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Abstract: This article aims at testing the possibilities of applying hierarchical spatial autoregressive 
models to create land value maps in urbanized areas. The use of HSAR (Hierarchical Spatial 
Autoregressive) models for spatial differentiation of prices in the property market supports the 
multilevel diagnosis of the structure of this phenomenon, taking into account the effect of spatial 
interactions. The article applies a two-level hierarchical spatial autoregressive model, which will 
permit the evaluation of interactions and control spatial heterogeneity at two levels of spatial 
aggregation (general and detailed). The results of the research include both the evaluation of the 
impact of location on prices (taking into account non-spatial factors) and the creation of the average 
land price map, taking into consideration the spatial structure of the city. In empirical studies, the 
HSAR model was compared with classic LM (Linear Model), HLM (Hierarchical Linear Model), and 
SAR (Spatial Autoregressive) models to perform comparative analyses of the results. 
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1. Introduction 

The urban space zone is a multilayer spatial structure gathering people and products of their 
activities in nearby places. Urban space has multiple functions such as economic [1,2], social [3,4], 
industrial [5], transport [6], cultural [7], administrative [8], and housing [9,10]. The intensity and the 
direction of urbanization processes is determined in large extend by local demographic, economic 
and administrative conditions. As a rule, valuation of urban space is strictly related to the basic 
economic good, i.e., land. In this meaning, modelling of the spatial distribution of land value, 
expressed by the prices of urbanized land intended for housing development, makes a significant 
element for supporting a series of decisions in the property management system. The issue of urban 
space valuation, in the form of land value map generation, has been a subject of a series of studies 
[11–16] demonstrating that the relations between the price and the neighborhood reveal the features 
of both spatial and non-spatial relations [17,18]. 

The methods for developing land value maps are based first of all on relations between the prices 
of land and selected reference points in urban space. Liu et al. [19] analyzed development of prices 
and values in relation to the distance from CBD (Central Business District), elements of social 
infrastructure, schools etc. In a similar manner, Bugs [20] suggests that the value map should be 
developed on the basis of distance, e.g., from the city center, main streets, places particularly affecting 
the value, as well as areas at risk of flood. As a result of spatial analysis with the use of GIS tools, 
maps of urban space valuation are created, which also reflect land value. In a slightly different trend 
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of research in land value map development, hedonic maps play a particular role, taking into 
consideration selected features of properties, such as price determinants [21–26]. The application of 
GIS tools and geostatistical methods to model the area presenting the land value appear particularly 
interesting [27]. Fik et al. [28] suggest the use of hedonic models together with surface trends for LVS 
(location value signature) evaluation. In a similar vein, Bourassa et al. [29] postulate the application 
of hedonic models and geostatistical methods in conjunction. Geostatistical methods can be treated 
as a natural supplement of the traditional statistical analysis, taking into account spatial distribution 
of the phenomenon under analysis. 

Both theory and practice indicate that models that do not take into consideration autocorrelation 
and spatial heterogeneity can provide inaccurate results [30–32]. In the spatial econometrics 
literature, the negative consequences of ignoring the presence of spatial autocorrelation and/or spatial 
heterogeneity are well-known, therefore numerous publications postulate the application of spatial 
models for market analyses and price prediction [29,33]. Spatial effects can be taken into account in 
many ways. They may be taken into account either directly, so that they become part of the modeling 
structure, or indirectly, so they are pre-treated prior to build the model. Among the models that take 
these effects into account directly, we can indicate, among others, the spatial econometric model 
[30,34], spatially switching regression [35], random coefficient models [36], and geographically 
weighted regression [37,38]. 

In recent years, increasingly more attention is given to the synergy between hierarchical and 
spatial modelling, which forms the basis for constructing hierarchical spatial models [39–42]. Some 
studies also concern the use of hierarchical spatial models in the analysis of the real estate market 
[42–44]. This paper presents the results of research on methodological bases for constructing land 
value maps in Olsztyn, Poland. The aim of the study was to demonstrate that the two-level 
hierarchical spatial autoregressive models can provide a significant alternative for models typically 
applied for the construction of land value maps: LM: Linear Model, HLM: Hierarchical Linear Model, 
and SAR: Spatial Autoregressive Model. The paper is structured as follows. After the introduction to 
the research, a description of hierarchical spatial autoregressive models is given in Section 2 together 
with an overview of previous results published in the field and the theoretical basis for the performed 
research. Section 3 presents the data description, procedure of applied methodology and a discussion 
of the obtained results. Section 4 presents the conclusions drawn from this work. 

2. Theoretical Basic of Conducted Research  

Spatial factors (e.g. neighborhood attractiveness) affecting the property market are relatively 
difficult to describe with the use of mathematical models [10,45]. Their analytical depiction leads only 
to partial explanation of relations affecting the events in the form of, e.g., the occurrence of a 
transaction in property in a given location, characterized by a precise set of attributes and price. The 
specificity of the property market is the occurrence of spatial relations at the individual and group 
level. 

The individual level is created by point objects of known geographical coordinates (properties) 
and the group level can be obtained by classifying properties into territorial units – e.g. housing 
estates, districts, cities, communes or regions. Multilevel consideration can also be applied to spatial 
data concerning the level of land value, e.g. the value of individual properties (level I), or values of 
land in individual zones or sections (level II) and at the level of city districts (level III). Multilevel 
structure of real estate market data provided a direct motivation to undertake the subject of applying 
hierarchical spatial autoregressive models, (HSAR: Hierarchical Spatial Autoregressive), for the 
needs of creating land value maps. 

The analysis of market data requires taking into account spatial effects typical for the specificity 
of the property market in the form of heterogeneity and spatial dependencies which, in turn, provide 
reasons to apply multilevel models. The term of heterogeneity can be applied to all changes in the 
distribution of a given phenomenon, of a continuous or discrete nature. The sources of data 
heterogeneity can be seen in the absence of spatial stationarity and it is demonstrated by the 
instability of relations between phenomena in geographical space and/or their lack of uniformity in 
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spatial distribution [30,34,46]. In case of data located geographically, uncontrolled heterogeneity can 
have a negative effect in the form of inaccurate conclusions concerning the examined relations. 
Instability of structural parameters in the regression model can be a continuous or discrete change. If 
the value of the parameter is subject to change along with the change of the object location 
coordinates, instability in the form of a continuous change occurs. In such a case, the value of the 
parameter is functionally related to the location of the object. This is quite common in the models of 
hedonic regression of property prices [47], which make it possible to analyze the relation between the 
value of the property and its features. 

Another form of spatial heterogeneity is heteroskedasticity of the random factor. Grouping 
(clustering) the value of the random factor is most frequently the effect of omitting a significant (one 
or many) explaining variable or the result of model specification errors. In the case of spatially located 
data, it is difficult to expect the feature distribution in geographical space to be even and regular. It 
is also difficult to identify and to quantify all factors responsible for the existing irregularities and 
heterogeneities. In effect, models estimated on spatial data quite frequently demonstrate a lack of 
homogeneity of the random component [34,48,49]. 

Spatial interactions for spatially located data can refer to the endogenous variable, the explaining 
variables, or to the random component. If these interactions concern the endogenous variable, then 
spatial autoregression is involved. This means that the values of this variable from other locations 
affect the development of this value in the analyzed location. If interactions concern the random 
component, the phenomenon of spatial autocorrelation of the random component of the model 
occurs. Depending on the type of spatial interaction, two basic models of spatial regressions are most 
frequently used: The spatial lag model and the spatial error model [35,50–52]. Intergroup 
differentiation, estimated based on a multilevel model, ignoring the presence of spatial relations, is 
overestimated. As a result, this may lead to incorrect conclusions concerning the scale of the 
heterogeneity of the phenomenon, while the analyzed process is marked by spatial autocorrelation. 

In traditional spatial econometric models, the presence of spatial interactions is understood as 
the occurrence of relations between each (or selected) pair of observations i and i’, always forming 
only one level of the phenomenon analysis [53]. In multilevel models, the level of observation is one 
of possible levels of the analysis. If level II and subsequent were obtained through spatial aggregation 
of geographically located data, then spatial interactions can exist either at one or several levels of the 
analysis, e.g., the individual or group level, or at the individual and group level at the same time [54–
56]. A hierarchical spatial autoregressive model (HSAR) can provide an alternative to previous spatial 
interaction methods, making it possible to analyze complex forms of heterogeneity. The tools 
explored so far, based on spatial modelling of the property market are directed mainly towards 
identification and interpretation of interactions between objects. Spatial dependencies were 
considered at an individual level, typically without taking into account intergroup effects, 
understood as connections between random group means [56]. 

An additional problem related to the price level analysis is related to limiting the space to be 
evaluated and drawing conclusions concerning broader spatial systems based on a limited area, 
situated in the direct neighborhood of the examined area. The evaluation of the place through the 
prism of the nearest neighbor is more evident when a larger spatial structure is subject to evaluation. 
In practice, this can mean that the level of property value will be the resultant of partial evaluations 
attributed to spatial units, e.g., a district, a housing estate, etc., and it will therefore reflect the 
intuitively understood spatial hierarchy. Due to this fact, the multilevel approach seems to be an 
adequate method for modelling the area representing the land value. This results from the possibility 
of controlling heterogeneity at several levels of spatial aggregation at the same time, without the need 
to introduce ten to twenty binary variables, and consequently, without the results in the form of 
reduction of the degree of freedom, just like in fixed effect models [57]. Therefore, the land value 
level, its differentiation between territorial units occupying a higher position in spatial hierarchy, 
modelled as random effect variation, is subject to adjustment for diversification observed between 
territorial units occupying a lower position in this hierarchy. 
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An additional advantage of multilevel analysis is the possibility to introduce context variables, 
i.e., those for which the available data are only accessible for levels of aggregation higher than the 
level at which the explained variable is considered. However, this is also possible using the traditional 
OLS-estimator but in that case we can expect biased results [58]. Therefore, the level of land value 
analyzed at the individual level, can be successfully explained not only with variables characterizing 
the given unit, but also variables reflecting the features of the environment. 

The above arguments justify the attempt to apply hierarchical spatial autoregressive models 
both for analysis of spatial diversification of prices in the property market and for creating land value 
maps. Linking all above-mentioned aspects concerning research on the level of prices and land value 
encourages the search for such models that will allow the control of both the multilevel structure of 
the phenomenon and spatial interactions. Those requirements can be satisfied by HSAR models, the 
structure of which is predestined to simultaneous identification of both types of spatial effects. Taking 
into account heterogeneity and spatial interactions using the HSAR model can therefore be an 
extension of analysis and statistical modelling in property market studies. Therefore, the main aim of 
this study is to present the concept and principles of spatial analyses using hierarchical spatial 
autoregressive models as a substantive basis for developing land value maps. Additionally, it 
identifies the possibilities for applying HSAR class models in research concerning the development 
of land value maps (price prediction). 

The basic model used in spatial econometrics is the spatial autoregressive model (SAR), used for 
explaining processes characterized by spatial autocorrelation. In multilevel modelling, the highest 
role is played by the traditional hierarchical (multilevel) model (HLM) with random effects for a 
higher level, which can be also applied to explain processes characterized by spatial heterogeneity 
[58]. Including both hierarchy and spatial heterogeneity in one model provides a basis for spatial 
multilevel modelling [39,40,42]. The class of HSAR models was described in detail by, e.g., References 
[42,56]. Those models extend the typical SAR model to include the hierarchical data structure. 

Many spatial data sets demonstrate a hierarchical structure, e.g., the property situated in a 
district located in the urban area [59]. According to the literature on multilevel modelling, individual 
objects being the subject of the measurement create a lower level, while objects aggregated in the 
form of, e.g., regions, belong to a higher level [58]. The main assumption of multilevel modelling is 
the existence of differences between the objects at the higher level and intergroup relations at the 
lower level. This means correlating the features of objects allocated to the lower level due to the effect 
of the same factors affecting the given region. This can be formulated as vertical group dependence. 
However horizontal dependence cannot be modelled using classical multilevel modelling. This is the 
type of relationship related to spatial econometric modelling of single level spatial data sets, and 
results from the interaction or penetration of spatial units due to the geographic proximity. If a spatial 
data set of a hierarchical structure is involved, we can expect both types of relations: vertical and 
horizontal. The former, concerning dependencies at the higher level, is related to regional (context) 
effects, while the latter concerns dependencies of the spatial autocorrelation type. In principle, we 
can distinguish between spatial interaction (at lower levels) and spatial heterogeneity (at the regional 
level). Group dependencies in the hierarchical spatial model mean that the allocation of objects to 
groups should have a geographical nature, while traditional hierarchical models usually do not 
consider spatial hierarchy [56]. 

The proposed model adds a spatial autoregressive element to the classical model of regression 
in the form of a spatially lagged element Wy, where y is vector n of observation of the explained 
variable, and W is a spatial weight matrix. Of course, the model can also be estimated without this 
component. In such case, the Wy element can be omitted and the model obtained in this situation 
would be equal to the HLM model (Hierarchical Linear Model) [60], although HSAR fits a 
simultaneous autoregressive (SAR) spatial random effect rather than a conditional autoregressive 
(CAR) spatial random effect. 

Examples of the application of hierarchical spatial models were described, among others, by 
Dong and Harris [56], Páez and Scott [51], and Bivand et al. [57], who analyzed the market in a similar 
manner, with some covariates observed for each individual-level observation and some others 
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observed only at the aggregated, district level. They estimated, among others, district level spatial 
random effects. Additionally, in the context of property market analyses, the hierarchical aspect of 
data was analyzed, e.g., by Chasco and Le Gallo [61] and Brunauer et al.  [62]. In this case, the 
hierarchical spatial autoregressive model can be applied as it allows for spatially correlated random 
effects and spatial dependence among individuals. 

The general formula of the HSAR model can be presented as follows [56,63]: 𝑌 = ρWY + βX + Δθ + 𝜀 𝜃 = λMθ + 𝑢 

ε~Nሺ0,σఌଶሻ, u~Nሺ0,σ௨ଶ ሻ 

(1) 

where: 
Y – is an N × 1 vector of dependent variable, 
ρ, λ – parameters of spatial interactions, 
W – spatial weight matrix at the individual level, 
β – parameter vector, 
X – matrix of explained variables, 
Δ – matrix demonstrating the classification of entities i to objects j, 
θ – vector of random effects for absolute term, 
u – vector of random group effects, 
ε – vector of a random component, 
M – spatial weight matrix at the group level. 

If ρ = 0 and λ = 0, the model obtained will correspond to the two-level HLM model with a random 
absolute term. In order to estimate model parameters, Bayesian methods can be used, with a properly 
determined likelihood function. This function is described by the following equation [56]: 𝐿൫𝑌|ρ,λ,β,θ,σ௨ଶ ,σఌଶ൯ = ሺ2π𝜎ఌଶሻିேଶ ห𝐼ே − ρWหexp ൬− e'e2σఌଶ൰ 

e Y ρWY Xβ Δθ= − − −  
(2) 

Statistical inference concerning a given parameter is based on the posterior distribution of this 
parameter. The Bayesian paradigm assumes as a basic principle that posterior distribution θ* = {ρ, λ, 
β, θ, σu2, σε2} is proportional to the product of the data and prior distributions [34]. For the k-element 
vector of β parameters, we consider the multidimensional normal distribution with the expected 
value Mβ and diagonal matrix of variance-covariance matrix Tβ. Therefore, the posterior distribution 
of β parameters will be as follows [56,63]: 𝑃ሺ𝛽|Y,ρ,λ,θ,σ௨ଶ ,σఌଶሻ~N൫𝑀ఉ,Tఉ൯ 𝑇ఉ = ሾሺ𝜎ఌଶሻିଵX'X + 𝑇଴ି ଵሿିଵ  𝑀ఉ = 𝑇ఉሾሺ𝜎ఌଶሻିଵX'ሺ𝑌 − ρWY − Δθሻ + 𝑇଴ି ଵ𝑀଴ሿ (3) 

Posterior distribution of the θ random effects will have the following form: 𝑃൫𝜃|Y,ρ,λ,β,σ௨ଶ ,σఌଶ൯~Nሺ𝑀ఏ,Tఏሻ 𝑇ఏ = ൣሺ𝜎ఌଶሻିଵΔ'Δ+ ሺ𝜎௨ଶሻିଵ൫𝐼௃ − λM൯′൫𝐼௃ − λM൯൧ିଵ 𝑀ఏ = 𝑇ఏൣሺ𝜎ఌଶሻିଵΔ'൫𝑌 − ρWY − Xβ൯൧ (4) 

Posterior distribution of random component σε can be presented in the following way: 𝑃൫𝜎ఌଶ|Y,ρ,λ,β,θ,σ௨ଶ ൯~IGሺ𝑎ఌ,bఌሻ 𝑎ఌ = 𝑁2 + 𝑎଴, 𝑏ఌ = e'e2 + 𝑏଴, e Y ρWY Xβ Δθ= − − −  
(5) 

where IG(aε, bε) stands for reverse distribution gamma with the shape parameter aε and scale 
parameter bε. Posterior distribution of random effect variance σu2 will have the following form: 
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𝑃൫𝜎௨ଶ|Y,ρ,λ,β,θ,σఌଶ൯~IGሺ𝑐௨,d௨ሻ 𝑐௨ = 𝐽2 + 𝑐଴, 𝑑௨ = θ'൫𝐼௃ − λM൯′൫𝐼௃ − λM൯𝜃2 + 𝑑଴ 
(6) 

Knowing posterior distributions, random sampling is performed. To generate random sampling, 
Markov Chain Monte Carlo (MCMC) methods are used. Sample determination with the MCMC 
method makes it possible to use, e.g., Gibbs sampling [64]. 

For the ρ parameter, the posterior distribution of which cannot be approximated with any of the 
known distributions, the application of Gibbs sampling is not possible. Therefore, to determine the 
sample, the method of reverse distribution function was used. This method can be brought down to 
making numerical integration of the distribution of density, which can be expressed as [56]: Log 𝑓ሺ𝜌ሻ = logห𝐼ே − ρWห + 𝑆ሺ𝜌ሻ'Sሺ𝜌ሻ2σఌଶ + 𝐶 (7) 

where C is a constant, while: 𝑆ሺ𝜌ሻ = 𝑒଴ − ρeௗ − 𝑒௨ 𝑒଴ = 𝑌 − 𝑋ሾሺX'XሻିଵX'Yሿ 𝑒ௗ = WY − 𝑋ሾሺX'XሻିଵX'WYሿ 𝑒௨ = Δθ − 𝑋ሾሺX'XሻିଵX'Δθሿ 
(8) 

In a similar way, the distribution of the parameter of spatial interactions at the group level can 
be determined: Log 𝑓ሺ𝜆ሻ = logห𝐼௃ − λMห + θ'൫𝐼௃ − λM൯′൫𝐼௃ − λM൯𝜃2σ௨ଶ  (9) 

Detailed principles of model estimation are presented, e.g., in References [56,63]. 

3. Data Description 

The conducted research concerns the market of undeveloped land properties, intended for 
residential development, situated in the city of Olsztyn in the Northeastern region of Poland. 
Approximately 180,000 inhabitants in an area of almost 90 km2 currently inhabit the city. The varied 
spatial structure of the city, numerous lakes and forests, as well as a quite strong planning 
intervention have resulted in significant spatial heterogeneity of property prices. Transaction data 
used for the analyses originate from the register of prices and values of real estate properties, held by 
the City Hall in Olsztyn. Overall, 520 data entries concerning undeveloped land property 
transactions, carried out in 2010–2017, were used for analyses. A similar number of transactions were 
assumed in many research carried out so far concerning, e.g., mass valuation (e.g. References [65–67]. 
The logarithm of the price per 1m2 was assumed as an explained variable. The assumption of the 
logarithm was dictated by a relatively large span of prices and a distribution demonstrating strong 
right-skewness. Each of the sold properties was additionally described in the form of a set of eleven 
features forming explaining variables, as presented in Table 1. 

Variables were selected in such a manner as to ensure that they reflect spatial conditions and 
location values to the highest extent. Due to the fact that the relations between explaining variables 
and the explained variable are non-linear, for area and distance from characteristic places, these 
values are presented as logarithms. The general numerical characteristics of variables are presented 
in Table 2. 

Table 1. Description of variables. 

Symbol Description 
lnprice logarithm of unit price of land in PLN/m2 
date sale date [number of months] 
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right property right [ownership or perpetual usufruct – dummy variable] 
lnarea logarithm of property area 

type prevailing type of development [compact multi-family urban development, 
scattered detached houses – dummy variable] 

lnlake logarithm of distance from lake 
lnforest logarithm of distance from forest 
densdev density of development [based on a kernel function with a range of 1 km] 
densroad density of main roads [based on a kernel function with a range of 1 km] 
lncentr logarithm of distance from the center, 
lnbus logarithm of distance from public transport stop 

utility 
utilities network [continuous variable from 0 – no utilities, to 1 – full utilities 
network]. 

Table 2. General characteristics of variables assumed for analyses. 

Variable Min Max Mean Median Std. Dev. 
lnprice 4.055 6.783 5.431 5.420 0.507 
date 0.000 96.000 43.262 44.000 27.181 
right 0.000 1.000 0.879 1.000 0.327 
lnarea 1.431 11.550 6.443 6.665 1.570 
type 0.000 1.000 0.221 0.000 0.415 
lnlake 2.303 8.577 6.995 7.394 1.171 
lnforest 0.000 7.847 6.333 6.722 1.422 
densdev 2.429 1515.110 387.088 324.610 276.969 
densroad 0.000 7.226 1.455 0.947 1.538 
lncentr 5.646 8.842 8.187 8.387 0.559 
lnbus 0.000 7.097 5.391 5.410 0.757 
utility 0.000 1.000 0.916 1.000 0.193 

The prices in the property market, after a turbulent period of growth in the previous decade in 
2006–2007, just like in other cities of Poland, demonstrated relative stabilization and even a slight 
decrease in the examined period. Preliminary studies demonstrated that no need adjustments due to 
the passage of time (Figure 1). 

 
(a) (b) 

Figure 1. Distribution of logarithms for unit prices (a) and trend of price change over time (b). 

All observations assumed for analyses were grouped into two hierarchy levels. The first level 
refers to transactions and their attributes, while the second level concerns the location of the property 
in planning zones resulting from the division of the area into functional zones (Figure 2). 
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Level 1 – transactions 

 
(a) 

Level 2 – functional zones 

 
(b) 

Figure 2. Spatial location of transactions (a) and the layout of functional zones (b). 

This division results, first of all, from planning documents (a study of conditions and directions 
for land development and a local zoning plan), as well as from natural conditions. The area in each 
distinguished zone is relatively uniform in terms of environment, the type of use and prevailing 
development. The administrative division was not used for the analysis due to the fact that, in this 
case, boundaries are imposed by formal considerations and not by market conditions. Therefore, an 
assumption was made that the adopted division into zones, which reflects location values, should 
also indicate areas that are relatively uniform in terms of prices and the factors affecting them. 
According to the assumptions made, this should result in a higher homogeneity of prices for 
properties situated in the same zone and at the same time, higher heterogeneity of properties situated 
in various zones. 

4. Results and Discussion 

This study was aimed not only at identification of spatial effects in the analysis of prices in the 
property market [56], but first of all at indicating the possibilities of applying the HSAR model to 
develop a land value map. Unquestionably, the use of the hierarchical data structure can contribute 
to improving the quality of obtained models [68]. The additional inclusion of spatial autocorrelation 
in the property market [31] makes it possible to construct a hierarchical spatial model, of not only a 
diagnostic [56], but also a predictive nature. 

During the research period, apart from the HSAR model, three other models were constructed 
based on the same data set (LM: Linear Model, HLM: Hierarchical Linear Model, and SAR: Spatial 
Autoregressive Model), which made it possible to carry out a simple comparative analysis. Those 
models were then used to develop land value maps based on price prediction and residue analysis. 
The R environment with the packages HSAR, lme4, sp, spdep (among others) was used for statistical 
computing. 

A classical multiple regression model (LM) provided a point of reference for further research 
and allowed a simple analysis of relations between assumed variables and the transaction price. 
Another model (SAR) was built based on the spatial autocorrelation phenomena. Detailed principles 
concerning the construction and testing of spatial autoregressive models are provided, among others, 
by [35] and [52]. A key issue can be, in this case, proper determination of the spatial weight matrix, 
reflecting mutual relations between objects located in space. During the studies, an assumption was 
made that mutual interaction between events in the property market (land prices) exponentially 
decreases along with the distance [56], while the range of similarity estimated on the basis of the 
variogram was about 2,500 m. The estimated range confirms the results of previous analyses, e.g., 
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References [69,70]. However, the threshold distance should also result from the spatial location of the 
transaction, and its values must be selected in such a way so as to ensure that each object is spatially 
related to other objects through the weight matrix. Therefore, the weight matrix was determined as 
[56]: 

( )2
ij

ij 2

d
W =exp -

d

 
 
 
 

, if ijd d≤ ; 0, otherwise (10) 

where d is the threshold value established based on data at 2,500 m. This matrix was then 
standardized with rows. Based on the Lagrange multiplier test [35], it was established that the proper 
model in this case would be the spatial lag model. In a subsequent model (HLM), fixed effects related 
to explained variables and random effects for the second hierarchy level were taken into account [71], 
without taking into consideration spatial dependencies. The identifier of property location in a given 
zone played the role of the second level hierarchy variable. The HSAR model assumes that the spatial 
weight matrix for the first level is the same as in the SAR model, while the weight matrix for the 
second level is based on the common threshold criterion (contiguity) of distinguished zones. The 
problem in this case was the emergence of islands, which means that some of the distinguished zones 
do not have any neighbour and therefore, a zero row occurs in the weight matrix. However, it means 
that the random effects for those zones in the HLM and HSAR model will be the same. The results of 
parameter estimation for individual models are presented in Table 3 and Table 4. 

Table 3. Results of estimation for LM and HLM models. 

 LM HLM 
Variable β SE β SE 
intercept 6.439* 0.526 7.827* 0.750 

date 2.3e-04 7.5e-04 -3.9e-04 6.8e-04 
right 0.241* 0.065 0.291* 0.063 

lnarea -0.012 0.014 -0.020* 0.014 
type 0.030 0.061 -0.062 0.067 

lnlake 0.048* 0.021 0.062* 0.032 
lnforest -0.012 0.017 0.023 0.021 
densdev 7.7e-05 1.1e-04 -1.1e-04 1.4e-04 
densroad 0.036* 0.016 0.016 0.021 

lncentr -0.160* 0.057 -0.281* 0.079 
lnbus -0.125* 0.028 -0.175* 0.031 
utility 0.544* 0.115 0.271* 0.180 
logLik -313.477 -315.573 

AIC 652.953 631.153 
SEresid 0.447 0.382 

SE - standard error 
SEresid - standard error of residuals 
* - statistically significant at 95% credible level 

In the LM model, apart from the constant, six variables were proven to be statistically significant 
at a significance level of p < 0.05. The most significant variables were property right, distance from 
public transport stops and utilities network. Statistically insignificant variables included, among 
others, plot area and transaction date. The HLM model indicates four statistically significant 
variables. A comparison of both models indicates a slightly better fit of the HLM model. This is 
indicated by, among others, AIC. The residual standard deviation SEresid also proves the fact that the 
hierarchical model slightly better explains the price variability. In the SAR model, four variables 
proved statistically significant (property right, density of main roads, distance from public transport 
stops and utility network). 
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Table 4. Results of estimation for SAR and HSAR models. 

 SAR HSAR 
variable β SE β SE 
intercept 3.139* 1.081 7.348* 1.805 

date -3.0e-04 7.3e-04 -3.0e-04 6.8e-04 
right 0.238* 0.064 0.288* 0.064 

lnarea -0.012 0.014 -0.020* 0.014 
type 0.016 0.060 -0.090 0.073 

lnlake 0.034 0.021 0.067* 0.035 
lnforest -0.009 0.017 0.019 0.022 
densdev 2.8e-05 0.016 -1.3e-04 1.5e-04 
densroad 0.022* 0.016 2.5e-03 0.024 

lncentr -0.097 0.062 -0.305* 0.105 
lnbus -0.136* 0.028 -0.180* 0.031 

utility 0.521* 0.112 0.278* 0.184 
logLik -308.539 -1048.294 

AIC 617.078 2087.616 
SEresid 0.437 0.361 
ρ 0.551 0.119 
λ NA 0.383 

SE - standard error 
SEresid - standard error of residuals 
* - statistically significant at 95% credible level  
NA - not applicable 

The coefficient of spatial autocorrelation ρ amounted to 0.551, which justifies application of a 
model using the spatial relations. In the HSAR model, six variables, as well as the constant for the 
model, is significant at the significance level of p < 0.05. Relatively high value AIC in HSAR model 
results from the effective number of parameters, which strongly depends on the variance of the 
group-level parameters [71]. In addition, a different method (Bayesian approach) was used to 
estimate the HSAR model, which may hinder the unambiguous interpretation of the common 
information criterion for all analysed models [64]. Therefore, when assessing the models, the criterion 
of minimizing errors was directed first of all. The value of the residual standard deviation was 0.361, 
which means that the average relative fit error is about 6.6% of the average transaction price 
logarithm. The value of spatial autocorrelation coefficient ρ is lower than in the SAR model, while 
autocorrelation specified for the second level in the hierarchy was 0.383, which proves moderate 
spatial dependency. The distribution of random effects for individual zones for the HLM and HSAR 
models is presented in Figure 3 and 4. The distribution of random effects for both hierarchical models 
is very similar, which results from moderate spatial autocorrelation of prices at the level of zones. 
While those effects differ insignificantly, after converting logarithms into prices, it turns out that they 
can have a quite significant effect on the final land value map. 
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Figure 3. Diagnostics of random elements of HLM (a) and HSAR (b) models (the chart presents 
random effects for individual zones, in the ascending order, specifying the confidence intervals for 
those effects). 

HLM (without spatial interactions) HSAR (with spatial interactions) 
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(b) 

Figure 4. Random effects for the second level (zone) for HLM (a) and HSAR (b) models. 

Land value maps were generated by overlaying subsequent raster layers resulting from model 
coefficients, interpolated component ρWy (for SAR and HSAR models), random effects (for HLM and 
HSAR models) and the layer constructed based on the interpolation of residuals according to the 
scheme presented in Figure 5. 

 
Figure 5. Principles of overlaying layers while creating land value maps based on specific models. 
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Determination of a referential layer consisted in generating a raster, whose value corresponded 
to the model values created as a result of the sum of properly multiplied layers of explaining 
variables. It should be observed that seven variables among those assumed for the analyses can be 
referred to each point in the area under analysis. The beginning of 2018 was assumed as a date of 
study, ownership was assumed as the type of property rights and the assumed area was 1,000 m2. In 
order to obtain the map of values, after overlaying individual layers, the obtained values in the form 
of logarithms were converted directly into the value in PLN. The value estimated on the basis of the 
LM model results from simple prediction, while the map generated on the basis of the SAR model 
required additional interpolation of the spatial lag (ρWy). Value maps developed on the basis of LM 
and SAR models are schematically presented in Figure 6. 

 
(a) 

 
(b) 

Figure 6. Land value maps developed on the basis of LM (a) and SAR (b) models. 

The distribution of values in both models is similar. Relatively high values prevail in the centre, 
decreasing when moving towards the city boundaries. Due to the fact that the developed maps are 
only of a demonstrative nature, water and forest areas were not excluded, although they should not 
be subject to the analysis. 

For the HLM and HSAR models, random effects for zones also have to be taken into account. 
Therefore, the prediction of values was carried out as the first step, based on the fixed effects of the 
model and the mean value was then estimated for each of the zones, taking into account random 
effects. For the zones with no transactions, a zero value of random effect was assumed in the HLM 
model, while in the HSAR model, this value was obtained through interpolation. The obtained maps 
are schematically presented in Figure 7 and Figure 8.  

HLM without random effects 

 
(a) 

HLM with random effects 

 
(b) 
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Figure 7. Maps of land values developed based on HLM, (a) without random effect, and (b) with 
random effect. 

Differences in the estimation of land value obtained based on HLM and HSAR models are small 
and result from the assumption made with reference to spatial autocorrelation both at the first level 
(transactions) and the second level (zones). The similarity results first of all from the assumptions 
made concerning the effect of assumed factors on transaction prices.  

HSAR without random effects 

 
(a) 

HSAR with random effects 

 
(b) 

Figure 8. Maps of land values developed based on HSAR, (a) without random effect, and (b) 
with random effect 

The use of hierarchical spatial models can be an alternative or addition to the previously used 
methods for the development of land value maps. Geostatistics methods are commonly used in the 
development of such maps, which usually give satisfactory results [72,73]. However, it should be 
emphasized that hierarchical models can be particularly useful especially when we want to take into 
account the spatial hierarchy (e.g., division into districts or functional zones), which assumes rapid 
changes in value in space. Similar conclusions are drawn by, among others, Arribas et al. [68] used 
hierarchical models for price analysis in Alicante and Dong and Harris [42] who conducted research 
in Beijing. 

5. Conclusions 

The effect of value-forming factors on property prices can be modelled both with the use of 
classic regression models, as well as with models taking into account the spatial heterogeneity of 
prices and the hierarchical structure of market data. The study demonstrated that hierarchical models 
(HLM and HSAR) show a better fit to data than models not taking into account spatial hierarchy. 
This is proved, among others, by the value of the residual standard deviation. In the HSAR model, 
additionally taking spatial autocorrelation into account, a slightly lower level of SEresid errors was also 
found compared to the HLM model. Hierarchical spatial models, HSAR, take into account both 
micro-scale spatial effects and the context resulting from the location of specific observations at 
subsequent levels in the spatial hierarchy. Therefore, they carry greater informational content 
compared to classic models.  

A significant effect of the research presented is the demonstration that HSAR models can be both 
diagnostic (identification of spatial effects) and predictive models (development of land value maps). 
Maps created with application of the HSAR model assume the constant nature of changes in land 
value inside the zone and discrete changes at the zone boundary. This corresponds to the actual 
situation, in which the urban space develops at the same time under the influence of strong planning 
intervention and the market demand for land, as determined by environmental values.  
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While the tradition of multilayer modelling has a long history, the role of this class of models 
still seems underestimated in spatial econometrics [70]. The studies conducted demonstrate that such 
models can be broadly applied in spatial management, in those places where phenomena of an 
economic nature are explicitly attributed to a specific location in space. 
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