 0.28 0.43
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We note that Area-2 is responsible for a drop of performance in ceiling and floor detection, as
well as Area-4, which is explained by the very irregular structures of the ceiling and the presence of
multilevel stairs. Wall detection is constant among areas whereas beams are very irregular and explain
the drop of performances in non-weighted. The classes in Areas 2, 4 and 5 are very specific and in a
very low number of occurrences (see Table A2). Table and chair detection rates are very constant and
give place for future improvements. Bookcase and clutter also show very similar detection rates per
area and demand a global classification optimization for higher performances.

As seen above, ‘table’ presents an unsatisfying detection rate. This is due to the very low recall
score, as our classifier only tagged points which were surely a table.
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