
 International Journal of

Geo-Information

Article

Spatial Pattern Consistency among Different
Remote-Sensing Land Cover Datasets: A Case Study
in Northern Laos

Junmei Kang 1, Lichun Sui 1, Xiaomei Yang 2,3, Zhihua Wang 2,* , Chong Huang 2 and Jun Wang 1

1 Geological Engineering and Institute of Surveying and Mapping, Chang’an University, Shaanxi 710054,
China; 2017026008@chd.edu.cn (J.K.); sui1011@chd.edu.cn (L.S.); 2017026007@chd.edu.cn (J.W.)

2 State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences
and Natural Resources Research, CAS, Beijing 100101, China; yangxm@lreis.ac.cn (X.Y.);
huangch@lreis.ac.cn (C.H.)

3 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and
Application, Nanjing 210023, China

* Correspondence: zhwang@lreis.ac.cn; Tel.: +86-1861-130-1918

Received: 7 February 2019; Accepted: 29 April 2019; Published: 1 May 2019
����������
�������

Abstract: Comparisons of the accuracy and consistency of different remote-sensing land cover
datasets are important for the rational application of multi-source land cover datasets to regional
development, or to studies of global or local environmental change. Existing comparisons of accuracy
or spatial consistency among land cover datasets primarily use confusion or transfer matrices and
focus on the type and area consistency of land cover. However, less attention has been paid to the
consistency of spatial patterns, and quantitative analyses of spatial pattern consistency are rare.
However, when proportions of land cover types are similar, spatial patterns are essential for studies
of the ecological functions of a landscape system. In this study, we used classical landscape indices
that quantifies spatial patterns to analyze the spatial pattern consistency among different land cover
datasets, and chose three datasets (GlobeLand30-2010, FROM-GLC2010, and SERVIR MEKONG2010)
in northern Laos as a case study. We also analyzed spatial pattern consistency at different scales
after comparing the landscape indices method with the confusion matrix method. We found that the
degree of consistency between GlobeLand30-2010 and SERVIR MEKONG2010 was higher than that
of GlobeLand30-2010 and FROM-GLC2010, FROM-GLC2010, and SERVIR MEKONG2010 based on
the confusion matrix, mainly because of the best forest consistency and then water. However, the
spatial consistency results of the landscape indices analysis show that the three datasets have large
differences in the number of patches (NP), patch density (PD), and landscape shape index (LSI) at the
original scale of 30 m, and decrease with the increase of the scale. Meanwhile, the aggregation index
(AI) shows different changes, such as the changing trend of the forest aggregation index increasing
with the scale. Our results suggested that, when using or producing land cover datasets, it is necessary
not only to ensure the consistency of landscape types and areas, but also to ensure that differences
among spatial patterns are minimized, especially those exacerbated by scale. Attention to these
factors will avoid larger deviations and even erroneous conclusions from these data products.

Keywords: land cover products; spatial pattern; landscape index; scale; northern Laos

1. Introduction

Land cover change is closely related to global environmental change, human survival, material
circulation, and global ecosystem energy cycles [1–4]. Global and regional land cover data are vital for
studies of terrestrial surface processes across many research areas, including environmental monitoring,
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resource surveys, biodiversity assessments, and climate change [5–7]. As remote sensing, GIS, and
other technologies have become increasingly well-developed, several new global and regional land
cover datasets, based on remote sensing images from multiple sources, have been released. Currently,
more than 20 land cover datasets are available [8]. The most commonly used datasets are IGBP
DISCOVER, produced by the US geological survey [9]; GLC2000, produced by the European union
joint research center [10]; MODIS, produced by Boston University [11]; GLOBCOVER, produced
by the European space agency [12,13]; LandLand30, produced by the national geomatics center of
China [14]; FROM-GLC, produced by Tsinghua University [15]; and SERVIR MEKONG, produced
jointly by several teams, including the United States agency for international development (USAID),
the national aeronautics and space administration (NASA), and the Asian disaster preparedness center
(ADPC) data. As these land cover datasets have different classification systems, classification methods,
production processes, and spatial resolutions, they yield different results when applied to research
questions at regional or global scales. These differences affect the use of these datasets in various
fields [16,17]. Therefore, it is necessary to analyze the accuracy and consistency of these multi-source
remote sensing land cover datasets in order to provide a reference for the effective use of land cover
data in environmental monitoring studies.

Previous studies have assessed the accuracy and consistency of various multi-source remote
sensing land cover datasets at regional or global scales [18–20]. Giri et al. [21] analyzed the degree of
congruence between MODIS and GLC2000 using area consistency and the confusion matrix method.
It was shown that, except for savannas, shrublands, and wetlands, data for other gross land types
were generally consistent; however, in more detailed land cover categories, the degree of inconsistency
increased. Mccallum et al. [22] analyzed the percentage of type area and spatial distribution consistency
of four commonly used, 1-km-resolution land cover datasets on a global scale and selected seven
regional scales. In this analysis, spatial distribution consistency at each location was assessed based on
a four point scale: completely consistent (all four products identified the same land cover types), highly
consistent (three products identified the same land cover types), consistent (two products identified the
same land cover types), and completely inconsistent (all four products identified different land cover
types). The results show that the spatial distribution consistency across the four data sets was limited.
Using the area comparison and confusion matrix analysis methods, Tchuente et al. [23] compared the
accuracy of the GLC2000, GLOBCOVER, MODIS, and ECOCLIMAP datasets on the African continent;
the results showed that the consistency percent among the four land cover products was 56–69%.
Focusing on the impacts of climate and altitude, Hua et al. [24] compared the spatial consistency of five
land cover datasets at global and continental scales using compositional similarity, a confusion matrix,
and spatial consistency analysis; it was shown that the global overall consistency of the data sets was
49.2–67.63%. Yang et al. [25] compared the accuracy of nine land cover maps of China, based on seven
global land cover datasets, and found significant differences exist in land area and spatial patterns.

These studies focused on the land cover types and area consistency, and the methods they used
are based on the confusion matrix which has neglect the spatial pattern information, such as the size
and the shape of the connected patches. However, when the proportions of land cover types are similar,
the spatial pattern information is also critical to the ecological function of the landscape system [26,27].
For example, the single large or several small reserves problem in landscape ecology queries whether
species diversity is better preserved by one large reserve or by several small reserves when the total
protected area is equivalent [28]. Using identical data sources and methods, Sertel et al. [29] generated
three land cover maps (primary, secondary, and tertiary) and then used landscape indices analysis
to compare the landscape fineness to the landscape indices. It was shown that the finer the land
cover data, the more accurately the landscape features were defined. However, to our knowledge, no
previous studies have specifically focused on the consistency of spatial patterns across different land
cover datasets produced from different data sources or by different methods.

To compare spatial pattern consistency among different land cover datasets, we herein used
classical landscape indices, which quantifies spatial distributions in landscape ecology, and then conduct
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quantitative contrast experiments. Using northern Laos as a case study area, we quantitatively compare
spatial pattern consistency among three high-resolution land cover datasets (GlobeLand30-2010,
FROM-GLC2010, and SERVIR MEKONG2010). Since spatial distribution is still heavily dependent on
spatial scale, we also experimentally compare and analyze spatial pattern consistency at different scales.

2. Study Area and Data Source

2.1. Study Area

Laos, which is a landlocked country located in the northern part of the Indo-Chinese peninsula
(between 100◦05–107◦38′ E and 13◦54′–22◦30′), has an area of 236,800 km2. Laos is bordered by the
western Yunnan Plateau (Yunnan, China) to the north; by Vietnam to the east; by Thailand to the
west; by Myanmar to the northwest; and by Cambodia to the south. Northern Laos is connected by
the Mekong River, Asia’s most important transnational water system. The land cover research in
Northern Laos has important implications for ecosystem productivity, biodiversity, and biogeochemical
cycles in the Mekong River Basin. Our study area included nine first-level administrative districts,
including the provinces Phôngsali, Luang Namtha, Oudômxai, and Vientiane (Figure 1). The elevation
of Laos is higher in the north and lower in the south; the country is inclined to the southeast in the
northwest. Xiangkhoang is the highest province in Laos, with an average elevation of 1200 m. Laos has
a tropical and subtropical monsoon climate, with a dry season (November–April) and a rainy season
(May–October). During the rainy season, the average temperature is 24.2 ◦C, the average annual
rainfall is about 1700 mm, and the rainfall on the plateau and mountains is about 1300 mm. During
the dry season, the average temperature is 27.3 ◦C and there is almost no rainfall due to the dry, cool
northeast wind. The little industry in the study area is primarily wood processing, rice milling, and tin
mining. The main crops of Laos include rice, coffee, tobacco, and cotton.
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Figure 1. Location and topographic map of the study area.

2.2. Formatting of Mathematical Components

To compare spatial patterns in northern Laos, we used three global and regional land cover datasets:
GlobeLand30-2010, produced by the national geomatics center of China (http://www.globallandcover.
com/); FROM-GLC2010, produced by Tsinghua University, China (http://data.ess.tsinghua.edu.cn/);
and the regional-scale MEKONG2010 dataset, produced by USAID, NASA, and other teams (https:
//rlcms-servir.adpc.net/en/landcover/); the main parameters of each dataset are summarized in Table 1.

http://www.globallandcover.com/
http://www.globallandcover.com/
http://data.ess.tsinghua.edu.cn/
https://rlcms-servir.adpc.net/en/landcover/
https://rlcms-servir.adpc.net/en/landcover/
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These datasets were selected because they all have 30 m resolution and were produced in the same
year. Since spatial distribution is still heavily dependent on spatial scale, it is necessary to analyze
them in a multiscale way (For more details, please refer to the Section 3.3).

Table 1. Main parameters of three kinds of land cover products.

Product Name
Spatial

Resolution
(m)

Year Number of
Categories

Classification
Technique

Overall
Accuracy

(%)

Publication
Organization Sensor Coverage

Area

GlobeLand30-2010 30 2010 10
POK (based on

pixels, objects, and
knowledge rules)

80.30

National
Geomatics
Center of

China

Landsat TM,
ETM+,

HJ-1A/B
Global

FROM-GLC2010 30 2010 10
(first-class)

Support vector
machine 64.90 Tsinghua

University
Landsat

TM/ETM+
Global

SERVIR
MEKONG2010 30 2010 22

Support vector
machine and

random forest
Unpublished

USAID,
NASA,
ADPC

Landsat
TM/ETM+

Indochina
Peninsula

2.3. Data Preprocessing

To compare the consistency of the three datasets, we preprocessed the original data by removing
all of the extraneous data (selecting only the study area), converting the projections, and merging the
classification systems. We used ArcGIS software to trim the datasets and to generate new datasets with
consistent boundaries (i.e., those of the study area). We used the universal transverse mercator (UTM)
projection and the world geodetic system-1984 (WGS84) coordinate system.

The use of a classification system is critical for global and regional land cover mapping. Various
land cover classification systems have been proposed, based on the ability of remote sensing to
acquire the attributes of surface features [30–32]. In order to compare different land cover datasets,
we required a unified classification system. As the classification systems used by the three land cover
data sets were different, the formulations of the relevant standards were not uniform, and errors or
inaccuracies may occur if there is no general category correspondence rule for direct comparisons [33].
Therefore, we standardized the code used for each land cover type across the three datasets and merged
the individual sets of land cover types to establish a unified classification system. The relationship
between the original classification (Table 2) and the unified system is shown in Table 3. Importantly,
the classification system used by the GlobeLand30-2010 dataset (i.e., only 10 types of first-class
categories) was simpler than the other two classification systems. Therefore, we reduced the complexity
of the other two systems to the GlobeLand30-2010 system. Other types of merges were performed
according to the GlobeLand30-2010 type definition. In addition, there were cloud coverage areas in the
SERVIR MEKONG2010 data, so we remove the area data before merging the types, and other products
did not consider the grid, and the final results do not include the grid in the evaluation. The three
preprocessed land cover products are shown in Figure 2.
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Table 2. The original classification systems of the three land cover datasets, along with the relevant codes.

Code GlobeLand30-2010 Code FROM-GLC2010 Code SERVIR MEKONG2010

10 Cropland 11 Rice fields 0 Other
20 Forest 12 Greenhouse farming 1 Surface water
30 Grassland 13 Other croplands 2 Snow and Ice
40 Shrubland 21 Broadleaf forests 3 Mangrove
50 Wetland 22 Needleleaf forests 4 Flooded Forest
60 Water bodies 23 Mixed forests 5 Deciduous Forest
70 Tundra 24 Orchards 6 Orchard or Plantation Forest
80 Artificial surfaces 31 Pastures 7 Evergreen Broadleaf Alpine
90 Bareland 32 Other grasslands 8 Evergreen Broadleaf

100 Permanent snow and ice 40 Shrublands 9 Evergreen Needleleaf
51 Marshland 10 Evergreen Mixed Forest
52 Mudflats 11 Mixed Evergreen and Deciduous
61 Lake 12 Urban and Built Up
62 Reservoir/pond 13 Cropland
63 River 14 Rice Paddy
64 Ocean 15 Mudflat and Intertidal
71 Shrub and Brush Tundra 16 Mining
72 Herbaceous Tundra 17 Barren
81 Impervious-high albedo 18 Wetlands
82 Impervious-low albedo 19 Grassland
91 Dry salt flats 20 Shrubland
92 Sandy areas
93 Bare exposed rock
94 Bare herbaceous croplands
95 Dry lake/river bottoms
96 Other barren lands
101 Snow
102 Ice
120 Cloud

Table 3. Types of land cover included in the study area.

Class Name GlobeLand30-2010 FROM-GLC 2010 SERVIR MEKONG2010

1 Cropland 10 11, 12, 13 13, 14
2 Forest 20 21, 22, 23, 24 5, 8, 9, 10, 11

3 Shrubland 40 40 -
4 Grassland 30 32 -
5 Wetland 50 51, 52 4

6 Water bodies 60 61, 62, 63, 64 1
7 Artificial surfaces 80 81, 82 12

8 Bareland 90 91, 92, 93, 94, 95, 96 17
9 Others - 101 0
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Figure 2. Three land cover products of the study area. The data from left to right are Globeland30-2010,
FROM-GLC2010, and SERVIR MEKONG2010.

3. Methods

3.1. Analysis Based on Confusion Matrix and Spatial Overlay

In order to describe the consistency or confusion degree of the same land cover type among
different products, every two of three remote sensing land cover products were selected, and their error
matrices were calculated to obtain the consistency and confusion degree [34]. The metrics derived from
error matrix are: overall accuracy, producer accuracy, and user accuracy. The calculation formulas are:

OA =

∑8
i=1 xii

n2 × 100% (1)

PA =
xii
x+i
× 100% (2)

UA =
xii
xi+
× 100% (3)

where xii is the pixel number of correctly classified of type i; n is the total number of pixels in the study
area; xi+ is the total number of pixels of type i in the data to be verified; x+i is the total number of pixels
of type i in the reference data.

To determine the consistency in land cover types between the three datasets, the land cover
assumed at each pixel was compared and classified as either completely inconsistent (no agreement in
land cover type), basically consistent (some agreement in land cover type), or completely consistent (all
datasets agree on land cover type). These results were then aggregated to determine the proportion of
the study region represented by these three classes of spatial consistency.

3.2. Selection of Landscape Pattern Indices

A landscape pattern is the concrete manifestation of landscape heterogeneity, and is the result of
various ecological processes acting on different scales [35,36]. The landscape pattern indices are vital
for quantifying and analyzing landscape patterns, dynamic changes in landscape patterns, and the
factors driving land cover composition [37–40]. At present, the number of landscape pattern indices,
and the diversity of those indices, are increasing. As a single index cannot accurately reflect the real
characteristics of a landscape, two or more representative indices should be used to analyze patterns
and changes in the landscape. Due to the relative complexity of regional landscapes and the correlation
between different landscape pattern indices, some redundancy or similarity appears in the selection
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of landscape pattern indices. Thus, these indices may not fully reflect the spatial heterogeneity and
diversity of the landscape. Therefore, it is necessary to understand the ecological significance of each
landscape pattern index, as well as the landscape structure prerequisites that are required for use.
Based on previous studies [41,42] and the characteristics of the study area, we selected the number of
patches (NP) as the representative index of landscape or habitat fragmentation; patch density (PD) as
the representative index of landscape spatial heterogeneity; the landscape shape index (LSI) as the
representative index of shape complexity; and the aggregation index (AI) as the representative index
of patch connectivity. Each index was calculated using the software Fragstats version 4.2 [43] based on
eight domain rules [44]. The definition of landscape indices and their ecological significance are given
in Table 4.

Table 4. Definition and ecological significance of each landscape index.

Name Description Ecological Significance

the number of
patches (NP)

NP represents the total number of patches
in the landscape

NP ≥ 1, No Upper Limit

NP is often used to describe the heterogeneity of the whole
landscape. The value of NP is positively correlated with
the fragmentation of the landscape. If NP is large, then

landscape fragmentation is high; if NP is small, then
landscape fragmentation is low.

patch density
(PD)

Formula: PD = M/A
where N is the total number of patches, and

A is the total area of the landscape
PD represents the number of patches per

square kilometer
PD > 0, No Upper Limit

PD is often used to describe the degree of spatial
heterogeneity and fragmentation of the landscape patches.
Larger PD values imply spatial patch heterogeneity and

patch fragmentation.

landscape shape
index (LSI)

Formula: LSI = 0.25E
√

A
where E is the total length of all patch

boundaries in the landscape, and A is the
total area of the landscape
LSI ≥ 1, No Upper Limit

LSI reflects the complexity of landscape shape. As LSI
approaches 1, the overall landscape shape becomes

increasingly simple. When LSI = 1, there is only one patch
of this type in the landscape, which is square or close to

square. As LSI increases, the more complex the boundary
shapes of the landscape patches are.

aggregation index
(AI)

Formula: AI =
[

gi j
maxgi j

]
× 100

Represents the number of pixel nodes of the
patch type divided by the maximum

number of nodes when the patch type is
first aggregated

0 ≤ AI ≤ 100

AI reflects the degree of non-randomness or aggregation of
different patch types in the landscape, and shows the

connectivity between patches of each landscape type. If a
landscape is composed of many discrete patches, the
aggregation index is low; when a few large patches

dominate, or the same types of patches are highly linked,
the aggregation index is high.

3.3. Multiscale Comparison of Spatial Pattern Consistence

The results of the spatial pattern analysis are heavily dependent on the spatial scale. This is a very
well-known problem in spatial data analysis, called the modifiable area unit problem (MAUP), which
leads to the inconsistent conclusions when the unit size and partition of the analysis are different [45].
In order to overcome the MAUP and comprehensively compare the consistency of the spatial patterns,
this paper makes a comparison of the three land cover data on different spatial scales. Scaling in
landscape ecology includes scaling up and scaling down. Scaling up means to move observations,
tests, and simulation results from a fine scale to a larger scale [46]. Here, we focused on scaling up.
We chose an appropriate scale based on previous studies [47,48]. We used ArcGIS software to resample
the original land cover data using the mode sampling method, and obtained 20 different scales of land
cover raster data (30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900,
and 1000 m).

4. Results

4.1. Consistency by Confusion Matrix and Overlap

We selected two of the three types of land cover products as the reference data and the other
product as the data needing evaluation and calculated the confusion matrix. Considering that the
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error matrix values calculated by any two kinds of data reference data and the data exchange role to
be evaluated are the same for consistency analysis, we only calculated the confusion matrix once for
any two data. Tables 5–7 are the confusion matrices calculated by treating FROM-GLC2010, SERVIR
MEKONG2010, and Globeland30-2010 as reference data, and Globeland30-2010, FROM-GLC2010,
and SERVIR MEKONG2010 as corresponding data to be evaluated. The experimental results show that
Globeland30-2010 and SERVIR MEKONG2010 have the highest overall consistency among land cover
data, while Globeland30-2010 and FROM-GLC2010 have the lowest overall consistency. From the
comparative analysis of each type of consistency, the forest and water type consistency between the two
types of land cover data is higher, and the wetland type consistency is lower. Bareland-type consistency
is low between Globeland30-2010 and SERVIR MEKONG2010 land cover data. The consistency
of shrub, grassland, and bareland types between Globeland30-2010 and FROM-GLC2010 data is
low. The reason for the low consistency between shrubs, grasslands, wetlands, and bareland types
between any two types of data is mainly because the classification systems and classification methods
used in the three products are different, resulting in the three products being produced on the target
recognition. The huge difference is followed by the ambiguity in the classification of shrubs, woodlands,
grasslands, and bareland, which also leads to large differences in the recognition of different products
in remote sensing.

Table 5. Confusion matrix of FROM-GLC2010 and Globeland30-2010 (FROM-GLC2010 is reference
data, Globeland30-2010 is data to be evaluated).

Type Cropland Forest Shrubland Grassland Wetland Water Artificial
Surface Bareland UA(%)

Cropland 1058717 1401589 62764 1084150 16 34234 16890 4353623 13.21
Forest 8942091 88234364 500582 3767133 17 119304 33039 4843837 82.86

Shrubland 37355 287980 732 8307 0 4701 306 42015 0.19
Grassland 1178850 8414868 116852 1570088 4 45092 6932 2066832 11.71
Wetland 939 22 1 45 0 796 149 2929 0

Water 88248 53309 1252 6144 1 728583 9662 120511 71.84
Artificial surface 8870 9027 91 3530 0 490 1333 48237 1.86

Bareland 23 390 1 24 0 1 0 64 12.65
PA(%) 9.34 89.65 0.11 24.38 0 77.77 1.94 0
OA(%) 86.01

Table 6. Confusion matrix of SERVIR MEKONG2010 and FROM-GLC2010 (SERVIR MEKONG2010 is
reference data, FROM-GLC2010 is data to be evaluated).

Type Cropland Forest Wetland Water Artificial Surface Bareland UA(%)

Cropland 1312597 9888715 1972 57017 45231 9492 11.58
Forest 2251914 96065657 1539 12466 35050 32910 97.61

Wetland 10 26 0 2 0 0 0
Water 86263 76827 2864 765891 1373 107 81.75

Artificial surface 25872 33915 88 4273 4078 97 5.94
Bareland 4759383 6291827 1981 46674 237569 140384 1.22

PA(%) 15.55 85.46 0 85.71 1.26 76.69
OA(%) 90.88

Table 7. Confusion matrix of Globeland30-2010 and SERVIR MEKONG2010 (Globeland30-2010 is
reference data, SERVIR MEKONG2010 is data to be evaluated).

Type Cropland Forest Wetland Water Artificial surface Bareland UA(%)

Cropland 4842548 3612715 3152 179575 15866 7 55.94
Forest 2805798 102690694 325 101461 11259 496 97.22

Wetland 669 2766 9 3683 3 0 0.13
Water 47139 71924 1137 722098 482 0 85.25

Artificial surface 219344 36703 279 3277 43231 0 14.27
Bareland 97610 57402 0 292 759 0 0

PA(%) 60.42 96.43 0.18 71.2 60.37 0
OA(%) 97.15
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Based on the confusion matrix in Tables 5–7, the area consistency of the three land cover data
was compared and analyzed. The three land cover data show that the forest areas account for the
largest proportion. For other types, the water area consistency of the three land cover data is the
highest, accounting for 0.7% of the total area of the study area. The types with large differences
are shrublands, grasslands, wetlands, and bareland. SERVIR MEKONG2010 data fail to identify
shrublands and grasslands in the study area. The grassland area in Globeland30-2010 is about twice
that of FROM-GLC2010, and this difference in shrubland is opposite. The percentage of bareland in
Globeland30-2010 is only 0.0005%, while the bareland in FROM-GLC2010 accounts for up to 8.81%.
For the wetland type, Globeland30-2010 and SERVIR MEKONG2010 have good data consistency, and
the area ratio is 0.003% and 0.006%, respectively.

In order to facilitate the visual analysis of the spatially consistent distribution characteristics of
multi-source land cover remote sensing data, the three products are spatially superimposed in Figure 3.
The results show that the complete spatial consistency area accounts for 67.83% of the total area of
the study area. The northern, central, southeastern, and northwestern areas of the study area are
distributed, mainly because of the pattern of forest dominating, and water and cropland being relatively
less in the study area. So, the land cover type in the completely consistent area is relatively simple,
and the spectral features are simple or express the obvious phenological characteristics. The distribution
of the basic consistent areas, accounting for 26.54% of the total area of the study area, conforms to
the regional variable characteristics of the land cover category, which is mainly located around the
completely consistent area. It is mainly distributed in the southern and western parts of the study
area and few in the central and eastern parts. The land cover types in these areas are mainly cropland
and forest. The area of the inconsistent area accounts for 5.63% of the total area of the study area,
mainly distributed in the eastern, southern, and central areas of the study area. The land cover types in
these areas are more complex, and the land surface types show obvious heterogeneity characteristics,
and cropland, forest, shrubland, grassland, and bareland are staggered.ISPRS Int. J. Geo-Inf. 2019, 8, 201 10 of 23 
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4.2. Spatial Pattern Consistency Analysis Based on Landscape Indices at the Original Scale

We determined the landscape indices values for each type of land cover in the study area based on
each dataset (Table 6). There were some differences in the spatial patterns of croplands across the three
datasets. The NP, PD, and LSI values calculated using the FROM-GLC2010 dataset were the highest
across all three datasets, while the AI value was the lowest. This indicated that the FROM-GLC2010
data identified more cropland fragmentation and spatial patch heterogeneity. In the FROM-GLC2010
data, patch shapes were more complicated, and the degree of aggregation between the patches was low.
In the Globeland30-2010 data, the cropland landscape was not highly fragmented, the patch shapes
were simple, and the patches were highly connected. Therefore, the Globeland30-2010 and SERVIR
MEKONG2010 datasets were similar with respect to cropland identification.

More than 70% of northern of Laos is forest land, and this was the main type of land cover in the
study area. All three datasets showed a high degree of aggregation and patch self-similarity for forest
land. However, the three datasets differed in the degree of fragmentation and shape complexity of the
forest patches. The FROM-GLC2010 data suggested a high degree of fragmentation and complexity,
while the SERVIR MEKONG2010 data suggested the opposite.

The FROM-GLC2010 data identified a high degree of shrubland and grassland fragmentation and
spatial heterogeneity, with complex patch shapes and little aggregation between patches. This dataset
suggested that shrubland in the study area were small and scattered.

Wetland landscapes accounted for less of the study area. Wetland patch fragmentation, spatial
heterogeneity, and patch shape complexity were basically consistent between Globeland30-2010 and
FROM-GLC2010 datasets, but patch connectivity was higher in the Globeland30-2010 datasets than in
the other two data sets. The spatial patterns of water differed little among the three datasets, especially
between FROM-GLC2010 and SERVIR MEKONG2010 data. The dispersion of the water landscape
was low in the Globeland30-2010 dataset.

The patch fragmentation, patch shape complexity, and dispersion between patches were low for
surface landscapes in the Globeland30-2010 dataset. Surface landscapes in the SERVIR MEKONG2010
dataset were the most fragmented and complex, as compared to the other two datasets, although
the degree of surface landscape aggregation was higher than that of the FROM-GLC2010 dataset.
The landscape indices for bareland differed greatly among datasets. The FROM-GLC2010 dataset
suggested the highest patch aggregation, with high fragmentation and patch shape complexity, while
the Globeland30-2010 data suggested the opposite.

4.3. Comparison of Spatial Patterns at Different Scales

Changes in the landscape scale may alter patch boundaries, divide or fuse patches, and may thus
alter landscape patterns, leading to corresponding changes in the indices of these patterns [49,50].
The landscape pattern indices of each type of land cover data changed differently as the scale increased.

As the spatial scale granularity of croplands increased, NP, PD, and LSI tended to converge
among datasets, but AI values differed (Figure 4). At scales of 30–60 m, NP, PD, and LSI values
based on FROM-GLC2010 and SERVIR MEKONG2010 data decreased rapidly; these values decreased
more slowly at scales >60 m. Scale changes had little effect on the NP, PD, and LSI values of the
Globeland30-2010 data. At 60 m, the AI value of the FROM-GLC2010 and SERVIR MEKONG2010 data
suddenly increased, while the AI value of three datasets show a steady decreasing trend at other scales.
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The three datasets suggested that landscape pattern indices for forest lands have high consistency
at increasing spatial scales (Figure 5). At a scale of 60 m, the NP, PD, and LSI values decreased sharply,
while the AI value increased sharply. Similar to the cropland landscape, as the spatial scale increased,
NP, PD, and LSI tended to converge across datasets, while the AI values differed.
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As scale increased, wetlands indices values differed among the three datasets (Figure 6). When
the scale increased gradually, the NP and PD values for wetlands based on the FROM-GLC2010 and
Globeland30-2010 datasets showed high consistency trends across all scales, and scale had only a very
slight influence on the indices values. The LSI value of the three datasets showed little difference in
landscape index curve with scale increasing. The effects of scale on AI showed low consistency across
the three datasets, and they have different fluctuation points in the whole scale range.
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The effects of scale on the water landscape pattern indices were consistent among the three
datasets (Figure 7). When the scale was 60 m, the NP, PD, and LSI indices values dropped sharply,
while other indices were gradually decreasing. The indices values became gradually more similar
among datasets with scale increasing.
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The effects of scale on the NP, PD, and LSI indices of artificial surfaces were similar to those
observed for cropland (Figure 8). The AI values of FROM-GLC2010 and SERVIR MEKONG2010
datasets increase sharply at a scale of 60 m, while the AI values decreased with slight fluctuations in
other scale ranges.
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The increase in spatial scale affected the NP, PD, and LSI bareland indices similarly to the cropland
indices across all three datasets (Figure 9). At a scale of 30–150 m, the AI values in Globe-land 30-2010
decrease rapidly and tend to be stable when the scale is larger than 150 m; The turning point of SERVIR
MEKONG2010 data is 60 m, while the FROM-GLC2010 data decreases slowly in the whole scale.
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5. Discussion

5.1. Consistency Analysis at the Original Dataset Scale

Confusion matrix and spatial overlay visual analysis (after normalizing the original datasets)
indicated serious inconsistencies among different landscape types (i.e., forest, shrublands, grasslands,
croplands, and bareland). Shrublands and grasslands were not identified by the SERVIR MEKONG2010
dataset. Although the other two datasets identified shrublands and grasslands, the consistency of
this type between them was low. The primary reason for these misclassifications is that there are no
obvious differences in life form, spectral, and textural characteristics among shrublands, grasslands,
and forest. During the imaging process, it is easy to capture different objects with the same spectrum
that are difficult to distinguish. The accuracy of the classification system also affects land cover
classification [51]. For example, the vegetation coverage and tree height thresholds are not clearly
defined for forests, shrublands, and grasslands in the SERVIR MEKONG2010 dataset. Therefore, this
classification system may require further revision to reduce the number of fuzzy concepts used. In
addition, croplands are typically distributed as concentrated sheets, shrublands are often mixed with
forests and croplands. Differences in vegetation thresholds of the different datasets further aggravates
the incongruence. In the future, other auxiliary data should be considered to increase the accuracy of
classification. Such problems are common in optical remote-sensing classification applications with
multi-temporal spectral characteristics. Therefore, it is necessary to improve the accuracy of land cover
classification recognition algorithms and by introducing multi-source data and knowledge.

The above consistency analysis was mainly based on dataset generation standards, confusion
matrix, and spatial overlay visual analysis. Fine-scale visual comparisons of spatial consistency are
subjective. By using the landscape indices to quantify spatial distributions, many subtle differences can
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be identified. For example, in the SERVIR MEKONG 2010 datasets, shrublands and grasslands were
primarily identified as forest lands, leading to increases in forest land connectivity, patch closeness, and
AI. Therefore, the loss of shrublands and grasslands impacts the AI of the forest landscape (as shown
in Table 8), affecting ecosystem stability, biodiversity conservation, animal reproduction, and biological
resource management. Data users must deliberately choose suitable land cover datasets based on
research objectives and research area characteristics. The indices used here might be useful for assessing
aspects of ecosystem function, including the determination of spatial distribution characteristics for
various species and secondary species in the landscape, changes in the interactions among species,
and the stability of synergistic symbiosis. Therefore, when selecting multi-source remote-sensing land
cover datasets, researchers must not only consider the consistency of areas and qualitative spatial
patterns, but also quantitative spatial pattern distribution, especially for studies of ecosystems and
ecosystem functions.

Table 8. The landscape pattern characteristics of various types of land cover data.

Class Name Dataset NP PD(/km2) LSI AI

Cropland
G 2983 0.0256 114.4704 95.9898
F 836,198 7.1813 899.8113 73.2971
S 335,045 2.8772 562.8378 98.5

Forest
G 81,487 0.6998 263.8612 97.4524
F 238,426 2.0476 416.6991 95.8093
S 39,282 0.3373 163.4867 98.5

Shrubland
G 41,268 0.3544 206.8584 66.6069
F 286,287 2.4586 581.6292 29.5878
S - - - -

Grassland
G 399,254 3.4287 690.6286 81.1601
F 624,280 5.3613 974.7675 61.6149
S - - - -

Wetland
G 40 0.0003 8.9149 88.4842
F 30 0.0003 5.3077 11.1111
S 4,815 0.0413 73.7366 20.7533

Water
G 7,672 0.0659 81.0065 92.0437
F 19,356 0.1662 110.4954 88.6749
S 13,989 0.1201 104.936 88.9963

Artificial
surface

G 176 0.0015 15.8153 94.4346
F 12,847 0.1103 115.84 55.9537
S 36,606 0.3145 196.337 66.3918

Bareland
G 157 0.0013 13.3778 42.3992
F 381,621 3.2774 652.7455 80.7655
S 58,487 0.5023 243.0855 56.7812

Note: symbol “-“ indicates no data for the study area, G represents Globeland30-2010 data, F represents
FROM-GLC2010 data, and S represents SERVIR MEKONG2010 data.

5.2. Consistency of Spatial Patterns at Different Scales

Scale strongly influences spatial pattern analyses [52]. By comparing the spatial patterns of the
three datasets at different scales, we found that the NP, PD, and LSI indices values differed greatly at
scales between 30 m and 150 m. At scales >150 m, the difference gradually decreases and eventually
tends to be consistent, but there is still some difference in AI value with scale increasing. For example,
in Vientiane Province (Figure 10), indices values varied greatly among datasets at 30 m, due to the
different classification methods and classification systems; as scale increased gradually, small patches
were integrated into large patches, decreasing the number of patches of each type, and leading to
decreases in NP and PD values. Through constant fragmentation and fusion, original patch shapes
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were destroyed, and new patch shapes tended to be regular. This substantially reduced LSI values.
So, differences between the datasets gradually decreased. At scales greater than 150 m, the three
datasets differed little in their assessments of ecosystem function, including landscape fragmentation,
heterogeneity, and shape complexity. However, at scales <150 m, differences between datasets were
large. Thus, the differences among datasets might strongly influence ecosystem-based landscape
analyses. In addition, AI values remained incongruent among the three datasets, even at large
scales, because the AI index is affected by the richness of the structural components and their spatial
allocations [45]. As scale increased, the spatial allocation of new patches caused by grid cell aggregation
might have led to the substantial differences in AI values observed among the three datasets. Therefore,
studies of ecosystem connectivity should carefully consider the differences among datasets across all
spatial scales.
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In the comparative analysis of spatial patterns at different scales, we found that the values of
landscape indices changed abruptly at certain spatial scales. The main turning point was 60 m.
It was possible that, when the resolution was close to the intrinsic scale of small terrestrial patches,
the number and connectivity of these patches changed substantially. As scale continued to increase,
the intrinsic scale of the patch changes, and the indices gradually declines. Population dynamics,
biodiversity, and ecosystems are inevitably affected by the spatial pattern of the landscape. Therefore,
it is necessary to identify differences in the spatial pattern distributions captured by different datasets
at different scales. Indeed, although the overall differences among landscape indices were low with
scale increasing, future studies should be mindful of each of these change points.

5.3. Spatial Consistency Analysis and Absolute Accuracy Evaluation

Absolute accuracy evaluation results are of great significance for selecting and comparing different
land cover products, especially when two or more products are inconsistent. It is a meaningful study
to provide a standard for researchers to choose the right data. There has been a lot of research on
this [25,53].

However, the study of land cover product consistency also has its scientific value. For example,
when the spatial consistency of multiple sets of land cover products in a region is good, it indicates
that the mapping accuracy of this area is relatively high, and these land use products can be used at a
high degree; if the consistency is low, it indicates that the accuracy of mapping in this area is likely to
be low. At this time, we may adopt the following suggestion of Giri et al. [21]:

“Data producers may use the areas of spatial agreement for training area selection and pay special
attention to areas of disagreement for further improvement in future land cover characterization and
mapping. Users can conveniently use the findings in the areas of agreement, whereas users might
need to verify the information in the areas of disagreement with the help of secondary information.”

The paper aims to reveal the phenomenon or fact that product consistency comparison should not
only consider type or area, but also their spatial pattern. This phenomenon has not been noticed in
previous studies like Hua et al. [24]. We used the landscape indices, which can quantitatively express
the spatial pattern and perform a quantitative case study on the inconsistency of the spatial pattern.
We believe that it is useful to study this phenomenon, because: (1) it can remind producers not only to
pursue the accuracy of type and area, but also the accuracy of spatial pattern when producing data
products; (2) it also reminds users that when using different land use data, they need to consider the
difference of spatial pattern relating to function analysis; (3) Landscape indices can measure the spatial
pattern difference, thus can be referred by both producers and users.

Besides, the landscape indices analysis method used in this study can also be applied to the
absolute accuracy evaluation of different data products. More specifically, researchers can compare
the landscape indices of multiple land cover data with the landscape indices of the correct reference
data. The closer the indices are, the better the consistency can reach. However, to achieve this method,
we need to pay attention to the following two problems: (1) it is very difficult to obtain the correct
reference data covering the whole region in practice, and we need to use a statistical inference method
which requires a reasonable layout of sample areas. This is completely different from the traditional
layout of sample points and requires a new spatial sampling method; (2) For different types of land
cover and application purposes, the focus of the spatial pattern may be different. It is necessary for
researchers to select landscape indices with corresponding meanings for specific analysis according to
specific purpose. However, the solutions of the above two problems need more innovative ideas and
study cases.

6. Conclusions

To test the spatial pattern consistency of different land cover datasets, we herein used the
quantitative landscape indices to compare the spatial pattern consistency at different spatial scales.
We used three land cover datasets covering northern Laos in the same year (2010) as a case study.
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Our results indicated that the relative areas identified for each landscape types were similar across
the three datasets, but the recovered spatial patterns differed substantially. With the exception of AI,
most of the differences among datasets decreased as spatial scale increased. However, some land
types still exhibited a spatial pattern mutation. Our results indicated that, when studying ecosystem
function based on landscape patterns, land cover datasets should be chosen according to the research
aims. In addition, the impact of changes in spatial pattern, especially scale, requires special attention.
In addition, dataset producers should evaluate the accuracy between quantity and spatial patterns.
In this way, inconsistencies among datasets might be reduced, and comparability increased.
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