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Abstract: Smart tourism is the new frontier field of the tourism research. To solve current problems 
of smart tourism and tourism geographic information system (GIS), individualized tour guide route 
plan algorithm based on tourist sight spatial interest field is set up in the study. Feature interest 
tourist sight extracting matrix is formed and basic modeling data is obtained from mass tourism 
data. Tourism groups are determined by age index. Different age group tourists have various 
interests; thus interest field mapping model is set up based on individual needs and interests. 
Random selecting algorithm for selecting interest tourist sights by smart machine is designed. The 
algorithm covers all tourist sights and relative data information to ensure each tourist sight could 
be selected equally. In the study, selected tourist sights are set as important nodes while iteration 
intervals and sub-iteration intervals are defined. According to the principle of proximity and 
completely random, motive iteration clusters and sub-clusters are formed by all tourist sight parent 
nodes. Tourist sight data information and geospatial information are set as quantitative indexes to 
calculate motive iteration values and motive iteration decision trees of each cluster are formed, and 
then all motive iteration values are stored in descending order in a vector. For each cluster, there is 
an optimal motive iteration tree and a local optimal solution. For all clusters, there is a global optimal 
solution. Simulation experiments are performed and results data as well as motive iteration trees 
are analyzed and evaluated. The evaluation results indicate that the algorithm is effective for mass 
tourism data mining. The final optimal tour routes planned by the smart machine are closely related 
to tourists’ needs, interests, and habits, which are fully integrated with geospatial services. The 
algorithm is an effective demonstration of the application on mass tourism data mining. 

Keywords: spatial interest field; individuality; tour guide route; motive iteration; decision tree; 
cluster analysis 

 

1. Introduction 

Smart tourism is the fastest growing frontier field of tourism research. The aim of smart tourism 
is to improve tourists’ knowledge of travel destination and help them have the best travel experience 
[1,2]. It is also called intelligent tourism. It uses techniques of cloud computing, Internet of 
Things, etc., through Internet on a portable terminal to access information about tourism 
resources, economy, activity, and tourists, etc., and then releases relative information for tourists 
[3–5]. According to the information, tourists can make time schedules and plan the trip before a 
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vacation. The development of smart tourism will affect the tourism experience, management, 
service, and marketing [6,7]. The approach of smart tourism is to provide convenient and 
efficient service for tourists, build the frame of smart city and tourist sight, and finally improve 
the quality and level of tourism service [8–11]. Smart tourism development builds on tourism 
science. It takes advantage of cloud computing and artificial intelligence and combines GIS 
technology to distribute the most relevant tourism information on the Internet [12,13]. Of all the 
information, tourist sight classification, locations, distinguishing features, available 
transportation service around, traffic conditions, and accommodation fees are the most relevant. 
Through the human–computer interaction process, tourists can access tourism service 
information and get optimal decision support. Therefore, smart tourism is an interdisciplinary 
field of cloud computing, artificial intelligence, and GIS, etc., with a core aim of highly efficient 
tourism informationization [14–16] through the method of cloud computing and artificial 
intelligence. As its data source support is GIS service, GIS is an important prerequisite for 
developing smart tourism [17–19]. Before traveling, tourists usually make a plan including travel 
destinations, a time schedule, a route, accommodation, and so on in accordance with their needs 
and interests, travel availability, and budget, etc. These are the most concerning issue for tourists 
and the critical preconditions for tourists to obtain the best motive benefit satisfaction [20]. The 
quality of travel planning will directly influence tourists’ experiences and perceptions during 
the whole trip, influence the tourists’ subjective impression of the cities and destinations visited, 
and thus have a determined impact on the travel destination’s further marketing to attract more 
tourists and increase the economic benefits of tourism [21–23]. The more motive benefit 
satisfaction tourists obtain from the whole travel process, the better their perception of the travel 
experience and service is, and thus, the more likely they will be to positively evaluate the travel 
destinations. This will lead to a positive genuine evaluation on the Internet, which will promote 
a travel destination’s further development and economic performance[24,25]. Thus, in smart 
tourism supported by geospatial data and services, the aim of smart tourism is to provide 
tourists with smart decision support that is highly accurate, individualized, and based on 
tourists’ needs . It can ultimately increase the motive benefit satisfaction of tourists[26,27]. 

Currently, decision support for smart tourism is in the early stage of development. The 
techniques for developing an orientation are tourism information services and data mining. Based on 
mass tourism and geospatial data, tourists use smart device to select tourist sights and make tour 
plans by themselves. Usually, there are two modes. In the first mode, depending on the tourists’ 
subjective perception and knowledge of tourist sights, a tourist will refer to geospatial services and 
tourist sights information, in addition to other tourists’ evaluation, and extract useful information 
from mass tourism data [28–30]. By analyzing and processing the information, they form an internal 
perception of tourist sights and, finally, make a decision about how to travel. In the second mode, 
various actual and online travel agencies provide a large number of tour options for tourists. 
However, the two modes both have some problems. First, based on subjective perception, the routes 
planned by tourists are usually not the optimal one because the tourists are unfamiliar with the city 
or tourist sights. Meanwhile, it is difficult to extract useful and valuable information from mass 
tourism data as deep analysis is insufficient. The type of data is usually presented textbook-style and 
is crowdsourced[31,32]. An insufficient planning strategy and strong subjectivity can hardly help 
tourists to obtain the best motive benefit. Second, tour routes provided by travel agencies are aimed 
to produce a profit and may not satisfy a tourist’s individualized needs and interests [33–35]. 
Nevertheless, tourists cannot obtain the best motive benefits from a package tour. Third, mass 
tourism data contains high-level data and information, such that not all the information is useful and 
valuable. It is difficult to find valuable data and useful tourism knowledge that meets tourists’ needs 
and interests, while this is just the most important key to obtain the best motive benefit. 

As indicated by the above analysis, this study aims to solve the problems presented; namely, 
that scheduled tour routes cannot meet individualized needs and interests and cannot sufficiently 
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combine geospatial information and services. City tourist sights contain geospatial information 
[36,37]. We start the modeling by setting a single tourist sight as an independent object to form a 
feature interest tourist sight extracting matrix. A tourist sight spatial interest field model is set up 
based on tourists’ individualized needs and interests. According to an age index, tourists are divided 
into three groups, elderly group, young adult group, and children group [38,39]. The mapping 
relationship model between tourist sight spatial interest field model and the three groups is studied 
and formed. By designing and developing a smart tourist sight extracting algorithm, smart motive 
iteration decision trees are formed, which can help tourists to select tourist sights according to their 
own interests, even though they are unfamiliar with the city and tourist sights. Combining this with 
a geospatial service [40–42], we set up a smart tour guide route plan algorithm. Tour routes planned 
by the algorithm are related to motive iteration values. The motive iteration values along with tour 
routes are arranged in descending order matrix and the optimal one is provided for tourists. The 
method and algorithm built in the study can provide detailed decision support and tour routes for 
tourists according to their needs and interests and meet their satisfaction the most [43,44]. The main 
content of the paper is as follows. 
• First, the current research status and content regarding smart tourism are analyzed. Focusing on 

the problems of tour route plan, we suppose that individualized tour plans combined with 
geospatial services are an important means to meet the motive benefit satisfaction of tourists and 
maximize tourism economic benefits for destinations. 

• The research data resources and spatial ranges are ensured on the basis of problem analysis. 
According to the tourist sight distribution and geospatial information data, a tourist sight spatial 
interest field model is developed and its mapping relationship model for the three age groups 
of tourists is formed. 

• A smart algorithm is designed and developed. Tourists can get hot tourist sights via smart 
machine according to their needs and interests. The smart machine calculates motive iteration 
values and, finally, outputs tour routes for tourists. 

• Simulation experiment is designed. To get the best motive benefits for tourists is the core 
objective, and this objective is set up by a quantitative algorithm model as the dependent 
hypothesis variable to find out the optimal tour routes, which is iterated by several important 
independent variables. The independent variables are factors and disturb factors, including 
critical tourist sight information and GIS service information. After ensuring tourist sight spatial 
interest field mapping model and selecting interested tourist sights, all the factors and disturb 
factors are quantified and altered according to different motive iteration clusters and trees. By 
iterating and outputting motive iteration values, the relative tour routes are all obtained, of 
which the maximum iteration value route is the optimal one for tourists, and the sub-optimal 
ones will also be displayed for tourists to select as there are different situations and project 
suggestions. Finally, experiment data is analyzed and valuable knowledge on tour route is 
obtained. The data and knowledge can effectively help tourists to select tourist sights, plan the 
whole trip, and get the best motive benefit. 

2. Feature Interest Tourist Sight Extracting Algorithm Based on Interest Field Mapping Model 

Interest tourist sights are the basic data source to make a tour route plan and calculate motive 
iteration values. In a smart machine, interest tourist sights are selected automatically, and the interest 
tendency is the key for the machine to learn and recognize tourists’ needs. Thus, the feature interest 
tourist sight extracting algorithm based on interest field mapping model is set up first. 

2.1. Feature Interest Tourist Sight Extracting Matrix 

As to city tourism, before tourists go to an unfamiliar city, they should know about the city and 
tourist sights [45]. They usually select the most interested ones to visit. To obtain a data resource, the 
first group of definitions are discussed. 
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Def 1.1 Tourist sight spatial data set P . Within a certain geospatial range, the set containing 
some popular and typical tourist sights which are selected and ensured by certain restrictive rules, is 
called tourist sight spatial data set P . 

Def 1.2 Tourist sight spatial data subset rP . Tourist sight spatial data set P can be divided into 
some subsets according to different properties. Each subset is called tourist sight spatial data subset 

rP . 

Def 1.3 Tourist sight spatial subset element r sP Q . A single tourist sight element in any given 

tourist sight spatial data subset rP∀ is called tourist sight subset element r sP Q . 
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According to the definitions and properties, we set up city tourist sight spatial data set P  and 

divide tourist sights into t  groups, ( ]{ }+| 0, , ZrP P r t r= ∈ ∈ . In which, rP  is tourist sight 

spatial data subset, and each subset contains rp  tourist sight elements, ( ] +0, Zr t∈ ∈ . In any 

rP∀ , a single tourist sight is coded as r sP Q , ( ] +0, Zrs p∈ ∈ . Feature interest tourist sight 

extracting base vector rP
→

 is built by tourist sight spatial subset element, [ ]r r sP P Q
→

= ,

( ] +0, Zr t∈ ∈ , ( ] +0, Zrs p∈ ∈ .The maximum value of tourist sight classification max t and the 

maximum value of subset element number max rp  are used to form max max rt p×  dimension 
feature interest tourist sight extracting matrix P , as Formula (1). The feature interest tourist sight 

extracting base vector rP
→

 is set at each matrix row and vacant element is set by data 0. Matrix P  is 
the data resource for smart machine to select tourist sights. 

2.2. Tourist Sight Spatial Interest Field Mapping Model 

According to statistics for big data of various tourist sights and classifications, different tourist 
groups have dissimilar interest tendencies while the same group members have the similar interests 
[44–46]. The tourist sight spatial interest field is an intensity structure built on different interest 
degrees of tourist groups. According to the age index, tourists can be divided into the children group 

1G , ( ] +0,18 Zage∈ ∈ , young adult group 2G , ( ] +18,44 Zage∈ ∈ , and the elderly group 3G , 

( ] +44, Zage∈ +∞ ∈ . Based on nearly one year of tourism statistics data of a certain city, we set the 

total number of tourists paying a visit to all tourist sights of set P  as n , in which the number of 

iG  is in , as in Formula (2). 

max

1

i

i
i

n n
=

= ∑  (2) 

For the tourist sight spatial data subset rP , ,i rk
 is the statistics number of tourists in group iG  

who have paid a visit to the tourist sights in rP , [ ] +
, 0, Zi r ik n∈ ∈ . The selection of each age group 

for each different subset of tourist sights is independent and identically distributed [47]. The second 
group of definitions are discussed. 
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Def 2.1 Tourist sight spatial data subset visited rate i rω ⋅ . The ratio of visiting tourists’ number 

in group iG  on certain tourist sight spatial data subset rP  to the total tourists’ number of the group 

iG  is called tourist sight spatial data subset visited rate i rω ⋅ , as in Formula (3). The higher the 
proportion is, the higher the tendency for members of the age group to visit the tourist sight subset 
will be. 

,
,

i r
i r

i

k
n

ω =  (3) 

Def 2.2 Interest field mapping model. The tourist sight spatial interest field is formed from 
tourist sight spatial data subset rP  and the visited rate i rω ⋅ . The mapping relationship of the 

interest field and age group iG  is called the interest field mapping model. 

Def 2.3 Interest field intensity. The visited rate ,i rω of age group iG on single sight spot spatial 

data subset rP is called the interest field intensity of subset rP on age group iG . 
Tourist sight spatial data subset is set as object to select tourist sights and build tourist sight 

spatial interest field mapping model, as shown in Figure 1. Interest field intensity histogram of tourist 
sight spatial data subset rP on different age groups is shown in Figure 1 (right side). Depending on 
interest field intensity, the smart machine can automatically recommend tourist sight spatial data 
subset by the input age group. 

 
Figure 1. Interest field mapping model and interest field intensity histogram. 

2.3. Smart Tourist Sight Extracting Model 

According to the built feature interest tourist sight extracting matrix, tourist sight spatial interest 
field mapping model, and the interest field intensity histogram [48], a smart tourist sight extracting 
model is developed. The distribution function of the continuous random variable X  is set as in 
Formula (4). 

( ) 1

2 1

x zF x
z z
−

=
− [ ]1 2 1 2, ,0x z z z z∈ < <  (4) 

The continuous random variable X  follows a uniform distribution on the interval [ ]1 2,z z , 

denoted as ( )1 2~ ,X U z z . For any single value of x in the interval [ ]1 2,z z , the uniform 
distribution function yields a finite number of elements with the maximum value in the closed 
interval and all the elements are random [49–52]. When the randomly selected targets are tourist 

sights, there is a random number interval such that 1 2Z , Zz z+ +∈ ∈ , and the selected random 
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number, Zx +∈  will be subject to integer conversion. If tourists in an age group are not familiar 
with tourist sights, the statistics interest field intensity is used to obtain the best motive benefits. 
Taking one day as the travel time, the smart tourist sight extracting algorithm model is developed as 
follows. 

Step 1. To make the tour route planning procedure more convenient and intelligent, tourists 
only need to input basic personal information and the number of tourist sights, and then the smart 
machine will immediately plan an optimal route. Tourists only provide their gender, their age index 
age , and the number of tourist sights to be visited. In order to have the best travel experience and 
avoid fatigue in one day, the number of selected tourist sight cannot exceed 5. 

(1) If ( ] [ ] +5, 0 Zm∈ +∞ ∪ ∈ , the system displays an alarm message. Review and input m again. 
Cancel and log out of the system. 

(2) If ( ] +0,5 Zm∈ ∈ , continue to Step.2. 

Step 2. According to the index age , the smart machine ensures tourist sight spatial interest 

subset rP  and feature interest tourist sight extracting base vector rP
→

 in the sequence from the 
strongest interest field intensity to the weakest one. 

Step 3 Smart machine ensures tourist sight element number and tourist sight spatial subset 
elements as follows. 

(1) If ( ) +0, Zm t∈ ∈ , arrange the ,i rω
 related subsets in descending order. From the highest 

,i rω  to the lowest one, one tourist sight is selected from each subset; 

(2) If m t= , arrange ,i rω  related subsets in descending order. One tourist sight is selected 
from each subset; 

(3) If ( ) +, Zm t∈ +∞ ∈ , arrange the ,i rω
 related subsets in descending order. From the highest 

,i rω
 to the lowest one, one tourist sight is selected from each subset. Return, arrange the 

,i rω
 related m t−  subsets in descending order, and one tourist sight is selected from each 

subset. 

Step 4 Select a tourist sight element. 

(1) If ( ) +0, Zm t∈ ∈  , for the first selected subset rP  , smart machine invokes one time of 

uniform distribution function on interval ( ]0, rp
 and gets s . Ensure there is one element 

tourist sight r sP Q ; return, and perform the same operation on other 1m −  subsets; finish, 
and ensure that there are  element tourist sights in total; 

(2) If m t=  , carry out the same operation as step (1); finish, and ensure that there are m  
element tourist sights in total; 

(3) If ( ) +, Zm t∈ +∞ ∈  , for the first selected subset rP  , smart machine invokes one time of 

uniform distribution function on interval ( ]0, rp  and gets s . Ensure there is one element 

tourist sight r sP Q ; return, and perform the same operation on other 1t −  subsets, ensure 

there are t   element tourist sights; return to the first subset rP   and perform the same 
operation, ensure there are m t−   element tourist sights; finish, ensure there are m  
element tourist sights in total. 

3. Smart Motive Iteration Decision Tree Algorithm 

m
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Within one day, tourists visit the selected m  tourist sights in a single-track and non-repetitive 
manner. From the initial tourist sight to the last one, any single tourist sight can only be visited once. 

As to the selected m tourist sights, there will be m
mA  kinds of tour routes for the selected m  tourist 

sights, but not all the routes are optimal. Each route has a different motive benefit value for tourists, 
which should be measured by a quantization method. For any one tour route, a tourist starts from 
the first tourist sight and travels through several city roads and road nodes and arrives at the next 
tourist sight. In this process, the ferry distance, road traffic conditions, the convenience of GIS 
services, tourists’ subjective perceptions, and so on will directly influence the motive benefit 
satisfaction of the tourist [53–55]. The motive benefit satisfaction in the previous tour interval will 
also influence the motive benefit satisfaction in the next tour interval. Thus, the motive iteration value 
of the previous tour interval is the initial value for calculating the motive iteration value of the next 
tour interval. Tourists travel from the first tourist sight to the last one, and in this process, the motive 
iteration value is monotonically increasing and thus the motive iteration function ( )eW T  is a 
monotonically increasing function. For a particular tour route, each tourist sight is related to one 
motive iteration function ( )eW T  value. For a different tour route, the same tourist sight may be 

related to different motive iteration function ( )eW T  values as the iteration process contains different 
values. Thus, the ultimate output motive iteration values vary for each tour route. From the aspect of 
the tour route selection and motive iteration process, each tour route can form a single motive 
iteration decision tree. There should be a maximum value of the last tourist sight, whose decision tree 
and related tour route is optimal and yields the highest motive benefit value for the tourist. 

3.1. Motive Interval and Motive Sub-Interval 

According to the modeling concepts, the third group of definitions are discussed. 
Def 3.1 Selected tourist sight set T . The m  tourist sights selected by the smart machine which 

will be visited by tourists form a dataset, which is called selected tourist sight set and denoted by T
. The element tourist sight of set T  is coded as eT , ( ]{ }= | 0, ZeT T e m +∈ ∈ . 

Def 3.2 Motive iteration sub-interval ( ), 1T Te eH +  and sub-interval motive iteration value 

( ), 1T Te eW + . Selected tourist sight set T  is ensured first. When tourists travel from tourist sight eT  
to the next one +1eT , the tour interval between the two tourist sights, which generates motive 

iteration value, is called motive iteration sub-interval ( ), 1T Te eH + . Within the sub-interval, an initial 
motive iteration value is set, and the smart machine calculates with indexes to output another motive 

iteration value, which is called sub-interval motive iteration value ( ), 1T Te eW + . The iteration value 

( ),1T Te eW −  generated in the previous motive iteration sub-interval ( ), 1T Te eH +  is the iteration 

function ( )eW T
 value on tourist sight eT . The value is used as the initial value to iterate the motive 

iteration value ( )+1eW T
 on tourist sight +1eT  and it is the sub-interval motive iteration value 

( ), 1T Te eW +  on motive iteration sub-interval ( ), 1T Te eH + . This value is also the initial value of the next 
sub-interval. In Figure 2, the blue interval is the motive iteration sub-interval, which is related to sub-

interval motive iteration value ( ), 1T Te eW + . Figure 3 shows the motive iteration function ( )eW T
 for 

the motive iteration sub-interval. As seen in Figure 3, ( )eW T
 is a discrete discontinuous and 

monotonically increasing function, and each tour route is related to a unique function ( )eW T . 
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Figure 2. Motive iteration interval, sub-interval, and relative function values. 

 

Figure 3. Motive iteration function ( )eW T
 of a tour route. 

Def 3.3 Motive iteration interval ( ),1T TmH
 and interval motive iteration value ( ),1T TmW . The 

1m −  sub-intervals iterate from tourist sight 1T to mT  and, finally, output the iteration function 

value ( )mW T
 on tourist sight mT . The whole interval from tourist sight 1T to mT  is called the 

motive iteration interval ( ),1T TmH . The iteration function value ( )mW T
 on tourist sight mT  is 

called the interval motive iteration value ( ),1T TmW . In Figure 2, the red interval is the motive iteration 

interval ( ),1T TmH , which is related to the interval motive iteration value ( ),1T TmW . 

Def 3.4 Motive iteration factor c . Tourists travel from tourist sight eT to 1eT +  in motive 

iteration sub-interval ( ), 1T Te eH +  and in the process, the sub-interval motive iteration value 

( ), 1T Te eW +  is mainly influenced and determined by ferry distance, road traffic, the convenience of 
GIS services, and tourists’ subjective perceptions. These factors are called motive iteration factors, c . 
The most important and decisive ones are: 

• The tourist sight ferry distance 1δ (km， ( ]1 10,max Rδ δ +∈ ∈ ); 
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• Number of nearby bus line 2δ ( [ ]2 20 max Zδ δ +∈ ∈， ); 

• Number of nearby subway lines 3δ ( [ ]3 30 max Zδ δ +∈ ∈， ); 

• Taxi fee 4δ ( [ )4 4min , Rδ δ +∈ +∞ ∈ ); 

• Traffic congestion index 5δ ( ( )5 0,1 Rδ +∈ ∈ ). 

Def 3.5 Motive iteration disturbance factor ε . In a realistic situation, each motive iteration 
factor has its own factors that promote or restrain itself, and these factors are called motive iteration 
disturbance factors, ε . For each factor c , the disturbance factor ε  contains the following: 

• Number of road nodes 1µ ( [ ]1 10 max Zµ µ +∈ ∈， ); 

• The sum of walking distance to the nearest bus station (km) and average transference time 2µ
( ( ]2 20 max Rµ µ +∈ ∈， ); 

• The sum of walking distance to the nearest subway station (km) and average transference time 

3µ ( ( ]3 30 max Rµ µ +∈ ∈， ); 

• The average waiting time 4µ (h, ( )4 0 Rµ +∈ +∞ ∈， ); 

• Number of roads with multiple traffic accidents, 5µ ( [ ]5 50 max Zµ µ +∈ ∈， ). Table 1 shows the 
motive iteration factor c and disturbance factor ε values in USD in the algorithm. 

Of all the factors, the average waiting time is the ratio of total waiting time to the total number 
of taxi stop times. During the service, a taxi may encounter traffic congestion or a red traffic light, 
which requires the taxi to stop and wait [56]. The total waiting time is obtained by summing all the 
taxi wait times. 

Table 1. Motive iteration factors c  and disturbance factors ε  for the algorithm. 

 1c  2c  3c  4c  5c  
Motive iteration 

factors c  
-1

1δ  20.1δ  30.1δ  
-1

4δ  51-δ  

 1ε  2ε  3ε  4ε  5ε  

Disturbance factors ε  1-0.01µ  2-0.01µ  3-0.01µ  4-0.01µ  5-0.01µ  

We set initial motive iteration value on tourist sight 1T as ( )1W T . Thus, the sub-interval motive 

iteration value ( )2W T is determined by motive iteration sub-interval factor ( ),1 2T Tc , and disturbance 

factor ( ),1 2T Tε
 follows Formula (5). 

( ) ( )
max

2 1
1

= +
u

u u
u

W T W T c ε
=

⋅∑  (5) 

We set value ( )1W T , motive iteration sub-interval factor ( ),1 2T Tc , and disturbance factor 

( ),1 2T Tε . According to the calculated increase consequence due to the motive iteration function 

( )eW T , the recursive function Formula (6) is obtained. 

( ) ( )
max

1
1

= +
u

e e u u
u

W T W T c ε−
=

⋅∑  (6) 
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According to Formula (6), when a tourist has finished visiting a tourist sight, a motive iteration 
value ( )-1eW T

 will be generated in the same time. This motive iteration value is the tourist’s 
satisfaction feedback for the sub-interval. It is also the critical index to evaluate the tourist’s mood, 
feelings, and perceptions about the travel experience, which will directly influence the satisfaction 
for the next sub-interval. Thus, the ( )-1eW T  value is the initial motive iteration value of the next sub-
interval. From the perspective of a realistic travel experience, Formula (6) accounts for the tour’s 
objective condition and the tourist’s subjective motive. 

3.2. Motive Iteration Decision Tree Algorithm Based on M-Central Point Cluster 

The selected tourist sight set T  elements are basic points. Apply the motive iteration algorithm 

to traverse all tourist sights in set T . Take one certain tourist sight eT  of set T  as the central point, 

and other tourist sights eT¬  are points to be traversed. One central point can generate  
different tour routes, and each route is related to one unique motive iteration function value. The 
fourth group of definitions are discussed. 

Def 4.1 Motive iteration decision tree Treeσ . Tourist sight element central point eT  is set as 

father node of decision tree. Other tourist sights eT¬  are set as child nodes. Th child nodes 

expansion sequence is determined by the set  element display order and their permutations and 

combinations. One tour route generated by father node eT  and its child nodes eT¬  iterations 

relates to one decision tree; this tree is called the motive iteration decision tree Treeσ . One father 

node and 1m −  child nodes relate to 1
1

m
mA −
−  decision trees, ( 1

10, Zm
mAσ − +
− ∈ ∈ . Each decision tree 

relates to a unique motive iteration function ( )mW T  value. 

Def 4.2 Decision tree child node cluster ( )TeC ¬ . Tourist sight element central point eT  is set as 

father node, and the other eT¬  tourist sights form a cluster, which is called decision tree child node 

cluster ( )TeC ¬
 [56–58]. Figure 4 shows all the father nodes and relative child nodes which are 

formed by selected tourist sight set T  elements. Figure 4a is tourist sight distribution. Figure 4b–h 
is a decision tree father node and child node cluster, =7m , ( )0,8 Ze +∈ ∈ . Figure 4b shows the 

motive iteration decision tree formed in the way that the number one tourist sight 1T  is set as father 

node and the other 1T¬  tourist sights are set as child nodes. 

 

1
1

m
mA −
−

T
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Figure 4. Tourist sight location, father node, and child node cluster distribution. 

Def 4.3 m-central point motive iteration cluster vC . As to one tourist sight element, tourist sight 

element eT forms 1
1

m
mA −
− motive iteration trees, and all the trees gather to one cluster, the cluster is 

called m-central point motive iteration cluster vC , ( ]0, Zv m +∈ ∈ . According to the definition, 

selected tourist sight set T  contains m  motive iteration clusters, and each cluster contains 1
1

m
mA −
−  

motive iteration function ( )mW T
 value. 

Def 4.4 Motive iteration cluster local optimal solution CvW  
    and global optimal solution 

max
CvW  
   . According to Definition 4.2, of all the 1

1
m
mA −
−  motive iteration function ( )mW T

 values in 

one motive iteration cluster, the maximum value ( )max mW T  is called the optimal solution of the 

cluster, and it is also the local optimal solution of m  motive iteration clusters, noted as CvW  
   . m  

motive iteration clusters are related to m  local optimal solutions, and of all the local optimal 

solutions, the maximum value max CvW  
    is called global optimal solution 

max
CvW  
    of  motive 

iteration cluster. 

Def 4.5 Motive iteration cluster descending sub-vector aK
→

 and motive iteration cluster 

descending vector bR
→

. Each m-central point motive iteration cluster vC  contains 1
1

m
mA −
−  motive 

iteration decision trees and 1
1

m
mA −
−  motive iteration function ( )mW T

 values. Then, 1
1

m
mA −
−  motive 

iteration function ( )mW T
 values are set in descending order from the number one element location 

to No. 1
1

m
mA −
−  one to get a descending order vector, it is called motive iteration cluster descending 

sub-vector 1 2,a aK
→

, 1a  is vector code, ( ]1 0, Za m +∈ ∈ , 2a is vector element location code, and 

( 1
2 10, Zm

ma A − +
− ∈ ∈ . According to the definition, motive iteration cluster local optimal solution 

CvW  
    is stored in the cluster’s number one element location of the motive iteration cluster 

descending sub-vector 1 2,a aK
→

. Then, m  motive iteration cluster local optimal solutions are set in 
descending order from number one element location to number m  one to get a descending order 

vector; it is called motive iteration cluster descending vector bR
→

, in which b  is vector element 

location code, ( ]0, Zb m +∈ ∈ . According to the definition, the motive iteration cluster global 

optimal solution 
max

CvW  
    is stored in the number one element location of motive iteration cluster 

descending vector bR
→

. 
According to the fourth group of definitions, we take selected tourist sight set T  containing 

m  tourist sights as basic data set. Each tourist sight sub-interval motive iteration factors ( ),1 2T Tc
 

and disturb factors ( ),1 2T Tε
 are ensured. Motive iteration decision tree algorithm based on m-central 

point cluster is designed and developed. 

Step 1. Empty vector 1 2,a aK
→

 and bR
→

 are built. m  empty vectors 1 2,a aK
→

 and one empty 

vector bR
→

 are built. Vector 1 2,a aK
→

 contains 1
1

m
mA −
−  element locations. Vector bR

→

 contains m  
element locations. 

Step 2. m-central point motive iteration cluster vC  of the number one tourist sight element is 
built. The number one element location tourist sight of selected tourist sight set T  is taken to build 

m
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m-central point motive iteration cluster 1C , which contains 1
1

m
mA −
−  decision trees. Decision trees are 

generated by father node 1T  and child node cluster ( )1TC ¬ . 

(1) The first decision tree is built. The first decision tree starts from tourist sight 1T  , and 

traverses remaining 1T¬  tourist sights to form the first tour route; 

(2) Initial motive iteration function value ( )1W T  is set. According to Formulas (5) and (6), the 

smart machine outputs the first decision tree’s motive iteration function ( )mW T   value, 

noted as ( )1
mW T ; 

(3) ( )1
mW T

 is stored into the number one element location 1,1K
 of vector 21,aK

→

; 

(4) The second decision tree is built. The second decision tree starts from tourist sight 1T , and 

traverses remaining 1T¬  tourist sights to form the second tour route; 

(5) Take step (2) initial value ( )1W T  to iterate and output the second decision tree’s motive 

iteration function ( )mW T  value, noted as ( )2
mW T ; 

(6) Compare ( )2
mW T

 and ( )1
mW T . If ( ) ( )2 1

m mW T W T> , the smart machine clears the number 

one element location 1,1K , stores ( )2
mW T

 into the number one element location 1,1K
 of 

vector 21,aK
→

, descends ( )1
mW T , and stores it into number two element location  of 

vector  ; If ( ) ( )2 1
m mW T W T≤  , smart machine keeps ( )1

mW T
  in the number one 

element location 1,1K
 of vector 21,aK

→

, and stores ( )2
mW T

 into the number two element 

location 1,2K
 of vector 21,aK

→

; 

(7) Return to step (4). The third decision tree is built and ( )3
mW T

 is obtained; 

(8) Return to step (6), compare ( )3
mW T

 and other iteration values; 

(I) If ( ) ( )2 1
m mW T W T>

 

① ( ) ( )3 2
m mW T W T> , the smart machine clears the number one element location 1,1K

 and the 

number two element location 1,2K , stores ( )3
mW T

 
into the number one element location 1,1K

 of 

vector 21,aK
→

, and stores 
 
and  into the number two element location 1,2K

 and 

number three element location  of vector 21,aK
→

 respectively;
 

② ( ) ( ) ( )2 3 1
m m mW T W T W T≥ > , the smart machine clears the number two element location 

1,2K , keeps 
 
in the number one element location 1,1K

 of vector , stores 
 
into 

the number two element location 1,2K
 of vector 21,aK

→

, and stores 
 
into the number three 

element location 1,3K
 of vector 21,aK

→

;
 

1,2K

21,aK
→

( )2
mW T ( )1

mW T

1,3K

( )2
mW T 21,aK

→ ( )3
mW T

( )1
mW T
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③ ( ) ( )1 3
m mW T W T≥ , the smart machine keeps the number one and number two element 

locations, and stores ( )3
mW T

 
into the number three element location 1,3K

 of vector 21,aK
→

;
 

(II) ( ) ( )2 1
m mW T W T≤ , the method to compare and renew element location is the same as 

previous step (I); 

Repeat sub steps (4)-(8), and motive iteration cluster descending sub-vector 21,aK
→

  is 

obtained. The number one element location 1,1K
 is related to local optimal solution 1CW  

    of 

motive iteration cluster 1C . 

Step 3. Local optimal solution 1CW  
    of motive iteration cluster 1C  is stored into the number 

one element location 1R  of vector bR
→

. 
Step 4. Other motive iteration clusters and local optimal solutions are generated. 

(1) Perform Step 2 sub step (1)-sub step (9); m-central point motive iteration cluster 2C  of the 
number two tourist sight element is built. Motive iteration cluster descending sub-vector 

22,aK
→

 and local optimal solution 2CW  
    of motive iteration cluster 2C  are built, too; 

(2) Compare 1CW  
    and 2CW  

   . If 2 1C CW W   
      > , the smart machine clears the number one 

element location   of vector  , stores   into the number one element location 

, stores 1CW  
    into the number two element location ; If 2 1C CW W   

      ≤ , the smart 

machine keeps 1CW  
    in the number one element location 1R  of vector bR

→

. 

(3) Then m-central point motive iteration cluster 3C of the number three tourist sight element 

is built. Motive iteration cluster descending sub-vector 23,aK
→

 and local optimal solution 

3CW  
    of motive iteration cluster 3C  are built, too; 

(4) Compare 3CW  
    with other local optimal solutions. 

(I) 2 1C CW W   
      >

 

① 3 2C CW W   
      > , the smart machine clears the number one element location 1R  and the 

number two element location 2R , stores  into the number one element location 1R  of vector 

, and stores  into the number two element location 2R  and the number three element 

location 3R  of vector bR
→

 respectively; 

② 2 3 1C C CW W W    
        ≥ > , the smart machine clears the number two element location 2R , 

keeps  in the number one element location 1R  of vector , stores  into the number 

two element location 2R  of vector bR
→

, and stores  into the number three element location 

3R  of vector bR
→

; 

1R bR
→

2CW  
  

1R 2R

3CW  
  

bR
→

2CW  
  

2CW  
   bR

→

3CW  
  

1CW  
  
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③ 1 3C CW W   
      ≥ , the smart machine keeps the number one and number two element location, 

and stores  into the number three element location 3R  of vector bR
→

; 

(II) 2 1C CW W   
      ≤ , the method to compare and renew element location is the same as previous 

step (I); 
Step 5. Repeat Step 4 sub step (1)-sub step (4) until m  motive iteration cluster descending sub-

vectors and relative local optimal solutions are obtained. Output the motive iteration cluster 

descending vector bR
→

. The number one element location is the motive iteration cluster global optimal 

solution 
max

CvW  
   . 

According to Step 1~Step 5, the Algorithm 1 pseudo-code is as follows. 

Algorithm 1. The algorithm to generate bR
→

 and 
max

CvW  
    

1:  Set 1 2,a aK
→

 and bR
→

. ( ]1 0, Za m +∈ ∈ , ( 1
2 10,A Zm

ma − +
− ∈ ∈ , ( ]0, Zb m +∈ ∈ ; 

2:    As to vC ：For  =1v ，  ++v ， v m≤  and For =1b ， = +b b 1， b m≤  

3:        As to Treeσ ：For =1σ ， = +σ σ 1，
1
1Am

mσ −
−≤  and For 1 =1a ， 1 1= +a a 1， 1a m≤  

4:             Output ( )mW T σ ; 

5:             Compare ( )mW T σ  and ( )'mW T σ ; 

6:             Array 1 2,a aK
→

in descending order from ( )1
mW T  to ( )1

1Am
m

mW T
−
− ; 

7:             Output 1 2,a aK
→

 and CvW  
   ; 

8:        Array CvW  
    in descending order from 1CW  

    to 2CW  
   ; 

9:             Output bR
→

 and 
max

CvW  
    

10:  End procedure 

The motive iteration cluster location optimal solution CvW  
    and the global optimal solution 

max
CvW  
    have practical value as smart machine has considered tourists’ individualized needs and 

interests. 
Situation one: The principle of proximity.  
After a tourist or smart machine selects tourist sights, the tourist may consider taking the whole 

trip starting with the nearest tourist sight, as their temporary accommodation may be close to the first 
tourist sight. Thus, the principle of proximity states that, the nearest tourist sight is the starting point; 
or if the tourist is particularly interested in a certain tourist sight, he may wish to visit that particular 
one first [27]. In this situation, the smart machine could only consider the decision tree, cluster, and 
its motive iteration cluster local optimal solution generated by tourist sight visited first. 

Situation two: The principle of completely random.  
After a tourist or smart machine selects tourist sights, the tourist may have no particular 

requirement on the tour route, and they will accept any provided tour route [45–47]. In this situation, 
the smart machine should consider motive iteration cluster global optimal solution and relative tour 
route first in order to best meet tourists’ best motive benefits and needs. 

4. Example Simulation Experiment and Data Analysis 

The research range is one particular downtown area of a city; all the factors, including 
disturbance factors, come from urban GIS services. The routes planned in the study are all based on 
city urban roads and avenues. The tourist sights selected for the original data source are all urban 

3CW  
  
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tourist sights which are located in the city but not in the outskirts. In one city, the factors and 
disturbance factors mentioned in the study are identical, and it is appropriate to use the identical 
factors as parameters to do the study, as different cities have different conditions. Thus, the algorithm 
presented in the study is suitable for a city urban tour. Taking Zhengzhou city as the data resource 
of tourist sight and GIS services, the basic data were sampled before the performance of example 
simulation experiment [2]. 

4.1. Data Sampling 

In terms of Zhengzhou city’s urban tourist sights and GIS services, the data sampling range and 
objects should meet the following conditions [50–53]. (1) The research range is continuous in 
geographic space, and it covers all the city’s main districts. (2) The tourist sights should be 
representative and have a steady visitor flow volume, be well-equipped, and fully functional [56–59]. 
Commonly, they have a geographical advantage and convenient city service. (3) The tourist sights 
are independent, and do not influence each other with respect to the tour. (4) They are closely 
connected by a convenient urban road network. Tourists can go back and forth between two arbitrary 
tourist sights. According to the standard, Zhengzhou city’s third ring road, six north–south roads, 
and seven east–west roads are selected to form the geographic research range. Within the range, 27 
tourist sights are selected as study objects. Tourist sight spatial dataset P , tourist sight spatial data 

subset rP , and tourist sight spatial subset element r sP Q  are constructed. 
According to the first group of definition and the different properties, the urban tourist sight 

spatial dataset P  contains 1P , 2P , 3P and 4P four subsets. 1P  is the park and green land set. 2P  
is the amusement place set. 3P  is the venue set. 4P  is the shopping center set. The sampling data 
are reported in Table 2 and the tourist sight distribution is shown in Figure 5. 

Table 2. Tourist sight spatial datasets, subsets, and elements. 

Dataset P  

Data Subset 
1P  2P  3P  4P  

Element 

1 1PQ Botanical Park 

1 2PQ Bishagang Park 

1 3PQ Renmin Park 

1 4PQ Zijingshan Park 

1 5PQ Lvcheng Square 

1 6PQ Forest Park 

1 7PQ Zhengzhou Zoo 

1 8PQ Yueji Park 

1 9PQ Xiliuhu Park 

2 1P Q Century Park 

2 2P Q Water fun Park  

2 3P Q Children Park 

2 4P Q Fun street 

3 1P Q Henan museum 

3 2P Q City museum 

3 3P Q Science museum 

3 4P Q Erqi memorial  

3 5P Q Zhongyuan tower 

3 6P Q Aquarium 

4 1P Q Wangfujing 

4 2P Q Erqi Wanda 

4 3P Q Zhongyuan Wanda 

4 4P Q Guomao 360 

4 5P Q CC mall 

4 6P Q Dehua street 

4 7P Q Dashanghai 

4 8P Q Dennis 

  

http://dict.youdao.com/w/botanical%20garden/#keyfrom=E2Ctranslation
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Figure 5. Tourist sight spatial data subset element distribution. Panels (a), (b), (c) and (d) are the 
distributions of tourist sight spatial data subsets ~ . Each figure contains Zhengzhou city’s five 

main districts and city arterial roads. Grey roads are a north–south or east–west orientation, whereas 
the pitch-black road is the third ring road. 

According to the data, the  dimension feature interest tourist sight extracting matrix P  is 
defined in Formula (7). 

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4 3 5 3 6

4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8

0 0 0 0 0
=

0 0 0
0

PQ PQ PQ PQ PQ PQ PQ PQ PQ
P Q P Q P Q P Q
P Q P Q P Q P Q P Q P Q
P Q P Q P Q P Q P Q P Q P Q P Q

 
 
 
 
 
 

P
 (7) 

According to the second group of definition, tourist sight spatial interest field mapping model 
of Zhengzhou city is set up. In terms of tourist statistics, each group’s number of people is 350, 

=350in , ( )0,4 Zi +∈ ∈ . The visiting tourists and the visited rate for each tourist sight subset are 
reported in Table 3. From Table 3, the interest field intensity for each group for each tourist sight can 
be analyzed, and visual graphs are obtained. Elderly people have the greatest interest in park and 
green land subset 1P , followed by children, while young adults have the least interest. Children have 

the greatest interest in amusement place set 2P , followed by young adults, while elderly people have 

the least interest. All groups have relatively identical interest in venue set 3P . Young adults have the 

greatest interest in shopping center set 4P , followed by children, while elderly people have the least 
interest. According to the interest field mapping model and intensity graphs, the smart machine will 
determine the interest tendencies and provide the proper tourist sights after the tourist input the 
number of tourist sight to visit. 

Table 3. The visiting tourists and visited rate for each group and tourist sight subset. 

 
1n ( 1G ) 2n ( 2G ) 3n ( 3G ) 1,rk  2,rk  3,rk  1,rω  2,rω  3,rω  

1P  1r =  

350 350 350 

223 128 311 0.637 0.366 0.889 

2P  2r =  309 145 89 0.883 0.414 0.254 

3P  3r =  288 269 264 0.823 0.769 0.754 

4P  4r =  190 337 145 0.543 0.963 0.414 

1P 4P

4 9×
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Figure 6. Each tourist sight’s interest field intensity for each age group. (a) is the park and green 
land subset, (b) is the amusement place set, (c) is the venue set , and (d) is the shopping center set.   

4.2. Simulation Experiment and Results Analysis 

Based on the algorithm models developed and the data sampling, a simulation experiment is 
performed, and data result analysis is obtained. 

4.2.1. Simulation Experiment 

A young adult plans to have a trip in downtown of Zhengzhou city, but he is not familiar with 
the city. He wishes to visit four tourist sights within one day. According to his requirements, the 
smart machine plans a tour route for him. First, referring to the interest field mapping model and 
intensity, the smart machine matches the background data and determines that this tourist belongs 
to the young adult group and the machine determines that he may have a high level of interest 
tendency in tourist sights in the shopping set and venue subset but a low level of interest tendency 
in park and green land park. Thus, the most interested tourist sights are at the top of the priority list 
for the smart machine to select. Meanwhile, tourist sight repeat ability should be set to avoid the same 
tourist sights being selected. Meanwhile, less interested tourist sights are also considered but the least 
interested ones are avoided to ensure that the tourist sight selection is comprehensive and diverse. 
Matrix P  is used as a data resource from which to extract the proper tourist sights. In the simulation 
experiment, the smart machine selects and recommends the following tourist sights. 

• Sample 1： 11-P ， 32-P ， 41-P ; 

• Sample 2: 11-P ， 42-P ， 31-P ; 

• Sample 3: 21-P ， 32-P ， 41-P ; 

• Sample 4: 21-P ， 42-P ， 31-P ; 

• Sample 5: 32-P ， 42-P . 

The young adult tourist selects one of the five samples according to his own interests and needs. 
If he has no particular preference of the recommended samples, the smart machine will randomly 
select one sample for him. Take Sample 1, for instance. The smart machine provides him with one 

famous park, two famous venues, and one shopping mall; they are 1 2PQ  Bishagang park, 3 4P Q  
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Erqi memorial, 3 1P Q  Henan museum, and 4 3P Q  Zhongyuan Wanda. Store the selected tourist 

sight into matrix T , as in Formula (7). 

{ }1 1 2 2 3 4 3 3 1 4 4 3= : , : , : , :T T PQ T P Q T P Q T P Q  (8) 

Tourist sights 1T , 2T , 3T and 4T  are taken as father nodes, respectively, and the decision tree 

child node clusters ( )TeC ¬
 and the motive iteration clusters vC  are built as shown in Figure 7. 

 

Figure 7. Building the decision tree child node clusters ( )TeC ¬
 and the motive iteration clusters vC . 

Tourist sight 1T  is taken as father node to build the decision tree and six trees are formed in 

total. Each decision tree contains three motive iteration sub-intervals ( ), 1T Te eH + , the corresponding 

three sub-interval motive iteration values ( ), 1T Te eW + , one motive iteration interval ( ),1T TmH , and 

one interval motive iteration value ( ),1T TmW . Each decision tree and sub-interval relates to the 

motive iteration function ( )eW T
 and function value, and the maximum value of motive iteration 

function ( )eW T
 relates to motive iteration cluster local optimal solution CvW  

   . Regarding the 

other tourist sights 2T , 3T and 4T , the method to generate the decision tree and local optimal solution 
is identical. From the basic GIS service data for Zhengzhou city, the motive iteration factor c  and 
disturbance factor ε  of each sub-interval are constructed, as Table 4 and Figure 8 indicates. In 
Figure 8, the abscissa is c  and the ordinate is -ε . According to the algorithm in the third segment, 

each decision tree sub-interval motive iteration value ( ), 1T Te eW + , interval motive iteration value 

( ),1T TmW , motive iteration function ( )mW T
 value, and motive iteration cluster local optimal 

solution CvW  
    are obtained; the initial values are all ( )1 =1.000W T , as Table 5 shows. Each 

decision tree’s sub-interval motive iteration values and interval motive iteration values are shown in 
Figures 9 and 10. 

Table 4. The tourist sight motive iteration factors, c  and disturbance factors, ε  for the simulation experiment. 

Sub-Interval 1c （ 1ε ） 2c （ 2ε ） 3c （ 3ε ） 4c （ 4ε ） 5c （ 5ε ） 

( )1 2 2 1, ,T T T T  0.233（−0.040） 0.400（−0.012） 0.100（−0.006） 0.083（−0.002） 0.391（−0.010） 

( )1 3 3 1, ,T T T T  0.123（−0.110） 0.300（−0.022） 0.100（−0.018） 0.050（−0.003） 0.254（−0.020） 

( )1 4 4 1, ,T T T T  0.345（−0.080） 0.400（−0.012） 0.100（−0.015） 0.100（−0.002） 0.549（−0.010） 

( )2 3 3 2, ,T T T T  0.175（−0.120） 0.400（−0.024） 0.100（−0.024） 0.067（−0.003） 0.412（−0.020） 

( )2 4 4 2, ,T T T T  0.141（−0.150） 0.400（−0.014） 0.100（−0.019） 0.059（−0.003） 0.502（−0.010） 

( )3 4 4 3, ,T T T T  0.097（−0.090） 0.400（−0.022） 0.100（−0.031） 0.048（−0.004） 0.212（−0.020） 
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Table 5. Decision tree interval motive iteration values and global optimal solution. 

Father Node σ  Decision 
Tree 

( ), 1T Te eW +  ( )mW T  CvW  
    

1T  

1 
T T T T  

1.137 1.121 0.794 1.000 2.137 3.258 4.052 

5.322 

2 
T T T T  

1.137 1.171 0.837 1.000 2.137 3.308 4.145 

3 
T T T T  

0.654 0.564 0.482 1.000 1.654 2.218 2.700 

4 
T T T T−  

0.654 0.393 0.276 1.000 1.654 2.047 2.323 

5 
T T T T  

1.375 1.457 1.490 1.000 2.375 3.832 5.322 

6 
T T T T  

1.375 1.011 0.976 1.000 2.375 3.386 4.362 

2T  

1 
T T T T  

1.137 0.767 0.490 1.000 2.137 2.904 3.394 

4.904 

2 
T T T T  

1.137 1.580 1.187 1.000 2.137 3.717 4.904 

3 
T T T T−  

0.963 0.623 0.812 1.000 1.963 2.586 3.393 

4 
T T T T−  

0.963 0.658 0.864 1.000 1.963 2.621 3.485 

5 
T T T T−  

1.006 1.384 0.972 1.000 2.006 3.390 4.362 

6 
T T T T  

1.006 0.695 0.402 1.000 2.006 2.701 3.103 

3T  

1 
T T T T  

0.654 0.719 0.668 1.000 1.654 2.373 3.041 

4.567 

2 
T T T T  

0.654 0.858 0.835 1.000 1.654 2.512 3.347 

3 
T T T T  

0.963 1.092 1.512 1.000 1.963 3.055 4.567 

4 
T T T T  

0.963 0.962 1.318 1.000 1.963 2.925 4.243 

5 
T T T T  

0.690 0.912 1.031 1.000 1.690 2.602 3.633 

6 
T T T T  

0.690 0.633 0.694 1.000 1.690 2.323 3.017 

4T  

1 
T T T T  

1.375 1.590 2.256 1.000 2.375 3.965 6.221 

6.221 

2 
T T T T  

1.375 0.964 0.921 1.000 2.375 3.339 4.260 

3 
T T T T  

1.006 1.144 0.773 1.000 2.006 3.150 3.923 

4 
T T T T  

1.006 0.970 0.629 1.000 2.006 2.976 3.605 

5 
T T T T  

0.690 0.398 0.410 1.000 1.690 2.088 2.498 

6 
T T T T  

0.690 0.605 0.660 1.000 1.690 2.295 2.955 

 
Figure 8. Distribution of the simulation experiment tourist sight motive iteration factor c  and 
disturbance factor ε . To display all the data in the first quadrant, the ordinate value is set as -ε . 
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Figure 9. Each tourist sight sub-interval motive iteration value tendency curves. 

 
Figure 10. Each tourist sight interval motive iteration value and function curves. 

4.2.2. Data Result Analysis and Discussion 

Motive Iteration Cluster vC  and Child Node Cluster ( )TeC ¬  

As to Figure 7, the selected four tourist sights are set as father nodes to form child node clusters 

( )TeC ¬
 and the motive iteration cluster vC , respectively. Since the initial father nodes are different 

from each other, the child node clusters that are formed have different distribution shapes. 

In terms of geographical distribution, child node clusters ( )1TC ¬ and ( )2TC ¬
 formed by tourist 

sights 1T and 2T  have a long zonal distribution with a large opening angle directed northwest and 



ISPRS Int. J. Geo-Inf. 2019, 8, 192 21 of 29 

 

southeast. The child node clusters ( )3TC ¬ and ( )4TC ¬
 formed by 3T  and 4T  have a 

comparatively short zonal distribution with a small opening angle directed southeast and northwest. 

Regarding the different shapes, opening angles and directions, the zonal distributions of ( )1TC ¬ and

( )2TC ¬
 that account for child nodes 2T , 3T , 4T and 1T , 3T , 4T  are relatively discrete in spatial 

clustering distribution. Child nodes 1T , 2T , 4T and 1T , 2T , 3T  are relatively concentrated in 
spatial clustering distribution. In general, a more concentrated child cluster is much more beneficial 
because they have shorter times and ferry distances between tourist sights within the cluster, more 
convenient ferry access, lower taxi costs, and less traffic congestion, all of which contribute to 
generating a globally optimal solution. Regarding the iterating result, this simulation experiment’s 

global optimal solution appears in motive iteration cluster 4C  formed by the tourist sight 4T  father 
node. 

Motive Iteration Factor c  and Disturbance Factor ε  

Considering Table 4 and Figure 8, the motive iteration factor c  and disturbance factor ε  vary 

in different sub-intervals. In the first group, sub-interval ( ),1 4T TH
 has the highest factor c  value 

while sub-interval ( ),3 4T TH
 has the lowest factor c  value. Sub-interval ( ),2 4T TH

 has the lowest 

-ε  value, which has the strongest disturbance influence. Sub-interval ( ),1 2T TH
 has the highest -ε  

value with the weakest disturbance influence. In terms of the factor value, according to the clustering 

principle, sub-intervals ( ),1 3T TH , ( ),2 3T TH , ( ),2 4T TH and ( ),3 4T TH
 are clustered in one group, 

while ( ),1 2T TH  and ( ),1 4T TH
 are clustered in another group. 

In the second group, all sub-intervals factor values are 0.400 except that of ( ),1 3T TH , which is 

0.300. Sub-interval ( ),2 3T TH
 has the lowest -ε  value, whose disturbance influence is the strongest. 

Sub-intervals ( ),1 2T TH  and ( ),1 4T TH
 have the highest -ε  value, whose disturbance influence is 

the weakest. Sub-intervals ( ),1 3T TH , ( ),2 3T TH  and ( ),3 4T TH
 are clustered in one group, whereas 

sub-intervals ( ),1 2T TH , ( ),1 4T TH  and ( ),2 4T TH
 are clustered in another group. 

In the third group, all sub-intervals factor c  values are 0.100. Sub-interval ( ),3 4T TH
 has the 

lowest -ε  value, whose disturbance influence is the strongest. Sub-interval ( ),1 2T TH
 has the 

highest -ε  value, whose disturbance influence is the weakest. Sub-intervals  ( ),1 3T TH , ( ),1 4T TH , 

( ),2 3T TH  and ( ),2 4T TH
 are clustered in one group. The other two sub-intervals form two clusters. 

In the fourth group, sub-interval ( ),1 4T TH
 has the lowest factor c  value, whereas sub-interval 

( ),1 3T TH
 has the lowest factor c  value. Sub-intervals ( ),1 2T TH  and ( ),1 4T TH  have the highest 

-ε  value, whose disturbance influence is the weakest. Sub-interval ( ),3 4T TH
 has the lowest -ε  

value, whose disturbance influence is the strongest. Sub-intervals ( ),1 2T TH
 and ( ),1 4T TH

 are 

clustered in one group, whereas sub-intervals ( ),1 3T TH , ( ),2 3T TH , ( ),2 4T TH  and ( ),3 4T TH
 are 

clustered in another group. 

In the fifth group, sub-interval ( ),1 4T TH
 has the highest factor c  value, whereas sub-interval 

( ),3 4T TH
 has the lowest factor c value. Sub-intervals ( ),1 2T TH , ( ),1 4T TH , and ( ),2 4T TH

 have the 

c
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highest -ε  value, whose disturbance influence is the weakest, and they are clustered in one group. 

Sub-intervals ( ),1 3T TH , ( ),2 3T TH , and ( ),3 4T TH
 have the lowest -ε  value, whose disturbance 

influence is the strongest, and they are clustered in one group. 

Decision Tree Sub-Interval Motive Iteration Value ( ), 1T Te eW +  

As can be observed from Table 5 and Figure 9, the motive iteration clusters generated from 
different tourist sight father nodes have large differences in terms of the sub-interval motive iteration 

values, the ( ), 1T Te eW +  output values, and the tendency curves. Each sub-interval’s output value is 
determined by the previous sub-interval, and the value fluctuates. The values randomly vary up and 
down with the change in tourists’ travel times and locations, which are determined by the sub-
intervals initial value and factors c  and ε . 

Compare the four motive iteration cluster ( ), 1T Te eW +  values and the tendency curves of the 

cluster 3C  generated from tourist sight father node 3T . These are most concentrated, which 

accounts for why the influence of each cluster 3C  decision tree relative tour routes on tourists is 
similar and in the same level. Tourists can choose any one of the tour routes and obtain the same 
motive benefit satisfaction. 

Motive iteration cluster ( ), 1T Te eW +  tendency curves for clusters 1C , 2C  and 4C are 

relatively discrete. For cluster 1C , the tendency curves of the decision trees =1 2,6σ ，  relative tour 
routes are close and can be clustered in one group, and the tendency curves of the decision trees 

=3,4σ  relative tour routes are close and can be clustered in another group. The tendency curves of 
the decision tree =5σ  relative tour route can be clustered in one group, and it has the greatest 

influence on tourists’ motive benefit satisfaction. Regarding cluster 2C , the tendency curves of the 

decision trees =2 5σ ， relative tour routes are close and can be clustered in one group, and the 
tendency curves of the decision trees =1,3,4,6σ  relative tour routes are close and can be clustered 

in another group. Regarding cluster 4C , the tendency curves of the decision trees =2 3,4σ ，  
relative tour routes are close and can be clustered in one group, and the tendency curves of the 
decision trees =5,6σ  relative tour routes are close and can be clustered in another group. The 
tendency curves of the decision tree =1σ  relative tour route can be clustered in one group, and it 
has the greatest influence on tourists’ motive benefit satisfaction. The tour routes clustered in one 
group have a similar influence on tourists’ motive benefit satisfaction. Tourists may choose any one 
of the tour routes and obtain the same motive benefit satisfaction. 

Decision Tree Interval Motive Iteration Value ( )mW T  

Considering Table 5 and Figure 10, the motive iteration clusters generated from different tourist 
sight father nodes have large differences in the interval motive iteration values. In terms of output 
value ( )mW T , each motive iteration cluster’s function ( )mW T  is monotonically increasing. 

Comparing four groups of motive iteration ( )mW T  output values, the tendency curves of the cluster 

3C  generated from tourist sight father node 3T  are the most concentrated, because the cluster sub-
intervals’ tendency curves are the most concentrated. It also accounts for why the influence of each 

cluster 3C  decision tree relative tour routes for tourists is similar and in the same level. Tourists 
may choose any one of the tour routes and obtain the same motive benefit satisfaction. Regarding 

cluster 1C , the tendency curves of the decision trees =1 2,6σ ， relative tour routes are close and can 

be clustered in one group, and the tendency curves of the decision trees =3,4σ  relative tour routes 
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are close and can be clustered in another group. The tendency curves of the decision tree =5σ  
relative tour route can be clustered in one group, and it has the greatest influence on tourists’ motive 

benefit satisfaction. Regarding cluster 2C , the tendency curves of the decision trees =2 5σ ， 
relative tour routes are close and can be clustered in one group, and the tendency curves of the 
decision trees =1,3,4,6σ  relative tour routes are close and can be clustered in another group. 

Regarding cluster 4C , the tendency curves of the decision trees =2 3,4σ ，  relative tour routes are 

close and can be clustered in one group, and the tendency curves of the decision trees =5,6σ  
relative tour routes are close and can be clustered in one group. The tendency curves of the decision 
tree =1σ  relative tour route can be clustered in one group, and it has the greatest influence on 
tourists’ motive benefit satisfaction. The tour routes clustered in one group have a similar influence 
on tourists’ motive benefit satisfaction, and tourists may choose any one of the tour routes and obtain 
the same motive benefit satisfaction. 

The Motive Iteration Cluster Local Optimal Solution CvW  
    and Global Optimal Solution 

max
CvW  
    

Table 5 presents the motive iteration cluster descending sub-vector aK
→

 and motive iteration 

cluster descending vector bR
→

 that are obtained. 

• As to cluster 1C , [ ]1 = 5.322 4.362 4.145 4.052 2.700 2.323K
→

; 

• As to cluster 2C , [ ]2 = 4.904 4.362 3.485 3.394 3.393 3.103K
→

; 

• As to cluster 3C , [ ]3 = 4.567 4.243 3.633 3.347 3.041 3.017K
→

; 

• As to cluster 4C , [ ]4 = 6.221 4.260 3.923 3.605 2.955 2.498K
→

; 

• Cluster 1C ~ 4C , [ ]6.221 5.322 4.904 4.567R
→

= . 

In Figure 10, the six best values of all four clusters are shown. The highest one is the cluster’s 
local optimal solution CvW  

   . In the four motive iteration clusters, the decision trees 5σ = , 2σ = , 

3σ =  and 1σ =  motive iteration values are local optimal solutions CvW  
   ; they are 1 =5.322CW  

   ,

2 =4.904CW  
   , 3 =4.567CW  

    and 4 =6.221CW  
   , respectively. According to the definition, motive 

iteration cluster global optimal solution 
max

CvW  
    is max CvW  

   , it is thus 4 =6.221CW  
    whose 

relative tour route is the first decision tree in cluster 4C , shown as the red route in Figure 11. 
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Figure 11. Tour routes for motive iteration decision tree local optimal solutions. 

The local optimal solution CvW  
    is the iteration value of the cluster optimal route. If tourists 

choose one starting tourist sight for the trip, the smart machine will output all the tour routes related 

to the cluster as descending sub-vector aK
→

 elements and highly recommends the first element tour 
route for tourists. Considering a tourist’s own needs and interests, they choose the tour route by 
themselves. For example, a tourist obtains accommodation next to 2T  the Erqi memorial and he 

takes this tourist sight as the starting one to visit. In this case, since the tour route is 2 1 4 3, ,T T T T− , 
which is Erqi memorial, Bishagang park, Zhongyuan Wanda, and Henan museum, and is the cluster’s 
optimal tour route, the smart machine will highly recommend it to the tourist. If tourists do not 
choose the starting tourist sight, the smart machine will output all the tour routes related to the cluster 

descending vector bR
→

 elements and specifically recommends the first element tour route for 
tourists, considering the tourist’s own needs and interests, and they choose a tour route themselves. 
In the simulation experiment, the smart machine highly recommends the cluster 4C  tour route 

4 1 2 3, ,T T T T−  which is Zhongyuan Wanda, Bishagang park, Erqi memorial, and Henan museum, the 
red route. Figure 11 shows the relative tour routes of the motive iteration decision tree local optimal 
solutions, of which the red noted route is the global optimal solution tour route. The decision tree 
father nodes for Figure 11a–d are tourist sights 1T ~ 4T , respectively. 

The Advantage of the Algorithm 

As to the study, the algorithm designed in the paper could plan optimal tour routes for tourists 
and help them to get best motive benefits. Firstly, it considers tourists’ individualized needs and 
interests. The smart machine designed in the study can automatically select interested tourist sights 
and plan optimal routes according to the basic information provided by tourists, which is convenient 
and intelligent. The planned routes combine factors and disturb factors of GIS service, which are all 
genuine and precise factors tourists must consider and deal with during the whole trip. In this aspect, 
tourists will not plan routes by themselves; rather, all the optimal routes are planned by the smart 
machine. This process is better than the procedure whereby tourists find mass information on the 
Internet and plan routes by themselves, in which many key factors may be neglected and cannot 
provide the best travel experience and motive benefits. Meanwhile, the smart machine only considers 
tourists’ profits and interests, but travel companies mainly consider their own profits to earn more 
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money, which will neglect tourists’ needs and interests. In all, the optimal routes of smart machine 
can meet the needs and interests of tourists and thus provide better information than mass tourism 
data on the Internet and travel companies. 

5. Conclusions 

Some critical issues and existing problems in smart tourism and tourism GIS are discussed and 
analyzed in the study. Mining the most valuable tour route knowledge from big data-level 
information is the key to increasing the motive benefit satisfaction. When planning a trip and tour 
routes, tourists are usually unfamiliar with a strange city and its tourism services information. Travel 
agencies provide planned tour routes for tourists to gain profits, and they insufficiently consider 
tourists’ needs and interests since they provide group tours with fixed schedules, offer limited ferry 
transportation ways, and confine the range of activities for tourists. 

Referring to Reference [5]’s concept of using a scalable geospatial analysis based on cloud 
computing platform to detect tourism destinations, this study establishes basic city tourist sight data 
information and GIS data as independent variables to build a feature interest tourist sight extracting 
matrix, which is not scalable. Reference [5] uses a cloud computing platform, whereas this study 
develops a new calculating system to obtain iteration values. 

Referring to Reference [17]’s concept of oriented spanning trees, this study also generates 
spanning trees. Reference [17] adds genetic and multi-criteria thoughts to solve the path problems; 
in this study, there is one criterion, which aims to determine the maximum iteration value. 

Representative tourist sights and service functions are integrated and are used as a data resource 
to build the algorithm. The tourist sight classification is a subset, and it is an effective means to group 
and segment tourists’ needs and interests. It is also the basis upon which to build the tourist sight 
spatial interest field mapping model. 

An age index is used to group tourists because this standard has broad coverage and strong 
representation because similarly aged people have similar interests. The developed smart tourist 
sight extracting algorithm model is highly random and a strict logic is used in the algorithm, covering 
all the tourist sights, with each tourist sight having the same probability of being selected. 
Considering one-day trips, in order to ensure that tourists have an enjoyable trip experience at tourist 
sights to obtain the best motive benefit satisfaction, the smart machine sets an upper limit for the 
number of selected tourist sights and then stores, manages, and plans tourist sights and tour routes 
accordingly. 

Referring to Reference [18]’s approach to solving shortest-distance problems, in designing the 
algorithm and smart machine, this study supplements more details to meet a majority of the tourists’ 
needs. Two principles are applied; one is the principle of proximity, and the other is the principle of 
completely random. Considering these two principles, a smart motive iteration decision tree 
algorithm is designed and developed. A quantitative method is used to evaluate the motive iteration 
trees and tour routes generated from different tourist sight father nodes and the results are used as 
the basis for smart machine recommendations for tourist sights and tour routes. 

Compared with Reference [39]’s application of spatial partitioning and k-means clustering, the 
concept of clustering is also used in this study. Reference [39] applies k-means clustering to habitat 
occupation in Propithecus perrieri. Similarly, the m-central point clusters are developed, where each 
tourist sight is used as father node to generate decision trees. When a tourist chooses situation one 
and starts at the closest tourist sight, only one cluster will be studied and used to determine the 
optimal tour route, which will decrease the cost. When a tourist chooses situation two and randomly 
chooses a starting tourist sight, the smart machine needs to determine the global optimal solution 
and recommend the best tour route for tourists. 

The recommended tour routes obey the optimum principle, and individualized interests and 
needs are considered. In tour route planning, it avoids tourists’ subjective cognition and considers 
mainly individualized needs most, in addition to objective conditions. The methodology does not 
seek to pursuit profit as do travel agencies; instead, it is based on serving tourists. Regarding massive 
and big data-level tourism information, this study presents a method to access valuable and 
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concealed tour route knowledge, which are relevant to tourists’ needs and interest. The algorithm 
developed in the study is practical and its performance are an effective examination of data mining 
in mass tourism data. 
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Abbreviations 

 Meaning Meaning of Subscript and Superscript 

P  tourist sight spatial data set None 

rP  tourist sight spatial data subset : subset number 

r sP Q  Subset element tourist sight : element tourist sight number in subset 

t  tourist sight classification number None 

rp  tourist sight number of the subset : subset number 

rP
→

 tourist sight extracting base vector : subset number 

P  tourist sight extracting matrix None 

iG  Age group classification : age group number 

n  Number of people in statistics None 

in  Age group number of people : age group number 

age  Age index None 

,i rk  Number of people visiting  : age group number 
: subset number 

i rω ⋅  Visited rate of  : age group number 
: subset number 

m  Number of tourist sight to be visited None 

T  Selected tourist sight set None 

eT  Selected tourist sight set element : Selected tourist sight set number 

( )eW T  Motive iteration function  : Selected tourist sight set number 

( ), 1T Te eH +  Motive iteration sub-interval :Selected tourist sight set element 
: Selected tourist sight set number 

( ), 1T Te eW +  Sub-interval motive iteration value :Selected tourist sight set element 
: Selected tourist sight set number 

( ),1T TmH  Motive iteration interval : The final tourist sight to be visited 

( ),1T TmW  Interval motive iteration value : The final tourist sight to be visited 
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c  Motive iteration factor  None 

δ  Specific factor None 

ε  Motive iteration disturbance factor None 

1µ  Specific disturbance factor None 

Treeσ  Motive iteration decision tree : Tree number 

( )TeC ¬  Child node cluster :Selected tourist sight set element 
: Selected tourist sight set number 

vC  Motive iteration cluster : Cluster number 

CvW  
    Decision tree local optimal solution :Motive iteration cluster 

max
CvW  
    Decision tree global optimal solution :Motive iteration cluster 

aK
→

 
Motive iteration cluster descending 
sub-vector 

: Motive iteration cluster descending 
sub-vector number 

bR
→

 
Motive iteration cluster descending 
vector 

: Motive iteration cluster descending 
vector number 

∀  arbitrary None 

∪  Join None 
+Z  Positive integer None 

+R  Positive real number None 
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