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Abstract: Automation in point cloud data processing is central in knowledge discovery within 
decision-making systems. The definition of relevant features is often key for segmentation and 
classification, with automated workflows presenting the main challenges. In this paper, we 
propose a voxel-based feature engineering that better characterize point clusters and provide 
strong support to supervised or unsupervised classification. We provide different feature 
generalization levels to permit interoperable frameworks. First, we recommend a shape-based 
feature set (SF1) that only leverages the raw X, Y, Z attributes of any point cloud. Afterwards, we 
derive relationship and topology between voxel entities to obtain a three-dimensional (3D) 
structural connectivity feature set (SF2). Finally, we provide a knowledge-based decision tree to 
permit infrastructure-related classification. We study SF1/SF2 synergy on a new semantic 
segmentation framework for the constitution of a higher semantic representation of point clouds in 
relevant clusters. Finally, we benchmark the approach against novel and best-performing 
deep-learning methods while using the full S3DIS dataset. We highlight good performances, 
easy-integration, and high F1-score (> 85%) for planar-dominant classes that are comparable to 
state-of-the-art deep learning. 

Keywords: 3D point cloud; voxel; feature extraction; semantic segmentation; classification; 3D 
semantics; deep learning 

 

1. Introduction 

Extracting knowledge from raw point cloud data is actively driving academic and industrial 
research. There is a great need for automated processes that can speed up and make existing 
frameworks faster and more reliable. It often integrates a classification step to extract any relevant 
information regarding one application domain. However, one classification approach cannot 
efficiently satisfy all of the domains as the semantic concepts that are attached to objects and the 
location can vary, depending on uses (e.g. considering a chair as an object, or its legs). Therefore, 
ensuring that such information is transferable to benefit other applications could provide a great 
opening on point cloud data usage. Yet, this is a non-trivial task that necessitates highly 
interoperable reasoning and a flexible way to handle data, relationships, and semantics. Our method 
considers the Gestalt’s theory [1], which states that the whole is greater than the sum of its parts, and 
that relationships between the parts can yield new properties/features. We want to leverage the 
human visual system predisposition to group sets of elements. 

In this paper, the first goal is to provide a point cloud parsing unit to extract the semantic 
clusters through a voxel-based partitioning of the dataset. It permits flexible usage in different 
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domains, such as Architecture, Engineering, and Construction (AEC), Building Information 
Modelling (BIM), Facility Management (FM), indoor navigation, and robotics. The module acts as a 
standalone within a Smart Point Cloud Infrastructure [2]—a set-up where point data is the core of 
decision-making processes—and it handles point clouds with heterogeneous characteristics. Indeed, 
the possibility to incorporate Knowledge-Extraction routines in existing frameworks has become 
essential for an efficient international research cooperation for the sake of interoperable data 
management. As such, we investigate an objective solution for versatile 3D point cloud semantic 
representation transparent enough to be usable on different point clouds and within different 
application domains. We propose to structure a point cloud in Connected Elements that is further 
refined in Semantic patches using efficient and low-level voxel-related features. This is primarily 
motivated by the limitations of point-based approach, where the amount of data, the redundancy, 
and the absence of relationships within points are great performance issues. 

In order to assess the possibilities given by the 3D clustering scheme, a semantic segmentation 
solution is developed to leverage feature sets that retain both shape and relationship information. 
This permit benchmarking the performances and results against the best-performing state of the art 
deep-learning methods. Indeed, with the rise in computing power, promising machine learning 
techniques, as detailed in [3–15], are a great opening to more reliable and robust 3D objects 
classification. However, ground-truth extraction and dataset labelling to create training data are the 
main drawbacks in supervised learning. Manually annotating and ensuring the quality of such 
datasets is a heavily dauting task. Hence, ways to alleviate these mechanisms through automated 
tools are essential for new findings and in training new models. 

The experiments were conducted on the full S3DIS [16] indoor dataset as (e.g. Figure 1), but it is 
generalizable to outdoor environments with man-made objects/characteristics. 

 
Figure 1: Voxel-based three-dimensional (3D) semantic segmentation. From left to right: Raw point 
cloud, feature engineering, Connected Elements extraction, Classified point cloud. 

Briefly, this paper makes the following three main contributions: 
• a new interoperable point cloud data clustering approach that account variability of 

domains for higher-end applications; 
• a novel point cloud voxel-based featuring developed to accurately and robustly 

characterize a point cloud with local shape descriptors and topology pointers. It is 
robust to noise, resolution variation, clutter, occlusion, and point irregularity; and, 

• a semantic segmentation framework to efficiently decompose large point clouds in 
related Connected Elements (unsupervised) that are specialized through a 
graph-based approach: it is fully benchmarked against state-of-the-art deep learning 
methods. We specifically looked at parallelization-compatible workflows. 

The reminder of this paper is structured, as follows. Section 2 briefly reviews recent related 
works dealing with point cloud feature extraction, segmentation, and classification. Section 3 gives 
the details of the proposed voxel-based featuring and semantic segmentation. In Section 4, we 
present the S3DIS dataset that is used for the different experiments and benchmarks. In Section 5, we 
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study the impact of features over the results and analyse the performance of the approach against 
high-yielding supervised learning. In Section 6, we discuss our findings and highlight limitations as 
research directions. 

2. Related Works 

Feature design occupies a central position in knowledge representation and classification 
approaches. As expressed in Section 1, the Gestalt’s theory [1] is fundamental to understand how 
our visual cognition systems perceive our surrounding when trying to feed a classifier with 
information. It is often very hard to translate the factors into algorithms, while many of them make 
intuitive sense (e.g. Figure 2). 

 
Figure 2: Visual patterns on points from left to right: Not grouped; Proximity criterion; Similarity 
criterion; Common cluster region; Linear criterion; Parallel criterion: Symmetry criterion. 

This gives an edge to deep learning approaches, where the emphasis is toward training the 
dataset’s constitution rather than feature engineering. In this section, we cover both problematics, 
i.e. feature- engineering and point-cloud supervised learning, which is further linked to Section 3 
and 5. First, the features and methods that work well for extracting relevant information from point 
clouds are investigated. Subsequently, relevant references and recent works (2015+) that deal with 
point clouds semantic segmentation are given to the reader. We specifically look at voxel approaches 
and features that already made their proof over complex point cloud artefacts. 

2.1. Point Cloud Feature Extraction 

In this sub-section, we analyse low-level shape-based approaches that try to extract local 
descriptors from the 3D neighbourhood [17]. We refer initially to the pertinent work of Ghorpade et 
al. [18], which proposes a review of two-dimensional (2D) and 3D shape representation and it is a 
good introduction to obtaining an idea of the landscape of features in use. 

The work of Bueno et al. [19] focuses on the detection of geometric key-points and its 
application to point cloud registration. The authors primarily study data subsampling to keep the 
key points for coarse alignment purposes. These points are obtained using an approach that is 
mainly based on the features of eigen entropy, change of curvature, and planarity. Indeed, they state 
that these provide a good representation in both, visual, and mathematical value of the point clouds. 
This is found in many recent works, such as [20,21], where authors also use local eigen-based 
features for disaster damage detection through synergistic use of deep learning. The work of 
Blomley et al. [22] provides larger insights on the common geometric (e.g. eigen-based) covariance 
features in varying scale scenarios. In 2018, Thomas et al. proposed a semantic classification of 3D 
point clouds in [8], which also employs eigen-based features as well as colour derived feature. The 
specificity lies in the definition of a multiscale neighbourhoods, which allows for the computation of 
features with a consistent geometrical meaning. The authors in [23] also uses several eigen-based 
feature, spectral and colour-derived features for the classification of aerial LiDAR point clouds. The 
features, coupled with their approach, provide good results, and therefore orient our choice of 
features toward eigen-based features, for they are representative of local neighbourhood as well as 
low-knowledge requirement. 

Other recent works for learning local structures [24] or local shape properties [14] highlighted 
the wide acceptation of normals. In [24], Shen et al. present two new operations to improve PointNet 
[25]—one of the earliest deep learning reference for point cloud semantic segmentation—with a 
more efficient exploitation of local structures. The first one focuses on local 3D geometric structures. 
In analogy to a convolution kernel for images, they define a point-set kernel as a set of learnable 3D 



ISPRS Int. J. Geo-Inf. 2019, 8, 213 4 of 35 

 

points that jointly respond to a set of neighbouring data points according to their geometric 
affinities, as measured by kernel correlation. The second one exploits local high-dimensional feature 
structures by recursive feature aggregation on a nearest-neighbour-graph computed from 3D 
positions. They specifically state that “As a basic surface property, surface normals are heavily used 
in many areas including 3D shape reconstruction, plane extraction, and point set registration” [26–
30]. The paper of Song et al. [31] provides a comparison of normal estimation methods, which can 
also be achieved via neural networks, such as PCPNet [14]. In this last article, Guerrero et al. propose 
a deep-learning method for estimating the local 3D shape properties in point clouds. The approach is 
especially well-adapted for estimating local shape properties, such as normals (both unoriented and 
oriented) and curvature from raw point clouds in the presence of strong noise and multi-scale 
features. Therefore, we will specifically integrate normal within our workflow, while looking at 
performance issues during its computation. 

Edge-based features have also been investigated in [32] or [33], but their applicability is mostly 
oriented toward point cloud line tracing. Thus, we confront large performance issues due to 
analysing geometric properties of each point’s neighbourhood, and combining RANSAC [34,35] and 
angular gap metrics to detect the edges. While extended in [36] to contour the extraction of large 3D 
point clouds, we will specifically avoid region growing approaches due to performance limitations. 

2.2. Semantic Segmentation Applied to Point Clouds 

The first challenge in pure segmentation frameworks is to obtain group of points that can 
describe with the organization of the data by a relevant clustering enough detachment. The work of 
Papon et al. have provided the first approach of using relationships while conserving the 
point-based flexibility [32]. They propose an over-segmentation algorithm using ‘supervoxels’, an 
analogue of the superpixel approach for 2D methods. Based on a local k-means clustering, they try 
and group the voxels with similar feature signatures (39-dimensional vector) to obtain segments. 
The work is interesting because it is one of the earliest to try and propose a voxel-clustering with the 
aim of proposing a generalist decomposition of point cloud data in segments. Son et Kim use such a 
structure in [37] for indoor point cloud data segmentation. They aim at generating the as-built BIMs 
from laser-scan data obtained during the construction phase. Their approach consists of three steps: 
region-of-interest detection to distinguish the 3D points that are part of the structural elements to be 
modelled, scene segmentation to partition the 3D points into meaningful parts comprising different 
types of elements while using local concave and convex properties between structural elements, and 
volumetric representation. The approach clearly shows the dominance of planar features in 
man-made environments. 

Another very pertinent work is [38], which proposes a SigVox descriptor. The paper first 
categorizes object recognition task following the approach of: (1) model-fitting based (starts with 
segmenting and clustering point cloud, followed by fitting point segments); (2) semantic methods 
(based on a set of rule-based prior knowledge); and, (3) shape-based methods (shape featuring from 
implicit and explicit point clusters). They use a 3D ‘EGI’ descriptor to differentiate voxels that only 
extract specific values from a Principal Component Analysis (PCA) [39]. The approach proves useful 
for MLS point clouds, grouping points in object candidates, following the number. Another 
voxel-based segmentation approach is given in [40,41] while using a probabilistic connectivity 
model. The authors use a voxel structure, in which they extract local contextual 
pairwise-connectivity. It uses geometric “cues” in a local Euclidean neighbourhood to study the 
possible similarity between voxels. This approach is similar to [42], where the authors classify a 2.5D 
aerial LiDAR point cloud multi-level semantic relationships description (point homogeneity, 
supervoxel adjacency, class-knowledge constraints). They use a feature set, among others, composed 
of the elevation above ground, normal vectors, variances, and eigen-based features. Another 
analogous approach can be found in [43] for building point detection from vehicle-borne LiDAR 
data based on voxel group and horizontal hollow analysis. Authors present a framework for 
automatic building point extraction, which includes three main steps: voxel group-based shape 
recognition, category-oriented merging, and building point identification by horizontal hollow ratio 
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analysis. This article proposes a concept of “voxel group”, where each group is composed of several 
voxels that belong to one single class-dependent object. Subsequently, the shapes of point clouds in 
each voxel group are recognized and this shape information is utilized to merge the voxel group. 
This article efficiently leverages a sensory characteristic of vehicle-borne LiDAR building data but 
specializes the approach in consequence. 

The references [44,45] are built upon a graph-based over-segmentation methodology that is 
composed of a local 3D variation extraction, a graph construction, descriptor computation, and 
edge-wise assignment, followed by sequential subgraph criteria-based merging. The used 
descriptors are mainly RGB, location and normal vectors on top of the fast point feature histogram 
[46]. While the approach is domain-related, it offers some additional insight regarding the power of 
relational approaches between local point patches for the task of semantic segmentation. However, 
as shown in [10], using a multi-scale voxel representation of 3D space is very beneficial, even in 
complexity reduction of terrestrial lidar data. The authors propose a combination of point and voxel 
generated features to segment 3D point clouds into homogenous groups in order to study the 
surface changes and vegetation cover. The results suggest that the combination of point and voxel 
features represent the dataset well, which shows the benefit of dual representations. The work of 
[17] uses Random Forests for aerial Lidar point cloud segmentation, which aims at extracting planar, 
smooth, and rough surfaces, being classified using semantic rules. This is interesting to answer 
specific domains through ontology formalization.  

These methodologies contrast with deep learning approaches, as they try to solve the semantic 
segmentation problem by first understanding which set of features/relations will be useful to obtain 
the relevant results. The following methodologies directly start with the data and will learn by 
themselves how to combine the initial attributes (X, Y, Z, R, G, B…) into efficient features for the task 
at hand. Following PointNet [25] and PointNet++ [47], which are considered as a baseline approach 
in the community, other work applied deep learning to point set input or voxel representations.  

The end-to-end framework SEGCloud [48] combines a 3D-FCNN, trilinear interpolation, and 
CRF to provide class labels for 3D point clouds. Their approach is mainly performance-oriented 
when compared to state-of-the-art methods that are based on neural networks, random forests, and 
graphical models. Interestingly, they use a trilinear interpolation, which adds an extra boost in 
performance, enabling segmentation in the original 3D points space from the voxel representation. 
Landrieu and Simonovsky provide another promising approach for large scale Point Cloud semantic 
segmentation with Superpoint graphs [49]. In the article, the authors propose a deep learning-based 
framework for semantic segmentation of point clouds. They initially postulate that the organization 
of 3D point clouds can be efficiently captured by a structure (Superpoint graph), which is derived 
from a partition of the scanned scene into geometrically homogeneous elements. Their goal is to 
offer a compact representation of the contextual relationships between object parts to exploit 
through convolutional network. In essence, the approach is similar to [2,50], through a graph-based 
representation. Finally, the works of Engelmann et al. in [12,51] provides very interesting 
performances by including the spatial context into the PointNet neural network architecture [51] or 
providing an efficient feature learning and neighbourhood selection strategy [12]. These works are 
very inspiring, and they have the potential to become de-facto methodologies for a wide variety of 
application through transfer learning. As such, they comprise very good methodologies for 
benchmarking semantic segmentation approaches. 

We highlighted three different directions that will drive our methodology in this state-of-the-art 
review of pertinent related work. First, it is important that we identify the key points in a point cloud 
that can retain a relevant connotation to domain-related objects. Secondly, we noted that, for 
gravity-based scenes, these elements have a space continuity and often feature homogeneity. Third, 
specifically, man-made scenes retain a high proportion of planar surfaces that can host other 
elements (floor, ceiling, wall …) [52]. Therefore, detecting these constitutes a central first step in our 
methodological framework, but they must be quick, scalable, robust, reliable, and flexible. It is 
important to note that the global context may be lost if working with relatively small neighbourhood 
samples. 
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3. Materials and Methods  

In this section, we describe a point cloud parsing method to extract semantic clusters 
(Connected Elements [50]), which can be refined in application-dependent classes. 

Our automatic procedure is serialized in seven steps, as illustrated in Figure 3 and described in 
the four following sub-sections. In Section 3.1, we describe the voxel grid constitution. In Section 3.2, 
we cover feature extraction processes for low-level shape descriptors (Section 3.2.1) and relational 
features (Section 3.2.2). Subsequently, in Section 3.3 we provide a connected-component system 
using extracted feature sets SF1 and SF2, followed by a point-level refinement within each voxel to 
obtain Semantic patches. Finally, we propose a graph-based assembly for the constitution of 
Connected Elements [2] and a classification routine to obtain labelled point data (Section 3.4) 
benchmarked in Section 5.  

 
Figure 3: Methodological workflow for the constitution of Connected Elements and 
knowledge-based classification. A point cloud goes through seven serialized steps (diamonds) to 
obtain a fully classified dataset (red square). 

3.1. Voxelisation Grid Constitution 

Our approach proposes integrating different generalization levels in both feature space and 
spatial space. First, we establish an octree-derived voxel grid over the point cloud and we store 
points at the leaf level. As stated in [53–55], an octree involves recursively subdividing an initial 
bounding-box into smaller voxels until a depth level is reached. Various termination criteria may be 
used: the minimal voxel size, predefined maximum depth tree, or a maximum number of sample 
points within a voxel. In the proposed algorithm, a maximum depth tree is used to avoid the 
computations necessitating domain knowledge early on. We study the impact of tree depth selection 
over performances in Section 5, starting at a minimum level of 4 to study the influence of the design 
choice. The grid is constructed following the initial spatial frame system of the point cloud to 
account for complex scenarios where point repartition does not precisely follow the axes. 

Let 𝑝௜ be a point in ℝ௦, with 𝑠 the number of dimensions. We have a point cloud 𝒫 = ሼ𝑝௜ሽ௜ୀଵ௡  
with 𝑛 the number of points in the point cloud. Let 𝒱௜,௝,௞ be a voxel of 𝒫 identified by a label ℒ௜, 
containing 𝑚 points from 𝒫. 

The cubic volume, defined by a voxel entity, provides us with the advantage of fast yet uniform 
space division, and we hence obtain an octree-based voxel structure at a specific depth level. Our 
approach, similarly to [56], is constructed using indexes to avoid overhead. The constituted voxel 
grid, with the goal of creating Connected Elements discards, empty voxels to only retain 
points-filled voxels. However, for higher end applications, such as pathfinding, the voxel-grid can 
be used as a negative to look for empty spaces. Subsequently, we construct a directed graph ℊ, 
defined by a set 𝓋ሺℊሻ of inner nodes, a set ℯሺℊሻ of edges, and a set 𝓋௘ሺℊሻ of leaf nodes, with each 
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representing a non-empty voxel at an octree level, illustrated over a room sample of the S3DIS 
dataset in Figure 4. 

 
Figure 4: Point Cloud and its extracted voxel structure, where each octree level represents the grid 
voxels, each subdivided in subsequent eight voxel children. 

Once each point has been assigned to a voxel regarding the defined grid within the ℝଷ 
Euclidean space along 𝑒௫ሬሬሬ⃗ , 𝑒௬ሬሬሬሬ⃗ , 𝑒௭ሬሬሬ⃗ , we consider the leaf nodes 𝓋௘ሺℊሻ  of ℊ  as our representative 
primitive. 

3.2. Feature Extraction 

We aim at extracting a robust feature set for general semantic segmentation frameworks, as a 
single object of the resulting feature vector is hardly interpretable [57]. To insure interoperable 
workflows, we used descriptors that were thoroughly studied and made their proof in various 
works referred in Section 2. 

Our new voxel-primitive serves as an initial feature host, and it acts as a point neighbourhood 
selection approach. These can then be transferred following the structure of ℊ, permitting feature 
transfer at every octree depth level extended to the point-storage (Figure 5). 

 
Figure 5: Feature transfer between octree levels. We note that each non-empty node describes a voxel 
which can then permit a point-level access for example to compute feature sets (here, a planar voxel 
and a corresponding SF1 sample, and a transition voxel and its corresponding SF1 sample). 

This permits a flexible and unconstrained feature-based point cloud parsing, which can process 
raw data (i.e. pure X, Y, Z Euclidean sets). In the next sub-section 3.2.1, we present several low-level 
shape-based features that are used to construct our SF1 feature set. Afterwards, we explain our 
relationship-level feature set (SF2) that permits leveraging local topology and relationships at 
different cluster levels. 
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3.2.1. Low-level shape-based features (SF1) 

The first group of low-level features is mainly derived from Σ, our data covariance matrix of 
points within each voxel for the low memory footprint and fast calculation, which, in our case, we 
define as: Σ = 1𝑚 െ 1 ෍ሺ𝑋௜ െ 𝑋തሻሺ𝑋௜ െ 𝑋തሻ்௠

௜ୀଵ  (1) 

where 𝑋ത is the mean vector 𝑋ത = ∑ 𝑝௜௠௜ୀଵ . 
From this high yielding matrix, we derive eigen values and eigen vectors through Singular 

Value Decomposition [58] to increase the computing efficiency, which firstly correspond to 
modelling our voxel containment by a plane, showing to largely improve performances. We follow a 
Principal Component Analysis (PCA) to describe three principal axes describing the point sample 
dispersion. Thus, we rely heavily on eigen vectors and eigen values as a feature descriptor at this 
point. Therefore, their determination needs to be robust. This is why we use a variant of the Robust 
PCA approach presented in the article [59] to avoid miscalculation. We sort eigenvalues 𝜆ଵ, 𝜆ଶ, 𝜆ଷ, 
such as 𝜆ଵ ൐ 𝜆ଶ ൐ 𝜆ଷ , where linked eigen vector 𝑣ଵሬሬሬሬ⃗ , 𝑣ଶሬሬሬሬ⃗ , 𝑣ଷሬሬሬሬ⃗ , respectively, represent the principal 
direction, its orthogonal direction, and the estimated plane normal. These indicators, as reviewed in 
Section 2, are interesting for deriving several eigen-based features [23], as following: 𝜆௔ = ሺ𝜆ଵ െ 𝜆ଷሻ/𝜆ଵ (2) 𝜆௟ = ሺ𝜆ଵ െ 𝜆ଶሻ/𝜆ଵ (3) 𝜆௣ = ሺ𝜆ଶ െ 𝜆ଷሻ/𝜆ଵ (4) 𝜆௩ = 𝜆ଷ/ ෍ 𝜆௜ଷ௜ୀଵ  (5) 

𝜆௢ = ඨෑ 𝜆௜ଷ௜ୀଵయ
 (6) 𝜆௦ = 𝜆ଷ/𝜆ଵ (7) 𝜆௘ = െ ෍ 𝜆௜ ∗ ln ሺ𝜆௜ሻଷ௜ୀଵ  (8) 

Where for the voxel 𝒱௜,௝,௞, 𝜆௔ is its anisotropy, 𝜆௟ its linearity, 𝜆௣ its planarity, 𝜆௩ its surface 
variation, 𝜆௢ its omnivariance, 𝜆௦ its sphericity, and 𝜆௘ its eigen entropy. Table 1 summarizes the 
first set of eigen-based features. 

Table 1: Eigen-based features part of the SF1 feature set. 

Eigen-based Feature Description 𝜆ଵ, 𝜆ଶ, 𝜆ଷ Eigen values of 𝒱௜,௝,௞ where 𝜆ଵ ൐ 𝜆ଶ ൐ 𝜆ଷ  𝑣ଵሬሬሬሬ⃗ , 𝑣ଶሬሬሬሬ⃗ , 𝑣ଷሬሬሬሬ⃗  Respective Eigen vectors of 𝒱௜,௝,௞  𝑣ଷሬሬሬሬ⃗  Normal vector of 𝒱௜,௝,௞  𝜆௔ Anisotropy of voxel 𝒱௜,௝,௞  𝜆௘ Eigen entropy of voxel 𝒱௜,௝,௞  𝜆௟ Linearity of voxel 𝒱௜,௝,௞  𝜆௢ Omnivariance of voxel 𝒱௜,௝,௞  𝜆௣ Planarity of voxel 𝒱௜,௝,௞  𝜆௦ Sphericity of voxel 𝒱௜,௝,௞  𝜆௩ Surface variation of voxel 𝒱௜,௝,௞  

We extract a second geometry-related set of features (Table 2), starting with 𝒱ప௫തതതത, 𝒱ప௬തതതത, 𝒱ప௭തതതത the 
mean value of points within a voxel 𝒱௜,௝,௞.  
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Table 2: Geometrical features part of the SF1 feature set. 

Geometrical 
Feature 

Description 𝒱ప௫തതതത, 𝒱ప௬തതതത, 𝒱ప௭തതതത Mean value of points in 𝒱௜,௝,௞ respectively 
along 𝑒௫ሬሬሬ⃗ , 𝑒௬ሬሬሬሬ⃗ , 𝑒௭ሬሬሬ⃗   

 𝜎௜௫ଶ, 𝜎௜௬ଶ, 𝜎௜௭ଶ Variance of points in voxel 𝒱௜,௝,௞  𝒱𝒜௣ Area of points in 𝒱௜,௝,௞ along 𝑛𝒱ሬሬሬሬ⃗  (𝑣ଷሬሬሬሬ⃗ )  𝒱𝒜 Area of points in 𝒱௜,௝,௞along 𝑒௭ሬሬሬ⃗   𝑚 Number of points in 𝒱௜,௝,௞  𝑉𝒱 Volume occupied by points in 𝒱௜,௝,௞   𝐷𝒱 point density within voxel 𝒱௜,௝,௞  

The area features 𝒱𝒜௣, 𝒱𝒜 are obtained through a convex hull (Eq. 10) analysis, respectively, 
along 𝑣ଷሬሬሬሬ⃗  and 𝑒௭ሬሬሬ⃗ . The third is the local point density within the segment, which is defined as follows: 𝐷𝒱 = 𝑚𝑉𝒱 (9) 

where 𝑉𝒱 is the minimum volume calculated through a 3D convex hull, such as: 𝐶𝑜𝑛𝑣ሺ𝒫ሻ = ൛∑ 𝛼௜𝑞௜|𝒫|௜ୀଵ หሺ∀𝑖: 𝛼௜ ൒ 0ሻ ∧ ∑ 𝛼ூ = 1|𝒫|௜ୀଵ ൟ (10) 𝑉𝒱 = 13 ቮ෍ሺ𝑄ிሬሬሬሬ⃗ . 𝑛ிሬሬሬሬ⃗ ሻ𝑎𝑟𝑒𝑎ሺ𝐹ሻ௠
௝ୀଵ ቮ (11) 

We standardize their values from different dynamic ranges into a specified range, in order to 
prevent outweighing some attributes and to equalize the magnitude and variability of all features. 
There are three common normalization methods, as referred in [10]: Min-max, Z-score, and decimal 
scaling normalization. In this research, we use Min-max method that has been found to be 
empirically more computationally efficient in normalizing the multiple features 𝐹  in 𝐹ே , 
normalized feature in a ሾ0: 1ሿ range:  𝐹ே = 𝐹 െ min ሺ𝐹ሻmaxሺ𝐹ሻ െ min ሺ𝐹ሻ (12) 

We combine eigen-based features and geometrical features for easier data visualization in two 
separate spider charts (e.g. in Table 1 and Table 2). Subsequently, we plot normalized distributions 
per-voxel category (e.g. in Figure 6) to better understand the variations within features per element 
category. 

  
Figure 6: Box plot of primary elements feature variation. 

We note that, for the example of Primary Elements (mostly planar, described in Section 3.3), 
there is a strong similarity within the global voxel feature sets, except for orientation-related features 
(Normals, Position, Centroids). 

3.2.2. Connectivity and Relationship Features (SF2) 
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There are very few works that deal with explicit relationship feature extraction within point 
clouds. The complexity and exponential computation to extract relevant information at the 
point-level mostly justify this. Thus, the second set of proposed feature set (SF2) is determined at 
several octree levels. First, we extract a 26-connectivity graph for each leaf voxel, which appoints 
every neighbour for every voxel. These connectivity are primarily classified regarding their 
touch-topology [60], which either is vertex.touch, edge.touch, or face.touch (Figure 7).  

 
Figure 7: Direct voxel-to-voxel topology in a 26-connectivity graph. Considered voxel 𝒱௜ is red, 
direct connections are either vertex.touch (grey), edge.touch (yellow), or face.touch (orange) 

Each processed voxel is complemented through new relational features to complement this 
characterization of voxel-to-voxel topology. Immediate neighbouring voxels are initially studied to 
extract 𝐹௚ (geometrical difference) while using the log Euclidean Riemannian metric, which is a 
measure of the similarity between adjacent voxels covariance matrices: 𝐹௚ = ቛlog Σ௩೔ െ log Σ௩ೕቛி (13) 
where log(.) is the matrix logarithm operator and ‖ . ‖ி is the Frobenius norm.  

If the SF1 feature set is available (non-constrained through computational savings) and, 
depending on the desired characterization, these are favoured for an initial voxel tagging. 

We estimate concavity and convexity between adjacent voxels to get higher end 
characterization while limiting the thread surcharge to a local vicinity. It refines the description of 
the graph edge between the processed node (voxel) and each of its neighbours (Algorithm 2. We 
define 𝛼𝒱 the angle between two voxels 𝒱௜ and 𝒱௝, as: 𝛼𝒱 = 𝑛𝒱ഢሬሬሬሬሬ⃗ . ሺΣ𝒱ഢሬሬሬሬሬ⃗ െ Σ𝒱ണሬሬሬሬሬ⃗ ሻ (14) 

Algorithm 2 Voxel Relation Convexity/Concavity Tagging 
Require: A voxel 𝒱௜ and its direct vicinity ൛𝒱௝ൟ௝ୀଵଶ଺  expressed as a graph 𝑔. 

1. For each 𝒱௝ ് ∅ do 
2.   𝛼𝒱 ← angle between normal of voxels 
3.   if 𝛼𝒱 ൏ 0 then 
4.     ℯ௜௝ሺℊሻ ← edge between 𝒱௜ and 𝒱௝ is tagged as Concave 
5.   else ℯ௜௝ሺℊሻ  ← edge between 𝒱௜ and 𝒱௝ is tagged as Convex 
6.   end if 
7. end for 
8. end 
9. return (𝑔) 

Third, we extract four different planarity-based relationships (Figure 8) between voxels, being: 
• Pure Horizontal relationship: For 𝒱௜, if an adjacent voxel 𝒱௝ has a 𝑣ଷሬሬሬሬ⃗  colinear to the 

main direction (vertical in gravity-based scenes), then the edge ℯሺ𝑣௜, 𝑣௝ሻ is tagged ℋ𝓇. If two adjacent nodes 𝑣௜ and 𝑣௝ hold an ℋ𝓇 relationship and both 𝑣ଷሬሬሬሬ⃗  are not 
colinear, they are connected by a directed edge, ℯௗሺ𝑣௜, 𝑣௝ሻ, where 𝑣௜ is the starting 
node. In practice, voxels that are near horizontal surfaces hold this relationship. 
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• Pure Vertical relationship: For 𝒱௜, if an adjacent voxel 𝒱௝ has a 𝑣ଷሬሬሬሬ⃗  orthogonal to the 
main direction (vertical in gravity-based scenes), then the edge ℯሺ𝑣௜, 𝑣௝ሻ is tagged 𝒱ℯ. If two adjacent nodes 𝑣௜ and 𝑣௝ are connected through 𝒱𝓇 and both 𝑣ଷሬሬሬሬ⃗  are 
coplanar but not colinear, then they are connected by a directed edge, ℯௗሺ𝑣௜, 𝑣௝ሻ. In 
the case that we are in a gravity-based scenario, they are further refined following 𝑣ଵሬሬሬሬ⃗  and 𝑣ଶሬሬሬሬ⃗  axis. These typically includes voxels that are near vertical surfaces. 

• Mixed relationship: For 𝒱௜, if within its 26-connectivity neighbours, the node 𝑣௜ 
presents 𝒱ℯ and ℋ𝓇 edges, then 𝑣௜ is tagged as ℳ𝓇. In practice, voxels near both 
horizontal and vertical surfaces hold this relationship. 

• Neighbouring relationship. If two voxels do not hold one of these former 
constraining relationships but are neighbours, then the associated nodes are 
connected by an undirected edge without tags. 

   

   

(a) (b) (c) 

Figure 8: Relationship tagging in the voxel-space. (a) represent a mixed relationship ℳ𝓇, (b) a pure 
vertical relationship 𝒱𝓇, and (c) a pure horizontal relationship ℋ𝓇. 

Illustrated on the S3DIS dataset, Figure 9 is an example of the different voxel-categories: 

(a) (b) (c) (d) 

Figure 9: S3DIS points within categorized voxels. (a) Full transition voxels, (b) vertical group of 
points, (c) horizontal group of points, and (d) mixed group of points. 
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Finally, the number of relationships per voxel is accounted as the edge weights pondered by the 
type of voxel-to-voxel topology, where vertex.touch=1, edge.touch=2, and face.touch=3. We obtain a 
feature set SF2, as in Table 3: 

Table 3: Relational features of the SF2 feature set for three-dimensional (3D) structural connectivity. 

Relational 
Feature  

Description 

𝑔ଶ଺ሺ𝑖ሻ 
Graph of voxel entity 𝑖 and its neighbours retaining voxel topology (vertex.touch, 

edge.touch, face.touch) 𝐹௚ Geometrical difference  𝑔ଶ଺ି௖௖ሺ𝑖ሻ 𝑔ଶ଺ሺ𝑖ሻ retaining Convex/Concave tags. 𝑔ଶ଺ି௖௖ି௣ሺ𝑖ሻ 𝑔ଶ଺ି௖௖ሺ𝑖ሻ retaining planarity tags (ℋ𝓇, 𝒱𝓇, ℳ𝓇). 

This is translated into a multi-set graph representation to give a flexible featuring possibility to 
the initial point cloud. As such, extended vicinity is then a possible seed/host of new relationships 
that permit a topology view of the organization of voxels within the point cloud (e.g. Figure 10). 

 
Figure 10: Graph representation within a voxel sample of the point cloud. 

These relationships are represented in different groups to extract different features completing 
the relationship feature set. Graphs are automatically generated through full voxel samples 
regarding the Category tags and Convex-Concave tags. 

3.3. Connected Element Constitution and Voxel Refinement 

Based on the feature sets SF1 and SF2, we propose a connected-component workflow that is 
driven by planar patches. Connected-component labelling is one of the most important processes for 
image analysis, image understanding, pattern recognition, and computer vision, and it is reviewed 
in [61]. Being mostly applied for 2D data, we extend it to our 3D octree structure for efficient 
processing and parallelization compatibility. We study the predominance of planar surfaces in 
man-made environments and the feature-related descriptor, which provides segmentation benefits. 
The designed feature representations that are described in Section 3.2 are used as a mean to segment 
the gridded point cloud into groups of voxels that share a conceptual similarity. These groups are 
categorized within four different entities: Primary Elements (PE), Secondary elements (SE), 
transition elements (TE), and remaining elements (RE), as illustrated in Figure 11. 
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Figure 11: Elements detection and categorization. A point cloud is search for Primary Elements (PE), 
the rest is searched for Secondary elements (SE). The remaining from this step is searched for 
transition elements (TE), leaving remaining elements (RE). TE permits extracting graphs through SF2 
analysis with PE, SE, and RE. 

We start by detecting the PE using both feature sets. Initially, we group the voxels that answer a 
collinearity condition with the main direction. This condition is translated by comparing the angle of 
normalized vectors against a threshold due to the normal dispersion in voxel sets (which has no 
exact collinear match): 𝛼௩ ൏ 𝑡ℎ௔    𝑤𝑖𝑡ℎ    𝛼௩ = cosିଵሺ 𝑣ଷሺ𝚤ሻሬሬሬሬሬሬሬሬሬሬ⃗ . 𝑣ଷሺ𝚥ሻሬሬሬሬሬሬሬሬሬሬ⃗ฮ𝑣ଷሺ𝚤ሻሬሬሬሬሬሬሬሬሬሬ⃗ ฮ. ฮ𝑣ଷሺ𝚥ሻሬሬሬሬሬሬሬሬሬሬ⃗ ฮሻ (15) 

We then cluster linked nodes through connected-component labelling using SF2. PE mainly 
presents clusters of points that are the main elements of furniture (table top, chair seat…) or ceiling 
and ground entities. 

SE are constituted of voxels that hold 𝑣ଷሬሬሬሬ⃗  orthogonal to the main direction, being further 
decomposed along 𝑣ଵሬሬሬሬ⃗  and 𝑣ଶሬሬሬሬ⃗ . As such, they are usually constituted of elements that belong to 
walls, and horizontal planar-parts of doors, beams …  

The “edges” voxels that are within the set of tagged voxels ሼℋ𝓇, 𝒱𝓇, ℳ𝓇ሽ  are seeds to 
constitute TE, which are then further decomposed (voxel refinement) in semantic patches with 
homogeneous labelling, depending on their inner point characterization. As such, they play an 
important role in understanding the relationships between the primary, secondary, and remaining 
elements. They are initially grouped based on 𝐹௚ and clustered in connected-components using 𝑔ଶ଺ି௖௖ି௣ሺ𝑖ሻ (SF2). The voxels containing “edges” (e.g. in Figure 12) or multiple possible points that 
should belong to separate objects are further subdivided by studying the topology and features with 
their neighbouring elements.  

 
Figure 12: Edges elements to be decomposed in TE and RE. 

Finally, the remaining voxels are labelled through connected-components as RE, and their 
SF1-similarity is aggregated as a feature descriptor. For each element within the Connected Elements 
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(CEL) set {PE, SE, TE, RE}, the voxel features are aggregated to obtain a global SF1 and SF2 feature 
set per CEL, being updated through voxel refinement. Implementation-wise, CEL are sorted by 
occupied volume after being sorted per category, Relationships exist between primary, secondary, 
edges, and remaining elements due to their voxel-based direct topology. This proximity is used to 
refine voxels (thus elements) by extracting points within voxel neighbours of an element 𝜀௜, which 
belongs to an element 𝜀௝  based on defined SF1 features of 𝜀௜ -voxel. This permit leveraging 
planar-based dominance in man-made scenes using, for example, eigen-based features. Thus, we 
extract a new connectivity graph between CEL where the weight of relationships is determined 
using the number of connected voxels. This allows for refining the transition voxels based on their 
local topology and connectivity to the surrounding elements. Therefore, the global element’s 
features play the role of reference descriptors per segment, and the points within targeted voxels for 
refinement are compared against these. If within voxel points justify belonging to another 
Connected Element, then the voxel is split in semantic patches, which each retains a homogeneous 
CEL label. The final structure retains unique CEL labels per leaf, where the leaves that are called 
semantic patches are either pure voxel or voxel’s leaf.  

We obtain a graph-set composed of a general CEL graph, a PE graph, a SE graph, a TE graph, a 
RE graph, and any combination of PE, SE, TE, and RE (e.g. Figure 13): 

(a) (b) (c) (d) (e) 

Figure 13: Different graphs generated on voxel categories. (a) Connected Elements (CEL) graph, (b) 
PE graph, (c) SE graph, (d) TE graph, and (e) RE graph. 

We establish a graph-based semantic segmentation over these CEL in order to estimate the 
impact of designed features, as described in Section 3.4. 

3.4. Graph-based Semantic Segmentation 

We first employ a multi-graph-cut (set of edges whose removal makes the different graphs 
disconnected) approach depending on the weight of edges defining the strength of relations for 
every CEL in the graph-set, where the associated cut cost is: 𝑐𝑢𝑡൫𝜀௜, 𝜀௝൯ = ෍ 𝑤௣௤௣ఢఌ೔,௤ఢఌೕ  (16) 

where 𝑤௣௤  is the weight of the edge between nodes 𝑝  and 𝑞 . We use normalized cut by 
normalizing for the size of each segment in order to avoid min-cut bias: 𝑁𝑐𝑢𝑡൫𝜀௜, 𝜀௝൯ = 𝑐𝑢𝑡൫𝜀௜, 𝜀௝൯∑ 𝑤௞௞ఢ௘ഄ೔ሺ௚ሻ ൅ 𝑐𝑢𝑡൫𝜀௜, 𝜀௝൯∑ 𝑤௞௞ఢ௘ഄೕሺ௚ሻ  (17) 

where 𝑒ఌ೔ሺ𝑔ሻ are the edges that touches 𝜀௜, and 𝑒ఌ೔ሺ𝑔ሻ are the edges that touches 𝜀௝. 
Our approach was thought as a mean of only providing a first estimate of the representativity of 

CELs in semantic segmentation workflows, especially to differentiate big planar portions. As such, 
the provided classifier is very naïve, and it will be the subject of many improvements in the near 
future for better flexibility and to reduce empirical knowledge. It was constructed for indoor 
applications. For example, a segment with the largest membership to the ceiling might belong to 
beam or wall, and a segment with the largest membership to floor might belong to the wall or door. 
To handle such semantic mismatches, the graph 𝑔஼ா௅, that was previously constructed is used to 
refine the sample selection using the following rules and the search sequence starting from the class 
floor, and it is followed by the class ceiling, wall, beam, table, bookcase, chair, and door. Once a node 
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is labelled with one of these classes, it is excluded from the list of nodes being considered in the 
sample selection. The definition of thresholds was directly extracted from knowledge regarding the 
dimension of furniture objects from the European Standard EN1729-1:2015. As for the concepts at 
hand, these were defined regarding the Semantic Web resources, mainly the ifcOWL formalized 
ontology representing the Industry Foundation Classes application knowledge [62]. It is important 
to note that the furniture (chair, table, bookcases) models were extracted from these rules and we 
then simulated the scan positions to obtain simulated data. Indeed, sensors artefacts produce noisy 
point clouds, which can then slightly change the definition of thresholds. The obtained samples were 
then looked against five objects of the S3DIS to ensure consistency with the device knowledge. 

(1) A node is tagged “floor” when for a primary element 𝑝𝜀௜ and all primary elements 𝑝𝜀: 𝒱𝒜ሺ𝑝𝜀௜ሻ ∈ 𝑚𝑎𝑥𝑖𝑚𝑎𝑠൫𝒱𝒜ሺ𝑝𝜀ሻ൯ & ෍ 𝑒௣ఌ೔൫𝑔௣ఌ൯௞ ∈ 𝑚𝑎𝑥𝑖𝑚𝑎𝑠ሺሻ & 𝑍௣ఌ೔ ∈ 𝑚𝑎𝑥𝑖𝑚𝑎𝑠 ሺ𝑍௣ఌሻ (18) 

with ∑ 𝑒௣ఌ೔൫𝑔௣ఌ൯௞  being the sum of edge weights of all outgoing edges and incoming edges. 
(2) The “ceiling” is similar to the “floor” labelling, with the difference that 𝑍௣ఌ೔ is searched 

among minimas of 𝑝𝜀. 
(3) Once all of the ceiling and floor segments are identified, the nodes in the graph 𝑔௦ఌ of 

secondary elements are searched for “wall” segments by first identifying all of the nodes that are 
connected to the ceiling or floor nodes through the edges of the designated relationships. The area 
feature guides the detection through thresholding to exclude non-maxima to handle complex cases. 

(4) To identify “beams”, a sub-graph 𝑔௥ି௣ఌି௦ఌ composed of remaining non-classified elements 
from PE and SE is generated. A connected-component labelling is performed guided by transition 
elements. It is then searched for nodes that are connected to the ceiling and the walls, which are then 
classified as “beam” segments. 

(5) The “table” segments are extracted by the remaining elements of primary elements, if its SF1 
feature set presents a correspondence of more than 50% with a sample table object. We note that the 
predominant factor is the height that is found within 70 and 110 cm from the ground segment. The 
feature correspondence is a simple non-weighted difference measure between the averaged SF1 
features between the sample and the compared element. The sample element is constructed by 
following the domain concepts and thresholds, as explained previously. 

(6) We identify “bookcases” if it presents a direct SF2 connectivity to wall segments and a SF1 
feature correspondence of more than 50% from the remaining elements of RE. 

(7) Subsequently, RE and remaining PE are aggregated through connected components and 
tagged as “chair” if their mean height above ground is under 100 cm. 

(8) All of the unclassified remaining nodes are aggregated in a temporary graph and a 
connected-component labelling is executed. An element is tagged as “door” if the bounding-box 
element’s generalization intersect a wall segment. 

(9) Every remaining element is classified as “clutter”. 
By using the above nine rules, ceiling, floor, wall, beam, table, chair, bookcase, door, and clutter 

classes are looked for, going from raw point cloud to a classified dataset as illustrated in Figure 14. 

    

(a) (b) (c) (d) 

Figure 14: (a) Raw point cloud; (b) {PE, SE, TE, RE} groups of voxels; (c) Connected Elements; and, 
(d) Classified point cloud. 
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4. Dataset 

We evaluated feature performance in one application context to test our approach: 3D semantic 
segmentation for the indoor environment. We used the S3DIS dataset [16] from the Matterport 
sensor [63]. It is composed of six areas that are each subdivided in a specific number of rooms ( 

Table 4) for a total of 270 sub-spaces [50]. These areas show diverse properties and include 156 
offices, 11 conference rooms, two auditoriums, three lobbies, three lounges, 61 hallways, two copy 
rooms, three pantries, one open space, 19 storage rooms, and nine restrooms. One of the areas 
includes multiple floors, whereas the rest have one, and is very representative of building indoor 
spaces. The dataset is very noisy, presents imprecise geometries, clutter, and heavy occlusion. We 
noted that some points were mislabelled in the ground-truth labels during the tests, and that several 
duplicate points (points where the distance is inferior to 10-9 m from one another) add an extra bias. 
However, it was chosen, as it is a big dataset that provides a high variability of scene organization 
and it is currently used for benchmarking new algorithms. It is a very interesting opportunity to 
evaluate the robustness of our approach and to study the impact of features and their robustness to 
hefty point cloud artefacts. We remind the readers that the goal is to obtain relevant semantic 
patches constituting Connected Elements in a Smart Point Cloud Infrastructure. 

Table 4: The S3DIS dataset and its six areas used for testing our methodology. 

 Area-1 Area-2 Area-3 Area-4 Area-5 Area-6 

 

 

#Points  43 956 907 470 023 210 18 662 173 43 278 148 78 649 818 41 308 364 
Area (m²) 965 1100 450 870 1700 935 

Rooms 
(nb) 

44 40 23 47 68 48 

We consider nine out of 13 classes in the S3DIS dataset, which hold 88.5% of the total number of 
segments representing both moveable and structural elements. The choice was motivated by the 
colour-dependence of the remaining classes. Indeed, in this article, we focus on a general approach 
with minimal input and, as such, we filtered the initial dataset before computing metrics for every 
point initially assigned to one of the following classes: column, window, sofa, and board. Thus, our 
approach runs on the full dataset, but we compare only these classes as accounted in Table 5: 

Table 5: S3DIS per-area statistics regarding the studied classes. 

Method 
Ceiling Floor Wall Beam Door Table Chair Bookcase Others 

0 1 2 3 6 7 8 10 12 
Area 1 56 45 235 62 87 70 156 91 123 
Area 2 82 51 284 62 94 47 546 49 92 
Area 3 38 24 160 14 38 31 68 42 45 
Area 4 74 51 281 4 108 80 160 99 106 
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Area 5 77 69 344 4 128 155 259 218 183 
Area 6 64 50 248 69 94 78 180 91 127 

Full S3DIS 391 290 1552 215 549 461 1369 590 676 

5. Results 

5.1. Metrics 

Existing literature has suggested several quantitative metrics for assessing the semantic 
segmentation and classification outcomes. We define the metrics regarding the following terms that 
were extracted from a confusion matrix 𝐶 of size 𝑛 × 𝑛 (with 𝑛 the number of labels, and each 
term denoted 𝑐௜௝): 

• True Positive (TP): Observation is positive and is predicted to be positive. 
• False Negative (FN): Observation is positive but is predicted negative. 
• True Negative (TN): Observation is negative and is predicted to be negative. 
• False Positive (FP): Observation is negative but is predicted positive. 

Subsequently, the following metrics are used: 𝐼𝑜𝑈௜ = ்௉೔ி௉೔ାிே೔ା்௉೔ equivalent to 𝐼𝑜𝑈௜ = ௖೔೔௖೔೔ା∑ ௖೔ೕೕಯ೔ ା∑ ௖ೖ೔ೖಯ೔  (19) 𝐼𝑜𝑈തതതതത = ்௉ி௉ାிேା்௉ equivalent to 𝐼𝑜𝑈തതതതത = ∑ ூ௢௎೔೙೔సభ௡  (20) 𝑜𝐴𝑐𝑐 = ∑ ೅ು೔ಷು೔శ೅ು೔೙೔సభ ௡  equivalent to 𝑜𝐴𝑐𝑐 = ∑ ௖೔೔೙೔సభ∑೙ೕసభ ∑ ௖ೕೖ೙ೖసభ  (21) 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ்௉்௉ାி௉, 𝑟𝑒𝑐𝑎𝑙𝑙 = ்௉்௉ାிே, 𝐹ଵି௦௖௢௥௘ = ଶ்௉ଶ்௉ାி௉ାிே (22) 
The Overall Accuracy (𝑜𝐴𝑐𝑐) is a general measure on all observation about the performance of 

the classifier to correctly predict labels. The precision is the ability of the classifier not to label as 
positive a sample that is negative, the recall is intuitively the ability of the classifier to find all of the 
positive samples, The F1-score can be interpreted as a weighted harmonic mean of the precision and 
recall, thus giving a good measure of how well the classifier performs. Indeed, global accuracy 
metrics are not appropriate evaluation measures when class frequencies are unbalanced, which is 
the case in most scenarios, both in real indoor and outdoor scenes, since they are biased by the 
dominant classes. In general, the Intersection-Over-Union (IoU) metric tends to penalize the single 
instances of bad classification more than the F1-score, even when they can both agree that this one 
instance is bad. Thus, the IoU metric tends to have a "squaring" effect on the errors relative to the 
F1-score. Henceforth, the F1-score in our experiments gives an indication on the average 
performance of our proposed classifier, while the IoU score measures the worst-case performance. 

5.2. Quantitative and qualitative assessments 

5.2.1. Feature Influence 

Our first experiment independently uses SF1 and combined with SF2 to highlight performances 
and influence consequences on a representative sample from the S3DIS dataset. Table 6 lists the 
results regarding timings, number of CEL, elements (PE, SE, TE, RE) extracted and global metrics.  

Table 6: Analyses of the impact of feature sets over samples of the S3DIS dataset. 

Method Zone 
Time 
(min) 

CEL 
number 

mIOU oAcc F1-score 

SF1 Room 0.7 214 0.53 0.73 0.77 
 Area 

1 42.4 10105 0.35 0.58 0.63 

SF1SF2 Room 1.0 125 0.83 0.95 0.95 

  Area 
1 

55.0 5489 0.47 0.75 0.75 
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We note that SF1SF2 takes 30% longer, but permits obtaining 12 IoU points overall for Area-1, 
as well as 17 overall accuracy points and 12 F1-score points. For some rooms where the connectivity 
predicates are predominant, we can obtain more than a 30 IoU point increase. It is also very 
important to limit over-segmentation problematics while being versatile enough, depending on the 
different application needs. Thus, if we look at both the room and area 1 S3DIS samples, we note that 
the global number of CEL drops significantly, which permits classifier to reach a more 
representative detection (e.g. Table 7 gives an SF1SF2 instance detection comparison to ground 
truth) 

Table 7: Quantitative CEL segmentation compared to nominal number of elements per class for both 
a room (Conference room) and area (area 1). 

CEL Number 
Ceiling Floor Wall Beam Door Table Chair Bookcase 

0 1 2 3 6 7 8 10 
Room 1 1 1 4 1 1 1 13 1 

Tagged CEL 1 1 4 1 1 1 11 1 
Area 1 56 44 235 62 87 70 156 91 

Tagged CEL 52 44 146 47 23 67 129 70 

We then applied our specific knowledge-based classification approach over both SF1 alone and 
SF1SF2.  

Table 8 shows the metrics per class over the Area 1. 

Table 8: Global per-class metrics concerning the Area-1 of the S3DIS dataset. SF1 alone and 
combined SF1SF2 are compared. 

Global Metrics 
Area-1 

Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter 
0 1 2 3 6 7 8 10 12 

SF1 IoU 0.81 0.75 0.61 0.39 0.10 0.24 0.06 0.02 0.14 
SF1 Precision 0.99 0.99 0.84 0.67 0.11 0.96 0.09 0.15 0.32 

SF1 Recall 0.82 0.75 0.69 0.48 0.57 0.25 0.14 0.03 0.20 
SF1 F-1 score 0.90 0.86 0.76 0.56 0.18 0.39 0.11 0.05 0.24 
SF1SF2 IoU 0.95 0.92 0.67 0.49 0.14 0.32 0.32 0.15 0.31 

SF1SF2 Precision 0.98 0.95 0.79 0.88 0.29 0.9 0.69 0.2 0.41 
SF1SF2 Recall 0.97 0.97 0.82 0.53 0.2 0.33 0.37 0.37 0.56 

SF1SF2 F-1 score 0.97 0.96 0.8 0.66 0.24 0.48 0.48 0.26 0.47 

If we look at the IoU scores, combining SF1 and SF2 permits obtaining between +6 and +26 
points (+13 points in average) when compared to SF1 alone, which is a notable increase of 
performances. The highest growth is achieved for the ‘chair’ class, and the lowest for the ‘door’ class. 
The 3D connectivity information given by SF2 through {PE, RE} isolation and clustering mostly 
explains the ‘chair’ detection rate increase, which permits overcoming SF1 matching limitations due 
to large varying signatures within voxels. Concerning doors, the low increase is explained by its low 
SF2 connectivity information as within the S3DIS dataset, door elements do not show any clear ‘cuts’ 
with wall elements, and therefore are not clearly identified within RE. This can be solved by 
accounting for colour information to better segment the point cloud, or by using the spatial context 
and empty voxels within the wall segments. Additionally, the high recall score for bookcase shows 
that the combination permits better accounting for the right number of bookcase elements. Overall, 
while we notice a slight precision score decrease for planar-based classes (ceiling, floor, wall), the 
recall rates largely increase between SF1 and SF1SF2. This highlights the ability of our classifier to 
better identify all of the positive samples. This is translated in F1-scores, which are superior for all 
classes up to +37 points. 
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Subsequently, we studied the impact of influential factors over the results and performance of 
the algorithm (experiments were run 50 times each to validate the time output), as shown in Figure 
15. 

 
Figure 15: Normalized score and processing time in function of the defined octree level. 

We observe that our different metrics rise in a similar manner, with a greater score increase 
from octree level 4 to 5 (38 IoU points), and then not a distinctive increase. On the other end, we see 
an increase in the processing time from octree level 5 to 6, and a great increase from octree 6 to 7. 
This orients our choice towards a base process at octree level 5, sacrificing some score points for an 
adequate performance. 

5.2.2. Full S3DIS Benchmark 

We see that combining both SF1 and SF2 outperform a sole independent use of SF1 feature sets. 
Therefore, SF1SF2 method is compared against the state-of-the-art methodologies. We related our 
knowledge-based procedure to the best-performing supervised architectures due to the rise of deep 
learning approaches. 

We first tested our semantic segmentation approach on the most complex area, Area 5, which 
holds a wide variety of rooms with varying size, architectural elements, and problematic cases. This 
is our worst-case scenario area. It holds different complex cases that the knowledge-based 
classification approach struggles to handle, and the results can be found in Appendix A. Concerning 
the performances and calculation times for Area-5 (68 rooms), our approaches finish in 59 minutes 
(3538.5 seconds) on average (10 test-run), whereas the well-performing SPG approach [49] allows for 
the classification of the Area (78 649 682 points) in 128.15 minutes (7689 seconds). Thus, while the 
results have a large improving margin for non-planar elements, the approach (without 
parallelization and low optimization) is very efficient. We provide more details in Section 5.3. 

Subsequently, we execute our approach on the full S3DIS dataset, including varying 
problematic cases of which non-planar ceiling, stairs, heavy noise, heavy occlusion, false-labelled 
data, duplicate points, clutter, and non-planar walls comprise (see Appendix B for examples). This is 
a very good dataset for obtaining a robust indicator of how well a semantic segmentation approach 
performs and permitted to identify several failure cases, as illustrated in Figure 16. 
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Figure 16: Problematics cases which often include point cloud artefacts such as heavy noise, missing 
parts, irregular shape geometries, mislabelled data. 

We did not use any training data and our autonomous approach treats points by using only X, 
Y, Z coordinates. Again, we first use 𝐼𝑜𝑈തതതതത metric to get an idea of the worst-case performances 
achieved by our classifier based on established Connected Elements summarized in Table 9. 

Table 9: Benchmark results of our semantic segmentation approach against best-performing 
deep-learning methods. 𝑰𝒐𝑼തതതതത 

Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter 
0 1 2 3 6 7 8 10 12 

PointNet [25] 88 88.7 69.3 42.4 51.6 54.1 42 38.2 35.2 
MS+CU(2) [51] 88.6 95.8 67.3 36.9 52.3 51.9 45.1 36.8 37.5 
SegCloud [48] 90.1 96.1 69.9 0 23.1 75.9 70.4 40.9 42 
G+RCU [51] 90.3 92.1 67.9 44.7 51.2 58.1 47.4 39 41.9 

SPG [49] 92.2 95 72 33.5 60.9 65.1 69.5 38.2 51.3 
KWYND [12] 92.1 90.4 78.5 37.8 65.4 64 61.6 51.6 53.7 

Ours 85.4 92.4 65.2 32.4 10.5 27.8 23.7 18.5 23.9 
We note that our approach proposes 𝐼𝑜𝑈തതതതത scores of 85.4, 92.4 and 65.2 respectively for the 

ceiling, floor and wall classes. It is within a 3% to 15% range of achieved scores by every 
state-of-the-art method. This gives enough range for further improvements as discussed in Section 6. 
The ‘table’ elements present meagre performances explained by looking at  

Table 12 (high precision, low recall). Concerning bookcases our approach achieves poorly, 
partly due to the limitations of the knowledge-based approach. Indeed, the definition of a bookcase 
in Section 3.4 is not very flexible and doesn’t allows a search for hybrid structures where clutter on 
top of a bookcase hides planar patches thus classifying a bookcase as clutter and impacting 𝐼𝑜𝑈തതതതത 
score of both classes. Yet, the ground-truth dataset presents a very high variability and discussable 
labelling as illustrated in Figure 16. The lowest score achieved concerns doors as identified 
previously. These elements are often misclassified as clutter, due to their SF1 signature and low SF2 
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characterization. Overall, our classification approach is comparable to the best deep learning 
approaches, and the very low computational demand as well as promising improvement flexibility 
due to the nature of Connected Elements will be further discussed in Section 6. Indeed, while the 
score is in general lower than the best performing deep-learning approaches, this is mainly due to 
the classification approach. 

It is interesting to note that the deep learning architecture in Table 10 make use of colour 
information, whereas ours solely considers X, Y, Z attributes. A small benchmark is executed to 
account for this and provided in Table 11. 

Table 11: Benchmark results of our semantic segmentation approach against deep-learning methods 
without any colour information used. 

Method 
Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter 

0 1 2 3 6 7 8 10 12 
PointNet 84 87.2 57.9 37 35.3 51.6 42.4 26.4 25.5 

MS+CU(2) 86.5 94.9 58.8 37.7 36.7 47.2 46.1 30 31.2 
Ours 85.4 92.4 65.2 32.4 10.5 27.8 23.7 18.5 23.9 

We see that we outperform PointNet when using only X, Y, Z data for ceiling, floor, and wall 
classes. To better understand where our classifier presents shortcomings, we studied F1-scores per 
Area and per class to obtain insights on problematic cases and possible guidelines for future works. 
The analysis can be found in Appendix C. 

To summarize SF1SF2 performances, we present in Table 12 and the associated confusion 
matrix (Figure 17) per class scores over the full S3DIS dataset. 

Table 12: Per class metrics for the full S3DIS dataset using our approach. 

S3DIS class 
Metrics 

Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter Average 
0 1 2 3 6 7 8 10 12   

Precision 0.94 0.96 0.79 0.53 0.19 0.88 0.72 0.28 0.33 0.75 
Recall 0.90 0.96 0.79 0.46 0.19 0.29 0.26 0.36 0.47 0.72 

F1-score 0.92 0.96 0.79 0.49 0.19 0.43 0.38 0.31 0.39 0.72 
We note that we obtain in average a precision score of 0.75, a recall score of 0.72 thus a F1-score 

of 0.72. These are relatively good metrics considering the complexity of the test dataset, and the 
naïve classification approach. The largest improvement margin is linked to the ‘door’ and ‘bookcase’ 
classes as identified earlier and confirmed in Table 12. While for horizontal planar-dominant classes 
being ceiling and floor, the F1-scores of 0.92 and 0.96 give little place for improvement. It orients 
future work toward problematic cases handling (presented in Appendix B), and irregular structures 
targeting. The wall class detection scores of 0.79 gives a notable place for improvements, aiming both 
at a more precise and coherent classification approach. While table and chair precision are relatively 
good, their recall rate orients future work to better account for the full number of positive samples 
ignored with the present classification iteration. Looking at the normalized confusion matrix 
(denominator: 695 878 620 points in S3DIS), a large proportion of false positives are given to the 
clutter concerning all classes, which also demands a better precision in the recognition approach. 
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Figure 17: Normalized Confusion matrix of our semantic segmentation approach over the full S3DIS 
dataset. 

While the above metrics were compared against best-performing deep learning approaches, 
Table 13 permits to get a precise idea about how good the classifier achieves against the 
well-performing unsupervised baseline accessible in [16]. 

Table 13: Overall precision on the full S3DIS dataset against non-machine learning baselines. 

Overall Precision 
Ceiling Floor Wall Beam Door Table Chair Bookcase 

0 1 2 3 6 7 8 10 
Baseline (no colour) [16] 0.48   0.81  0.68  0.68  0.44  0.51  0.12  0.52    

Baseline (full) [16] 0.72 0.89 0.73 0.67 0.54 0.46 0.16 0.55 
Ours 0.94 0.96 0.79 0.53 0.19 0.88 0.72 0.2 

The used feature sets SF1/SF2 largely outperforms the baseline for the ceiling, floor, wall, table, 
and chair classes, permitting satisfying results, as illustrated in Figure 18.  
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Figure 18: Results of the semantic segmentation on a room sample. (a) RGB point cloud, (b) 
Connected Elements, (c) Ground Truth, and (d) Results of the semantic segmentation. 

However, we identified issues with the class ‘bookcase’ and ‘door’ where our approach 
performs poorly when compared to both the baseline with all features and without the colour. While 
the initial lack of SF2-related connectivity information mostly explains the door performance is 
mostly explained, as stated previously, the latter (bookcase) is partially linked to the variability 
under which it is found in the dataset and our too specialized classifier (indeed, we mostly consider 
ground-related bookcases which complicates the correct detection of wall-attached open bookcases). 
We thus noticed that several points were tagged as bookcase, whereas they are specifically desks or 
clutter (e.g. Figure 16). 

5.3. Implementation and Performances Details 

The full autonomous parsing module was developed in Python 3.6. A limited number of 
libraries were used in order to easily replicate the developing environment, and thus the 
experiments and results. As such several functions were developed and will be accessible as open 
source for further research. All of the experiments were performed on a five years old laptop with a 
CPU Intel Core i7-4702HQ CPU @ 2.20Ghz, 16 Gb of RAM, and an Intel HD Graphics 4600. As 
currently standing (no optimization and no parallel processing), the approach is quite efficient and it 
permits processing, on average, 1.5 million points per minute. This allows offline computing to 
include in server-side infrastructures. Our approach is 54% faster if we compare its performance to a 
state-of-the-art approach, like [49] (2018), it does not necessitate any GPU, and it does not need any 
(important) training data. 
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Figure 19: Relative temporal performances of our automatic semantic segmentation workflow. 

By looking at the relative temporal performances (Figure 19), we note that the first 
computational hurdle is the creation of Connected Elements. This is mainly explained by the amount 
of handled points without any parallel computing, which can majorly reduce the needed time. 
Subsequently, it is followed by the classification approach, but, as our main goal was to provide a 
strong 3D structural connectivity structure for a Smart Point Cloud parsing module, we did not 
target the classification performances. Loading/Export times can be reduced if the input files are in 
the .las format. The voxelisation approach and following steps until the semantic leaf extraction can 
also be parallelized for better performances. In the current version, 1.5 million points per minute are 
processed, on average, while using the above configuration without any GPU acceleration. It uses 
around 20% of the CPU and 900 Mb of RAM under full load. As it stands, it is therefore deployable 
on low-cost server-side infrastructures while giving the possibility of processing 90 million points 
per hour on average. 

6. Discussion 

From the detailed analysis provided in Section 5, we first summarize the identified strengths in 
the sub-section 6.1 and we then propose five main research directions for future work addressing the 
limitations in sub-section 6.2. 

6.1. Strengths 

First, the presented method is easy to implement. It is independent from any high-end GPUs, 
and mainly leverages the processor and the Random-Access Memory in its current state (around 1 
Gb). This is crucial for a large number of companies that do not possess high-end servers, but rather 
web-oriented (no GPU, low RAM, and intel Core processors). As such, it is easily deployable on a 
client-server infrastructure, without the need to upgrade the server-side for offline computations. 

Secondly, the approach is majorly unsupervised, which gives a great edge over (supervised) the 
machine learning approaches. Indeed, there is currently no need for a huge amount of training data, 
which thus avoids any time-consuming process of creating (and gathering) labelled datasets. This is 
particularly beneficial if one wants to create such a labelled dataset, as the provided methodology 
would speed-up the process by recognizing the main “host” elements of infrastructures, mainly 
leaving moveable elements supervision.  

Third, on top of such a scenario, the approach provides acceptable results for various 
applications that mainly necessitate the determination of structural elements. As such, it can be used 
for extracting the surface of ceilings, walls, or floors if one wants to make digital quotations; it can 
provide a basis for extracting semantic spaces (sub-spaces) organized regarding their function; it can 
be used to provide a basis for floor plans, cut, section creation or visualization purposes [64,65]. 
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Fourth, the provided implementation delivers adequate performances regarding the time that is 
needed for obtaining results. As it stands, without deep optimizations, it permits offline automatic 
segmentation and classification, and the data structure provides a parallel-computing support. 

Fifth, there is a low input requirement that only necessitate unstructured X, Y, Z datasets, 
contrary to benchmarked Deep Learning approaches that leverage colour information and provide a 
complete directed graph of the relations within CELs or classified objects. This information permits 
reasoning services to use the semantic connectivity information between objects and subspaces for 
advanced queries using both spatial and semantic attributes. 

Finally, the unsupervised segmentation and rule-based classification is easily extensible by 
improving the feature determination, enhancing the performances, or providing a better and more 
flexible classifier. For example, one can differentiate clutter based on connectivity and proximities to 
further enhance the classification (e.g., clutter on top of a table may be a computer; clutter linked to 
the ceiling and in the middle of the room is a light source…). Some of these potentials are addressed 
as research tracks for future works, as presented in the following sub-section 6.2. 

6.2. Limitations and Research Directions 

First, we note that the new relational features are very useful in the task of semantic 
segmentation. Plugged to a basic knowledge-based graph, it permits good planar-elements 
detection, such as floor, ceiling, and wall. At this point, it is quite useful for the creation of 
Connected Elements as all of the remaining points mainly cover remaining “floating” elements, 
which can then be further defined through classification routines. This is a very interesting 
perspective for higher end specialization per application, where the remaining elements are then 
looped for accurate refinement depending on the level of specialization needed, as expressed in [52]. 
Future work will also further study learning-based feature extraction, such as the ones presented in 
[66,67], proposing a design of the shape context descriptor with spatially inhomogeneous cells. The 
parsing methodology can also be extended through other domain ontologies, such as the 
CIDOC-CRM, as presented in [68], which highlight the flexibility to different domains. 

Secondly, the creation of links between CEL is a novelty that provides interesting perspectives 
concerning reasoning possibilities that play on relationships between elements. Indeed, the extracted 
graph is fully compatible with the semantic web and it can be used as a base for reasoning services, 
and provide counting possibilities, such as digital inventories [68] and semantic modelling [59]. 
Additionally, the decomposition in primary, secondary, transition, and rest elements is very useful 
in such contexts, as one can specialize or aggregate elements depending on the intended use and 
application [50]. Indeed, the approach permits obtaining a precise representation of the underlying 
groups of point contained within Connected Elements and homogenized in Semantic Patches. 

Third, the extended benchmark proved that untrained schemes could reach a comparable 
recognition rate to the best-performing deep learning architectures. Particularly, detecting the main 
structural elements permits achieving a good first semantic representation of space, opening the 
approach to several applications. However, the scores for ‘floating’ CEL (moveable elements) is poor 
in its current version. Shortcomings are linked to the naïve knowledge-based classifier, which lacks 
flexibility/generalization in its conception and gives place for major improvements in future works. 
Specifically, it will undergo an ontology formalization to provide a higher characterization and 
moving thresholds to better adapt the variability in which elements are found in the dataset. 

Fourth, some artefacts and performances hurt the approach due to the empirical octree-based 
voxelization determination and enactment, but, as it stands, it provides a stable structure that is 
robust to aliasing and the blocking effect at the borders. Further works in the direction of efficient 
parallel computing will permit an increase in time performances and deeper depth tree selection 
(thus better characterization). Additionally, the octree definition will be looked at for variable octree 
depth, depending on pre-define sensor-related voxel leaf size. Other possibilities include using a 
local voxelated structure, such as that proposed in [54] to encode the local shape structure into bit 
string by point spatial locations without computing complex geometric attributes. On the 
implementation side, while the dependency to voxelization is limited due to the octree structure to 
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allow a constant point density per voxel, on average, it will be further studied to avoid exponential 
time explosion when changing the deepness level. As such, the structure is already ready for parallel 
computing and it will be studied in future works. 

Finally, while our dedicated approach was tested on the S3DIS dataset, it can easily be adapted 
to other point clouds that provide an additional research direction. The approach will be tested 
against indoor and outdoor point clouds from different sensors and the classification could be 
adapted to account for various well-established classes. As such, a large effort is currently 
undergoing to create accurate labelled datasets for AEC and outdoor 3D mapping applications, to be 
shared as open-data. 

Our focus is driven by a general global/local contextualization of digital 3D environments, 
where we aim at providing a flexible infrastructure that should be able to scale up to different 
generalization levels. As such, the proposed unsupervised segmentation approach in Connected 
Elements and Semantic patches acts as a standard module within the Smart Point Cloud 
Infrastructure and permit obtaining a full autonomous workflow for the constitution of semantically 
rich point clouds [2]. 

7. Conclusions 

In this article, a point cloud parsing module for a Smart Point Cloud Infrastructure was 
presented. It provides a semantic segmentation framework that groups points in a voxel-based 
space, where each voxel is studied by analytic featuring and similarity analysis to define the 
semantic clusters that retain highly representative SF1 and SF2 signatures. This process is conducted 
regarding an initial connected component from multi-composed graph representations after 
automatically detecting different planar-dominant elements leveraging their prevalence in 
man-made environments. A classification approach to automatically detect main classes in the S3DIS 
dataset and obtain a measure of performance against best-performing deep learning approaches is 
provided. While the method is well performing for the floor, ceiling, and wall classes, extended 
research is needed if one wants to use the classification as a robust approach for moveable elements 
detection. 

Supplementary Materials: Several appendixes can be found at the end of the paper for extended information 
and understanding of the approach.  
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Appendix A 

We decided to hold 𝐼𝑜𝑈തതതതത metrics to get an idea of the worst possible scores and compare them 
with the three methods listed in Table A: 

Table A. Intersection-over-Union on Area 5 of our methodology compared to PointNet [25], 
SegCloud [48] and SuperPoint Graphs (SPG [49]). 

IoU for Area-5 
Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter 

0 1 2 3 6 7 8 10 12 
PointNet [25] 88.8 97.33 69.8 0.05 10.76 58.93 52.61 40.28 33.22 
SegCloud [48] 90.06 96.05 69.86 0 23.12 70.4 75.89 58.42 41.6 

SPG [49] 91.49 97.89 75.89 0 52.29 77.4 86.35 65.49 50.67 
Ours 85.78 92.91 71.32 0 7.54 31.15 29.02 23.48 21.91 

We see that scores obtained for the floor and the ceilings are comparable to the ones obtained by 
the three deep learning approaches. However, the wall detection ratio outperforms both PointNet 
and SegCloud, but SPG are still showing better performances. This is explained by the high level of 
noise and irregular structure. The beam presents a null score (as benchmarked methods) due to the 
very little number of points and specificity of the 3 beams in the ground truth dataset labelled 
containing 22 424 points. 
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Appendix C 

We provide the summary of our analysis conducted per area in Table C.  

Table C. summary of the 6 areas using our semantic segmentation approach. 

F1-score 
Ceiling Floor Wall Beam Door Table Chair Bookcase Clutter 

0 1 2 3 6 7 8 10 12 
Area-1 0.97 0.96 0.80 0.66 0.24 0.48 0.48 0.26 0.47 
Area-2 0.85 0.94 0.70 0.15 0.22 0.11 0.12 0.26 0.32 
Area-3 0.98 0.98 0.78 0.61 0.21 0.41 0.61 0.38 0.50 
Area-4 0.90 0.97 0.78 0.00 0.12 0.25 0.40 0.24 0.35 
Area-5 0.92 0.96 0.83 0.00 0.14 0.48 0.45 0.38 0.36 
Area-6 0.95 0.97 0.78 0.58 0.24 0.54 0.53 0.28 0.43 

                    
We note that Area-2 is responsible for a drop of performance in ceiling and floor detection, as 

well as Area-4, which is explained by the very irregular structures of the ceiling and the presence of 
multilevel stairs. Wall detection is constant among areas whereas beams are very irregular and 
explain the drop of performances in non-weighted. The classes in Areas 2, 4 and 5 are very specific 
and in a very low number of occurrences (see Table C). Table and chair detection rates are very 
constant and give place for future improvements. Bookcase and clutter also show very similar 
detection rates per area and demand a global classification optimization for higher performances. 

As seen above, ‘table’ presents an unsatisfying detection rate. This is due to the very low recall 
score, as our classifier only tagged points which were surely a table.  

  
Area 1 – Conference room 1 Area 2 – Office 10 

  
Area 3 – Office 2 Area 4 – Conference room 3 
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Area 5 – Office 39 Area 6 – Conference room 1 
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