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Abstract: Smart tourism is the new frontier field of the tourism research. To solve current problems
of smart tourism and tourism geographic information system (GIS), individualized tour guide route
plan algorithm based on tourist sight spatial interest field is set up in the study. Feature interest
tourist sight extracting matrix is formed and basic modeling data is obtained from mass tourism data.
Tourism groups are determined by age index. Different age group tourists have various interests;
thus interest field mapping model is set up based on individual needs and interests. Random
selecting algorithm for selecting interest tourist sights by smart machine is designed. The algorithm
covers all tourist sights and relative data information to ensure each tourist sight could be selected
equally. In the study, selected tourist sights are set as important nodes while iteration intervals and
sub-iteration intervals are defined. According to the principle of proximity and completely random,
motive iteration clusters and sub-clusters are formed by all tourist sight parent nodes. Tourist sight
data information and geospatial information are set as quantitative indexes to calculate motive
iteration values and motive iteration decision trees of each cluster are formed, and then all motive
iteration values are stored in descending order in a vector. For each cluster, there is an optimal
motive iteration tree and a local optimal solution. For all clusters, there is a global optimal solution.
Simulation experiments are performed and results data as well as motive iteration trees are analyzed
and evaluated. The evaluation results indicate that the algorithm is effective for mass tourism data
mining. The final optimal tour routes planned by the smart machine are closely related to tourists’
needs, interests, and habits, which are fully integrated with geospatial services. The algorithm is an
effective demonstration of the application on mass tourism data mining.

Keywords: spatial interest field; individuality; tour guide route; motive iteration; decision tree;
cluster analysis

1. Introduction

Smart tourism is the fastest growing frontier field of tourism research. The aim of smart tourism is
to improve tourists’ knowledge of travel destination and help them have the best travel experience [1,2].
It is also called intelligent tourism. It uses techniques of cloud computing, Internet of Things, etc.,
through Internet on a portable terminal to access information about tourism resources, economy, activity,
and tourists, etc., and then releases relative information for tourists [3–5]. According to the information,
tourists can make time schedules and plan the trip before a vacation. The development of smart
tourism will affect the tourism experience, management, service, and marketing [6,7]. The approach
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of smart tourism is to provide convenient and efficient service for tourists, build the frame of smart
city and tourist sight, and finally improve the quality and level of tourism service [8–11]. Smart
tourism development builds on tourism science. It takes advantage of cloud computing and artificial
intelligence and combines GIS technology to distribute the most relevant tourism information on the
Internet [12,13]. Of all the information, tourist sight classification, locations, distinguishing features,
available transportation service around, traffic conditions, and accommodation fees are the most
relevant. Through the human–computer interaction process, tourists can access tourism service
information and get optimal decision support. Therefore, smart tourism is an interdisciplinary field
of cloud computing, artificial intelligence, and GIS, etc., with a core aim of highly efficient tourism
informationization [14–16] through the method of cloud computing and artificial intelligence. As its
data source support is GIS service, GIS is an important prerequisite for developing smart tourism [17–19].
Before traveling, tourists usually make a plan including travel destinations, a time schedule, a route,
accommodation, and so on in accordance with their needs and interests, travel availability, and budget,
etc. These are the most concerning issue for tourists and the critical preconditions for tourists to obtain
the best motive benefit satisfaction [20]. The quality of travel planning will directly influence tourists’
experiences and perceptions during the whole trip, influence the tourists’ subjective impression of the
cities and destinations visited, and thus have a determined impact on the travel destination’s further
marketing to attract more tourists and increase the economic benefits of tourism [21–23]. The more
motive benefit satisfaction tourists obtain from the whole travel process, the better their perception of
the travel experience and service is, and thus, the more likely they will be to positively evaluate the
travel destinations. This will lead to a positive genuine evaluation on the Internet, which will promote
a travel destination’s further development and economic performance [24,25]. Thus, in smart tourism
supported by geospatial data and services, the aim of smart tourism is to provide tourists with smart
decision support that is highly accurate, individualized, and based on tourists’ needs. It can ultimately
increase the motive benefit satisfaction of tourists [26,27].

Currently, decision support for smart tourism is in the early stage of development. The techniques
for developing an orientation are tourism information services and data mining. Based on mass
tourism and geospatial data, tourists use smart device to select tourist sights and make tour plans by
themselves. Usually, there are two modes. In the first mode, depending on the tourists’ subjective
perception and knowledge of tourist sights, a tourist will refer to geospatial services and tourist sights
information, in addition to other tourists’ evaluation, and extract useful information from mass tourism
data [28–30]. By analyzing and processing the information, they form an internal perception of tourist
sights and, finally, make a decision about how to travel. In the second mode, various actual and online
travel agencies provide a large number of tour options for tourists. However, the two modes both
have some problems. First, based on subjective perception, the routes planned by tourists are usually
not the optimal one because the tourists are unfamiliar with the city or tourist sights. Meanwhile,
it is difficult to extract useful and valuable information from mass tourism data as deep analysis
is insufficient. The type of data is usually presented textbook-style and is crowdsourced [31,32].
An insufficient planning strategy and strong subjectivity can hardly help tourists to obtain the best
motive benefit. Second, tour routes provided by travel agencies are aimed to produce a profit and may
not satisfy a tourist’s individualized needs and interests [33–35]. Nevertheless, tourists cannot obtain
the best motive benefits from a package tour. Third, mass tourism data contains high-level data and
information, such that not all the information is useful and valuable. It is difficult to find valuable
data and useful tourism knowledge that meets tourists’ needs and interests, while this is just the most
important key to obtain the best motive benefit.

As indicated by the above analysis, this study aims to solve the problems presented; namely,
that scheduled tour routes cannot meet individualized needs and interests and cannot sufficiently
combine geospatial information and services. City tourist sights contain geospatial information [36,37].
We start the modeling by setting a single tourist sight as an independent object to form a feature interest
tourist sight extracting matrix. A tourist sight spatial interest field model is set up based on tourists’
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individualized needs and interests. According to an age index, tourists are divided into three groups,
elderly group, young adult group, and children group [38,39]. The mapping relationship model between
tourist sight spatial interest field model and the three groups is studied and formed. By designing and
developing a smart tourist sight extracting algorithm, smart motive iteration decision trees are formed,
which can help tourists to select tourist sights according to their own interests, even though they are
unfamiliar with the city and tourist sights. Combining this with a geospatial service [40–42], we set up
a smart tour guide route plan algorithm. Tour routes planned by the algorithm are related to motive
iteration values. The motive iteration values along with tour routes are arranged in descending order
matrix and the optimal one is provided for tourists. The method and algorithm built in the study can
provide detailed decision support and tour routes for tourists according to their needs and interests and
meet their satisfaction the most [43,44]. The main content of the paper is as follows.

• First, the current research status and content regarding smart tourism are analyzed. Focusing
on the problems of tour route plan, we suppose that individualized tour plans combined with
geospatial services are an important means to meet the motive benefit satisfaction of tourists and
maximize tourism economic benefits for destinations.

• The research data resources and spatial ranges are ensured on the basis of problem analysis.
According to the tourist sight distribution and geospatial information data, a tourist sight spatial
interest field model is developed and its mapping relationship model for the three age groups of
tourists is formed.

• A smart algorithm is designed and developed. Tourists can get hot tourist sights via smart
machine according to their needs and interests. The smart machine calculates motive iteration
values and, finally, outputs tour routes for tourists.

• Simulation experiment is designed. To get the best motive benefits for tourists is the core objective,
and this objective is set up by a quantitative algorithm model as the dependent hypothesis
variable to find out the optimal tour routes, which is iterated by several important independent
variables. The independent variables are factors and disturb factors, including critical tourist
sight information and GIS service information. After ensuring tourist sight spatial interest field
mapping model and selecting interested tourist sights, all the factors and disturb factors are
quantified and altered according to different motive iteration clusters and trees. By iterating
and outputting motive iteration values, the relative tour routes are all obtained, of which the
maximum iteration value route is the optimal one for tourists, and the sub-optimal ones will also
be displayed for tourists to select as there are different situations and project suggestions. Finally,
experiment data is analyzed and valuable knowledge on tour route is obtained. The data and
knowledge can effectively help tourists to select tourist sights, plan the whole trip, and get the
best motive benefit.

2. Feature Interest Tourist Sight Extracting Algorithm Based on Interest Field Mapping Model

Interest tourist sights are the basic data source to make a tour route plan and calculate motive
iteration values. In a smart machine, interest tourist sights are selected automatically, and the interest
tendency is the key for the machine to learn and recognize tourists’ needs. Thus, the feature interest
tourist sight extracting algorithm based on interest field mapping model is set up first.

2.1. Feature Interest Tourist Sight Extracting Matrix

As to city tourism, before tourists go to an unfamiliar city, they should know about the city and
tourist sights [45]. They usually select the most interested ones to visit. To obtain a data resource,
the first group of definitions are discussed.

Def 1.1 Tourist sight spatial data set P. Within a certain geospatial range, the set containing some
popular and typical tourist sights which are selected and ensured by certain restrictive rules, is called
tourist sight spatial data set P.



ISPRS Int. J. Geo-Inf. 2019, 8, 192 4 of 26

Def 1.2 Tourist sight spatial data subset Pr. Tourist sight spatial data set P can be divided into
some subsets according to different properties. Each subset is called tourist sight spatial data subset Pr.

Def 1.3 Tourist sight spatial subset element PrQs. A single tourist sight element in any given
tourist sight spatial data subset ∀Pr is called tourist sight subset element PrQs.

P =


P1Q1 · · · P1Qminpr 0 0 0

P2Qpr′ 0 0 0
P3Qpr′′ 0 0
· · ·

PmaxtQ1 · · · PmaxtQmaxpr−1 PmaxtQmaxpr


(1)

According to the definitions and properties, we set up city tourist sight spatial data set P and
divide tourist sights into t groups, P =

{
Pr

∣∣∣r ∈ (0, t], r ∈ Z+
}
. In which, Pr is tourist sight spatial data

subset, and each subset contains pr tourist sight elements, r ∈ (0, t] ∈ Z+. In any ∀Pr, a single tourist

sight is coded as PrQs, s ∈ (0, pr] ∈ Z+. Feature interest tourist sight extracting base vector
→

Pr is built

by tourist sight spatial subset element,
→

Pr = [PrQs], r ∈ (0, t] ∈ Z+, s ∈ (0, pr] ∈ Z+. The maximum
value of tourist sight classification maxt and the maximum value of subset element number maxpr are
used to form maxt×maxpr dimension feature interest tourist sight extracting matrix P, as Formula (1).

The feature interest tourist sight extracting base vector
→

Pr is set at each matrix row and vacant element
is set by data 0. Matrix P is the data resource for smart machine to select tourist sights.

2.2. Tourist Sight Spatial Interest Field Mapping Model

According to statistics for big data of various tourist sights and classifications, different tourist groups
have dissimilar interest tendencies while the same group members have the similar interests [44–46].
The tourist sight spatial interest field is an intensity structure built on different interest degrees of tourist
groups. According to the age index, tourists can be divided into the children group G1, age ∈ (0, 18] ∈ Z+,
young adult group G2, age ∈ (18, 44] ∈ Z+, and the elderly group G3, age ∈ (44,+∞] ∈ Z+. Based on
nearly one year of tourism statistics data of a certain city, we set the total number of tourists paying a
visit to all tourist sights of set P as n, in which the number of Gi is ni, as in Formula (2).

n =
max i∑
i=1

ni (2)

For the tourist sight spatial data subset Pr, ki,r is the statistics number of tourists in group Gi who
have paid a visit to the tourist sights in Pr, ki,r ∈ [0, ni] ∈ Z+. The selection of each age group for each
different subset of tourist sights is independent and identically distributed [47]. The second group of
definitions are discussed.

Def 2.1 Tourist sight spatial data subset visited rate ωi·r. The ratio of visiting tourists’ number in
group Gi on certain tourist sight spatial data subset Pr to the total tourists’ number of the group Gi is
called tourist sight spatial data subset visited rate ωi·r, as in Formula (3). The higher the proportion is,
the higher the tendency for members of the age group to visit the tourist sight subset will be.

ωi,r =
ki,r

ni
(3)

Def 2.2 Interest field mapping model. The tourist sight spatial interest field is formed from tourist
sight spatial data subset Pr and the visited rate ωi·r. The mapping relationship of the interest field and
age group Gi is called the interest field mapping model.

Def 2.3 Interest field intensity. The visited rate ωi,r of age group Gi on single sight spot spatial
data subset Pr is called the interest field intensity of subset Pr on age group Gi.
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Tourist sight spatial data subset is set as object to select tourist sights and build tourist sight spatial
interest field mapping model, as shown in Figure 1. Interest field intensity histogram of tourist sight
spatial data subset Pr on different age groups is shown in Figure 1 (right side). Depending on interest
field intensity, the smart machine can automatically recommend tourist sight spatial data subset by the
input age group.
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Figure 1. Interest field mapping model and interest field intensity histogram.

2.3. Smart Tourist Sight Extracting Model

According to the built feature interest tourist sight extracting matrix, tourist sight spatial interest
field mapping model, and the interest field intensity histogram [48], a smart tourist sight extracting
model is developed. The distribution function of the continuous random variable X is set as in
Formula (4).

F(x) =
x− z1

z2 − z1
x ∈ [z1, z2], 0 < z1 < z2 (4)

The continuous random variable X follows a uniform distribution on the interval [z1, z2], denoted
as X ∼ U(z1, z2). For any single value of x in the interval [z1, z2], the uniform distribution function
yields a finite number of elements with the maximum value in the closed interval and all the elements
are random [49–52]. When the randomly selected targets are tourist sights, there is a random number
interval such that z1 ∈ Z+, z2 ∈ Z+, and the selected random number, x ∈ Z+ will be subject to integer
conversion. If tourists in an age group are not familiar with tourist sights, the statistics interest field
intensity is used to obtain the best motive benefits. Taking one day as the travel time, the smart tourist
sight extracting algorithm model is developed as follows.

Step 1. To make the tour route planning procedure more convenient and intelligent, tourists only
need to input basic personal information and the number of tourist sights, and then the smart machine
will immediately plan an optimal route. Tourists only provide their gender, their age index age, and the
number of tourist sights to be visited. In order to have the best travel experience and avoid fatigue in
one day, the number of selected tourist sight cannot exceed 5.

(1) If m ∈ (5,+∞] ∪ [0] ∈ Z+, the system displays an alarm message. Review and input m again.
Cancel and log out of the system.

(2) If m ∈ (0, 5] ∈ Z+, continue to Step.2.

Step 2. According to the index age, the smart machine ensures tourist sight spatial interest subset

Pr and feature interest tourist sight extracting base vector
→

Pr in the sequence from the strongest interest
field intensity to the weakest one.

Step 3 Smart machine ensures tourist sight element number and tourist sight spatial subset
elements as follows.
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(1) If m ∈ (0, t) ∈ Z+, arrange the ωi,r related subsets in descending order. From the highest ωi,r to
the lowest one, one tourist sight is selected from each subset;

(2) If m = t, arrange ωi,r related subsets in descending order. One tourist sight is selected from
each subset;

(3) If m ∈ (t,+∞) ∈ Z+, arrange the ωi,r related subsets in descending order. From the highest ωi,r to
the lowest one, one tourist sight is selected from each subset. Return, arrange the ωi,r related
m− t subsets in descending order, and one tourist sight is selected from each subset.

Step 4 Select a tourist sight element.

(1) If m ∈ (0, t) ∈ Z+, for the first selected subset Pr, smart machine invokes one time of uniform
distribution function on interval (0, pr] and gets s. Ensure there is one element tourist sight PrQs;
return, and perform the same operation on other m− 1 subsets; finish, and ensure that there are m
element tourist sights in total;

(2) If m = t, carry out the same operation as step (1); finish, and ensure that there are m element
tourist sights in total;

(3) If m ∈ (t,+∞) ∈ Z+, for the first selected subset Pr, smart machine invokes one time of uniform
distribution function on interval (0, pr] and gets s. Ensure there is one element tourist sight PrQs;
return, and perform the same operation on other t− 1 subsets, ensure there are t element tourist
sights; return to the first subset Pr and perform the same operation, ensure there are m− t element
tourist sights; finish, ensure there are m element tourist sights in total.

3. Smart Motive Iteration Decision Tree Algorithm

Within one day, tourists visit the selected m tourist sights in a single-track and non-repetitive
manner. From the initial tourist sight to the last one, any single tourist sight can only be visited once.
As to the selected m tourist sights, there will be Am

m kinds of tour routes for the selected m tourist
sights, but not all the routes are optimal. Each route has a different motive benefit value for tourists,
which should be measured by a quantization method. For any one tour route, a tourist starts from
the first tourist sight and travels through several city roads and road nodes and arrives at the next
tourist sight. In this process, the ferry distance, road traffic conditions, the convenience of GIS services,
tourists’ subjective perceptions, and so on will directly influence the motive benefit satisfaction of the
tourist [53–55]. The motive benefit satisfaction in the previous tour interval will also influence the
motive benefit satisfaction in the next tour interval. Thus, the motive iteration value of the previous
tour interval is the initial value for calculating the motive iteration value of the next tour interval.
Tourists travel from the first tourist sight to the last one, and in this process, the motive iteration value
is monotonically increasing and thus the motive iteration function W(Te) is a monotonically increasing
function. For a particular tour route, each tourist sight is related to one motive iteration function W(Te)

value. For a different tour route, the same tourist sight may be related to different motive iteration
function W(Te) values as the iteration process contains different values. Thus, the ultimate output
motive iteration values vary for each tour route. From the aspect of the tour route selection and motive
iteration process, each tour route can form a single motive iteration decision tree. There should be a
maximum value of the last tourist sight, whose decision tree and related tour route is optimal and
yields the highest motive benefit value for the tourist.

3.1. Motive Interval and Motive Sub-Interval

According to the modeling concepts, the third group of definitions are discussed.
Def 3.1 Selected tourist sight set T. The m tourist sights selected by the smart machine which

will be visited by tourists form a dataset, which is called selected tourist sight set and denoted by T.
The element tourist sight of set T is coded as Te, T =

{
Te

∣∣∣e ∈ (0, m] ∈ Z+
}
.

Def 3.2 Motive iteration sub-interval H(Te, Te+1) and sub-interval motive iteration value
W(Te, Te+1). Selected tourist sight set T is ensured first. When tourists travel from tourist sight
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Te to the next one Te+1, the tour interval between the two tourist sights, which generates motive
iteration value, is called motive iteration sub-interval H(Te, Te+1). Within the sub-interval, an initial
motive iteration value is set, and the smart machine calculates with indexes to output another motive
iteration value, which is called sub-interval motive iteration value W(Te, Te+1). The iteration value
W(Te−1, Te) generated in the previous motive iteration sub-interval H(Te, Te+1) is the iteration function
W(Te) value on tourist sight Te. The value is used as the initial value to iterate the motive iteration
value W(Te+1) on tourist sight Te+1 and it is the sub-interval motive iteration value W(Te, Te+1) on
motive iteration sub-interval H(Te, Te+1). This value is also the initial value of the next sub-interval.
In Figure 2, the blue interval is the motive iteration sub-interval, which is related to sub-interval motive
iteration value W(Te, Te+1). Figure 3 shows the motive iteration function W(Te) for the motive iteration
sub-interval. As seen in Figure 3, W(Te) is a discrete discontinuous and monotonically increasing
function, and each tour route is related to a unique function W(Te).
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Def 3.3 Motive iteration interval H(T1, Tm) and interval motive iteration value W(T1, Tm). The m−1
sub-intervals iterate from tourist sight T1 to Tm and, finally, output the iteration function value W(Tm)

on tourist sight Tm. The whole interval from tourist sight T1 to Tm is called the motive iteration interval
H(T1, Tm). The iteration function value W(Tm) on tourist sight Tm is called the interval motive iteration



ISPRS Int. J. Geo-Inf. 2019, 8, 192 8 of 26

value W(T1, Tm). In Figure 2, the red interval is the motive iteration interval H(T1, Tm), which is related
to the interval motive iteration value W(T1, Tm).

Def 3.4 Motive iteration factor c. Tourists travel from tourist sight Te to Te+1 in motive iteration
sub-interval H(Te, Te+1) and in the process, the sub-interval motive iteration value W(Te, Te+1) is
mainly influenced and determined by ferry distance, road traffic, the convenience of GIS services, and
tourists’ subjective perceptions. These factors are called motive iteration factors, c. The most important
and decisive ones are:

• The tourist sight ferry distance δ1(km, δ1 ∈ (0, maxδ1] ∈ R+);
• Number of nearby bus line δ2(δ2 ∈ [0, maxδ2] ∈ Z+);
• Number of nearby subway lines δ3(δ3 ∈ [0, maxδ3] ∈ Z+);
• Taxi fee δ4(δ4 ∈ [minδ4,+∞) ∈ R+);
• Traffic congestion index δ5(δ5 ∈ (0, 1) ∈ R+).

Def 3.5 Motive iteration disturbance factor ε. In a realistic situation, each motive iteration factor has
its own factors that promote or restrain itself, and these factors are called motive iteration disturbance
factors, ε. For each factor c, the disturbance factor ε contains the following:

• Number of road nodes µ1(µ1 ∈ [0, maxµ1] ∈ Z+);
• The sum of walking distance to the nearest bus station (km) and average transference time

µ2(µ2 ∈ (0, maxµ2] ∈ R+);
• The sum of walking distance to the nearest subway station (km) and average transference time

µ3(µ3 ∈ (0, maxµ3] ∈ R+);
• The average waiting time µ4(h, µ4 ∈ (0,+∞) ∈ R+);
• Number of roads with multiple traffic accidents, µ5(µ5 ∈ [0, maxµ5] ∈ Z+). Table 1 shows the

motive iteration factor c and disturbance factor ε values in USD in the algorithm.

Of all the factors, the average waiting time is the ratio of total waiting time to the total number
of taxi stop times. During the service, a taxi may encounter traffic congestion or a red traffic light,
which requires the taxi to stop and wait [56]. The total waiting time is obtained by summing all the
taxi wait times.

Table 1. Motive iteration factors c and disturbance factors ε for the algorithm.

c1 c2 c3 c4 c5

Motive iteration factors c δ1
−1 0.1δ2 0.1δ3 δ4

−1 1− δ5
ε1 ε2 ε3 ε4 ε5

Disturbance factors ε −0.01µ1 −0.01µ2 −0.01µ3 −0.01µ4 −0.01µ5

We set initial motive iteration value on tourist sight T1 as W(T1). Thus, the sub-interval motive
iteration value W(T2) is determined by motive iteration sub-interval factor c(T1, T2), and disturbance
factor ε(T1, T2) follows Formula (5).

W(T2) =
max u∑
u=1

W(T1) · cu + εu (5)

We set value W(T1), motive iteration sub-interval factor c(T1, T2), and disturbance factor
ε(T1, T2). According to the calculated increase consequence due to the motive iteration function
W(Te), the recursive function Formula (6) is obtained.

W(Te) =
max u∑
u=1

W(Te−1) · cu + εu (6)
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According to Formula (6), when a tourist has finished visiting a tourist sight, a motive iteration
value W(Te−1) will be generated in the same time. This motive iteration value is the tourist’s satisfaction
feedback for the sub-interval. It is also the critical index to evaluate the tourist’s mood, feelings,
and perceptions about the travel experience, which will directly influence the satisfaction for the next
sub-interval. Thus, the W(Te−1) value is the initial motive iteration value of the next sub-interval.
From the perspective of a realistic travel experience, Formula (6) accounts for the tour’s objective
condition and the tourist’s subjective motive.

3.2. Motive Iteration Decision Tree Algorithm Based on M-Central Point Cluster

The selected tourist sight set T elements are basic points. Apply the motive iteration algorithm to
traverse all tourist sights in set T. Take one certain tourist sight Te of set T as the central point, and
other tourist sights ¬Te are points to be traversed. One central point can generate Am−1

m−1 different tour
routes, and each route is related to one unique motive iteration function value. The fourth group of
definitions are discussed.

Def 4.1 Motive iteration decision tree Treeσ. Tourist sight element central point Te is set as father
node of decision tree. Other tourist sights ¬Te are set as child nodes. Th child nodes expansion
sequence is determined by the set T element display order and their permutations and combinations.
One tour route generated by father node Te and its child nodes ¬Te iterations relates to one decision
tree; this tree is called the motive iteration decision tree Treeσ. One father node and m− 1 child nodes
relate to Am−1

m−1 decision trees, σ ∈
(
0, Am−1

m−1

]
∈ Z+. Each decision tree relates to a unique motive iteration

function W(Tm) value.
Def 4.2 Decision tree child node cluster C(¬Te). Tourist sight element central point Te is set as

father node, and the other ¬Te tourist sights form a cluster, which is called decision tree child node
cluster C(¬Te) [56–58]. Figure 4 shows all the father nodes and relative child nodes which are formed
by selected tourist sight set T elements. Figure 4a is tourist sight distribution. Figure 4b–h is a decision
tree father node and child node cluster, m = 7, e ∈ (0, 8) ∈ Z+. Figure 4b shows the motive iteration
decision tree formed in the way that the number one tourist sight T1 is set as father node and the other
¬T1 tourist sights are set as child nodes.

Def 4.3 m-central point motive iteration cluster Cv. As to one tourist sight element, tourist sight
element Te forms Am−1

m−1 motive iteration trees, and all the trees gather to one cluster, the cluster is
called m-central point motive iteration cluster Cv, v ∈ (0, m] ∈ Z+. According to the definition, selected
tourist sight set T contains m motive iteration clusters, and each cluster contains Am−1

m−1 motive iteration
function W(Tm) value.

Def 4.4 Motive iteration cluster local optimal solution W[Cv] and global optimal solution W[Cv]
max.

According to Definition 4.2, of all the Am−1
m−1 motive iteration function W(Tm) values in one motive

iteration cluster, the maximum value maxW(Tm) is called the optimal solution of the cluster, and it
is also the local optimal solution of m motive iteration clusters, noted as W[Cv]. m motive iteration
clusters are related to m local optimal solutions, and of all the local optimal solutions, the maximum
value maxW[Cv] is called global optimal solution W[Cv]

max of m motive iteration cluster.

Def 4.5 Motive iteration cluster descending sub-vector
→

Ka and motive iteration cluster descending

vector
→

Rb. Each m-central point motive iteration cluster Cv contains Am−1
m−1 motive iteration decision

trees and Am−1
m−1 motive iteration function W(Tm) values. Then, Am−1

m−1 motive iteration function W(Tm)

values are set in descending order from the number one element location to No. Am−1
m−1 one to get a

descending order vector, it is called motive iteration cluster descending sub-vector
→

Ka1,a2 , a1 is vector
code, a1 ∈ (0, m] ∈ Z+, a2 is vector element location code, and a2 ∈

(
0, Am−1

m−1

]
∈ Z+. According to

the definition, motive iteration cluster local optimal solution W[Cv] is stored in the cluster’s number

one element location of the motive iteration cluster descending sub-vector
→

Ka1,a2 . Then, m motive
iteration cluster local optimal solutions are set in descending order from number one element location
to number m one to get a descending order vector; it is called motive iteration cluster descending
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vector
→

Rb, in which b is vector element location code, b ∈ (0, m] ∈ Z+. According to the definition,
the motive iteration cluster global optimal solution W[Cv]

max is stored in the number one element

location of motive iteration cluster descending vector
→

Rb.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 11 of 30 
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According to the fourth group of definitions, we take selected tourist sight set T containing m
tourist sights as basic data set. Each tourist sight sub-interval motive iteration factors c(T1, T2) and
disturb factors ε(T1, T2) are ensured. Motive iteration decision tree algorithm based on m-central point
cluster is designed and developed.

Step 1. Empty vector
→

Ka1,a2 and
→

Rb are built. m empty vectors
→

Ka1,a2 and one empty vector
→

Rb are

built. Vector
→

Ka1,a2 contains Am−1
m−1 element locations. Vector

→

Rb contains m element locations.
Step 2. m-central point motive iteration cluster Cv of the number one tourist sight element is built.

The number one element location tourist sight of selected tourist sight set T is taken to build m-central
point motive iteration cluster C1, which contains Am−1

m−1 decision trees. Decision trees are generated by
father node T1 and child node cluster C(¬T1).

(1) The first decision tree is built. The first decision tree starts from tourist sight T1, and traverses
remaining ¬T1 tourist sights to form the first tour route;

(2) Initial motive iteration function value W(T1) is set. According to Formulas (5) and (6), the smart

machine outputs the first decision tree’s motive iteration function W(Tm) value, noted as W
(
T1

m

)
;

(3) W
(
T1

m

)
is stored into the number one element location K1,1 of vector

→

K1,a2 ;

(4) The second decision tree is built. The second decision tree starts from tourist sight T1, and traverses
remaining ¬T1 tourist sights to form the second tour route;

(5) Take step (2) initial value W(T1) to iterate and output the second decision tree’s motive iteration

function W(Tm) value, noted as W
(
T2

m

)
;

(6) Compare W
(
T2

m

)
and W

(
T1

m

)
. If W

(
T2

m

)
> W

(
T1

m

)
, the smart machine clears the number one element

location K1,1, stores W
(
T2

m

)
into the number one element location K1,1 of vector

→

K1,a2 , descends

W
(
T1

m

)
, and stores it into number two element location K1,2 of vector

→

K1,a2 ; If W
(
T2

m

)
≤ W

(
T1

m

)
,

smart machine keeps W
(
T1

m

)
in the number one element location K1,1 of vector

→

K1,a2 , and stores

W
(
T2

m

)
into the number two element location K1,2 of vector

→

K1,a2 ;

(7) Return to step (4). The third decision tree is built and W
(
T3

m

)
is obtained;
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(8) Return to step (6), compare W
(
T3

m

)
and other iteration values;

(I) If W
(
T2

m

)
> W

(
T1

m

)
:

1OW
(
T3

m

)
> W

(
T2

m

)
, the smart machine clears the number one element location K1,1 and the number

two element location K1,2, stores W
(
T3

m

)
into the number one element location K1,1 of vector

→

K1,a2 ,

and stores W
(
T2

m

)
and W

(
T1

m

)
into the number two element location K1,2 and number three element

location K1,3 of vector
→

K1,a2 respectively;
2OW

(
T2

m

)
≥ W

(
T3

m

)
> W

(
T1

m

)
, the smart machine clears the number two element location K1,2,

keeps W
(
T2

m

)
in the number one element location K1,1 of vector

→

K1,a2 , stores W
(
T3

m

)
into the number

two element location K1,2 of vector
→

K1,a2 , and stores W
(
T1

m

)
into the number three element location K1,3

of vector
→

K1,a2 ;
3OW

(
T1

m

)
≥W

(
T3

m

)
, the smart machine keeps the number one and number two element locations,

and stores W
(
T3

m

)
into the number three element location K1,3 of vector

→

K1,a2 ;

(II) W
(
T2

m

)
≤W

(
T1

m

)
, the method to compare and renew element location is the same as previous

step (I);

Repeat sub steps (4)–(8), and motive iteration cluster descending sub-vector
→

K1,a2 is obtained.
The number one element location K1,1 is related to local optimal solution W[C1] of motive iteration
cluster C1.

Step 3. Local optimal solution W[C1] of motive iteration cluster C1 is stored into the number one

element location R1 of vector
→

Rb.
Step 4. Other motive iteration clusters and local optimal solutions are generated.

(1) Perform Step 2 sub step (1)-sub step (9); m-central point motive iteration cluster C2 of the number

two tourist sight element is built. Motive iteration cluster descending sub-vector
→

K2,a2 and local
optimal solution W[C2] of motive iteration cluster C2 are built, too;

(2) Compare W[C1] and W[C2]. If W[C2] > W[C1], the smart machine clears the number one element

location R1 of vector
→

Rb, stores W[C2] into the number one element location R1, stores W[C1] into
the number two element location R2; If W[C2] ≤ W[C1], the smart machine keeps W[C1] in the

number one element location R1 of vector
→

Rb.
(3) Then m-central point motive iteration cluster C3 of the number three tourist sight element is built.

Motive iteration cluster descending sub-vector
→

K3,a2 and local optimal solution W[C3] of motive
iteration cluster C3 are built, too;

(4) Compare W[C3] with other local optimal solutions.

(I) W[C2] > W[C1]:
1OW[C3] > W[C2], the smart machine clears the number one element location R1 and the number

two element location R2, stores W[C3] into the number one element location R1 of vector
→

Rb, and stores
W[C2] into the number two element location R2 and the number three element location R3 of vector
→

Rb respectively;
2OW[C2] ≥W[C3] > W[C1], the smart machine clears the number two element location R2, keeps

W[C2] in the number one element location R1 of vector
→

Rb, stores W[C3] into the number two element

location R2 of vector
→

Rb, and stores W[C1] into the number three element location R3 of vector
→

Rb;
3OW[C1] ≥ W[C3], the smart machine keeps the number one and number two element location,

and stores W[C3] into the number three element location R3 of vector
→

Rb;
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(II) W[C2] ≤W[C1], the method to compare and renew element location is the same as previous
step (I);

Step 5. Repeat Step 4 sub step (1)-sub step (4) until m motive iteration cluster descending
sub-vectors and relative local optimal solutions are obtained. Output the motive iteration cluster

descending vector
→

Rb. The number one element location is the motive iteration cluster global optimal
solution W[Cv]

max.
According to Step 1~Step 5, the Algorithm 1 pseudo-code is as follows.

Algorithm 1. The algorithm to generate
→

Rb and W[Cv]
max

1: Set
→

Ka1,a2 and
→

Rb. a1 ∈ (0, m] ∈ Z+, a2 ∈
(
0, Am−1

m−1

]
∈ Z+, b ∈ (0, m] ∈ Z+;

2: As to Cv: For v = 1, v ++, v ≤ m and For b = 1, b = b + 1, b ≤ m
3: As to Treeσ: For σ = 1, σ = σ+ 1, σ ≤ Am−1

m−1 and For a1 = 1, a1 = a1 + 1, a1 ≤ m
4: Output W(Tσm);
5: Compare W(Tσm) and W

(
Tσ
′

m

)
;

6: Array
→

Ka1,a2 in descending order from W
(
T1

m

)
to W

(
TAm−1

m−1
m

)
;

7: Output
→

Ka1,a2 and W[Cv];
8: Array W[Cv] in descending order from W[C1] to W[C2];

9: Output
→

Rb and W[Cv]
max

10: End procedure

The motive iteration cluster location optimal solution W[Cv] and the global optimal solution
W[Cv]

max have practical value as smart machine has considered tourists’ individualized needs
and interests.

Situation one: The principle of proximity.
After a tourist or smart machine selects tourist sights, the tourist may consider taking the whole

trip starting with the nearest tourist sight, as their temporary accommodation may be close to the first
tourist sight. Thus, the principle of proximity states that, the nearest tourist sight is the starting point;
or if the tourist is particularly interested in a certain tourist sight, he may wish to visit that particular
one first [27]. In this situation, the smart machine could only consider the decision tree, cluster, and its
motive iteration cluster local optimal solution generated by tourist sight visited first.

Situation two: The principle of completely random.
After a tourist or smart machine selects tourist sights, the tourist may have no particular

requirement on the tour route, and they will accept any provided tour route [45–47]. In this situation,
the smart machine should consider motive iteration cluster global optimal solution and relative tour
route first in order to best meet tourists’ best motive benefits and needs.

4. Example Simulation Experiment and Data Analysis

The research range is one particular downtown area of a city; all the factors, including disturbance
factors, come from urban GIS services. The routes planned in the study are all based on city urban
roads and avenues. The tourist sights selected for the original data source are all urban tourist sights
which are located in the city but not in the outskirts. In one city, the factors and disturbance factors
mentioned in the study are identical, and it is appropriate to use the identical factors as parameters to
do the study, as different cities have different conditions. Thus, the algorithm presented in the study
is suitable for a city urban tour. Taking Zhengzhou city as the data resource of tourist sight and GIS
services, the basic data were sampled before the performance of example simulation experiment [2].

4.1. Data Sampling

In terms of Zhengzhou city’s urban tourist sights and GIS services, the data sampling range and
objects should meet the following conditions [50–53]. (1) The research range is continuous in geographic
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space, and it covers all the city’s main districts. (2) The tourist sights should be representative and
have a steady visitor flow volume, be well-equipped, and fully functional [56–59]. Commonly, they
have a geographical advantage and convenient city service. (3) The tourist sights are independent,
and do not influence each other with respect to the tour. (4) They are closely connected by a convenient
urban road network. Tourists can go back and forth between two arbitrary tourist sights. According to
the standard, Zhengzhou city’s third ring road, six north–south roads, and seven east–west roads are
selected to form the geographic research range. Within the range, 27 tourist sights are selected as study
objects. Tourist sight spatial dataset P, tourist sight spatial data subset Pr, and tourist sight spatial
subset element PrQs are constructed.

According to the first group of definition and the different properties, the urban tourist sight
spatial dataset P contains P1, P2, P3 and P4 four subsets. P1 is the park and green land set. P2 is the
amusement place set. P3 is the venue set. P4 is the shopping center set. The sampling data are reported
in Table 2 and the tourist sight distribution is shown in Figure 5.

Table 2. Tourist sight spatial datasets, subsets, and elements.

Dataset P

Data Subset P1 P2 P3 P4

Element

P1Q1 Botanical Park
P1Q2 Bishagang Park
P1Q3 Renmin Park
P1Q4 Zijingshan Park
P1Q5 Lvcheng Square
P1Q6 Forest Park
P1Q7 Zhengzhou Zoo
P1Q8 Yueji Park
P1Q9 Xiliuhu Park

P2Q1 Century Park
P2Q2 Water fun Park
P2Q3 Children Park
P2Q4 Fun street

P3Q1 Henan museum
P3Q2 City museum
P3Q3 Science museum
P3Q4 Erqi memorial
P3Q5 Zhongyuan tower
P3Q6 Aquarium

P4Q1 Wangfujing
P4Q2 Erqi Wanda
P4Q3 Zhongyuan Wanda
P4Q4 Guomao 360
P4Q5 CC mall
P4Q6 Dehua street
P4Q7 Dashanghai
P4Q8 Dennis
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Figure 5. Tourist sight spatial data subset element distribution. Panels (a), (b), (c) and (d) are the
distributions of tourist sight spatial data subsets P1~P4. Each figure contains Zhengzhou city’s five
main districts and city arterial roads. Grey roads are a north–south or east–west orientation, whereas
the pitch-black road is the third ring road.
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According to the data, the 4 × 9 dimension feature interest tourist sight extracting matrix P is
defined in Formula (7).

P =


P1Q1 P1Q2 P1Q3 P1Q4 P1Q5 P1Q6 P1Q7 P1Q8 P1Q9

P2Q1 P2Q2 P2Q3 P2Q4 0 0 0 0 0
P3Q1 P3Q2 P3Q3 P3Q4 P3Q5 P3Q6 0 0 0
P4Q1 P4Q2 P4Q3 P4Q4 P4Q5 P4Q6 P4Q7 P4Q8 0

 (7)

According to the second group of definition, tourist sight spatial interest field mapping model
of Zhengzhou city is set up. In terms of tourist statistics, each group’s number of people is 350,
ni = 350,i ∈ (0, 4) ∈ Z+. The visiting tourists and the visited rate for each tourist sight subset are
reported in Table 3. From Figure 6, the interest field intensity for each group for each tourist sight
can be analyzed, and visual graphs are obtained. Elderly people have the greatest interest in park
and green land subset P1, followed by children, while young adults have the least interest. Children
have the greatest interest in amusement place set P2, followed by young adults, while elderly people
have the least interest. All groups have relatively identical interest in venue set P3. Young adults have
the greatest interest in shopping center set P4, followed by children, while elderly people have the
least interest. According to the interest field mapping model and intensity graphs, the smart machine
will determine the interest tendencies and provide the proper tourist sights after the tourist input the
number of tourist sight to visit.

Table 3. The visiting tourists and visited rate for each group and tourist sight subset.

n1(G1) n2(G2) n3(G3) k1,r k2,r k3,r ω1,r ω2,r ω3,r

P1 r = 1

350 350 350

223 128 311 0.637 0.366 0.889
P2 r = 2 309 145 89 0.883 0.414 0.254
P3 r = 3 288 269 264 0.823 0.769 0.754
P4 r = 4 190 337 145 0.543 0.963 0.414
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4.2. Simulation Experiment and Results Analysis

Based on the algorithm models developed and the data sampling, a simulation experiment is
performed, and data result analysis is obtained.

4.2.1. Simulation Experiment

A young adult plans to have a trip in downtown of Zhengzhou city, but he is not familiar with the
city. He wishes to visit four tourist sights within one day. According to his requirements, the smart
machine plans a tour route for him. First, referring to the interest field mapping model and intensity,
the smart machine matches the background data and determines that this tourist belongs to the young
adult group and the machine determines that he may have a high level of interest tendency in tourist
sights in the shopping set and venue subset but a low level of interest tendency in park and green land
park. Thus, the most interested tourist sights are at the top of the priority list for the smart machine
to select. Meanwhile, tourist sight repeat ability should be set to avoid the same tourist sights being
selected. Meanwhile, less interested tourist sights are also considered but the least interested ones are
avoided to ensure that the tourist sight selection is comprehensive and diverse. Matrix P is used as a
data resource from which to extract the proper tourist sights. In the simulation experiment, the smart
machine selects and recommends the following tourist sights.

• Sample 1: 1− P1, 2− P3, 1− P4;
• Sample 2: 1− P1, 2− P4, 1− P3;
• Sample 3: 1− P2, 2− P3, 1− P4;
• Sample 4: 1− P2, 2− P4, 1− P3;
• Sample 5: 2− P3, 2− P4.

The young adult tourist selects one of the five samples according to his own interests and needs.
If he has no particular preference of the recommended samples, the smart machine will randomly
select one sample for him. Take Sample 1, for instance. The smart machine provides him with one
famous park, two famous venues, and one shopping mall; they are P1Q2 Bishagang park, P3Q4 Erqi
memorial, P3Q1 Henan museum, and P4Q3 Zhongyuan Wanda. Store the selected tourist sight into
matrix T, as in Formula (7).

T = {T1 : P1Q2, T2 : P3Q4, T3 : P3Q1, T4 : P4Q3} (8)

Tourist sights T1, T2, T3 and T4 are taken as father nodes, respectively, and the decision tree child
node clusters C(¬Te) and the motive iteration clusters Cv are built as shown in Figure 7.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 18 of 30 

 

park and green land park. Thus, the most interested tourist sights are at the top of the priority list for 
the smart machine to select. Meanwhile, tourist sight repeat ability should be set to avoid the same 
tourist sights being selected. Meanwhile, less interested tourist sights are also considered but the 
least interested ones are avoided to ensure that the tourist sight selection is comprehensive and 
diverse. Matrix P  is used as a data resource from which to extract the proper tourist sights. In the 
simulation experiment, the smart machine selects and recommends the following tourist sights. 

• Sample 1： 11-P ， 32-P ， 41-P ; 

• Sample 2: 11-P ， 42-P ， 31-P ; 

• Sample 3: 21-P ， 32-P ， 41-P ; 

• Sample 4: 21-P ， 42-P ， 31-P ; 

• Sample 5: 32-P ， 42-P . 

The young adult tourist selects one of the five samples according to his own interests and needs. 
If he has no particular preference of the recommended samples, the smart machine will randomly 
select one sample for him. Take Sample 1, for instance. The smart machine provides him with one 

famous park, two famous venues, and one shopping mall; they are 1 2PQ  Bishagang park, 3 4PQ  
Erqi memorial, 3 1PQ  Henan museum, and 4 3PQ  Zhongyuan Wanda. Store the selected tourist 

sight into matrix T , as in Formula (7). 

{ }1 1 2 2 3 4 3 3 1 4 4 3= : , : , : , :T T PQ T PQ T PQ T PQ  (8) 

Tourist sights 1T , 2T , 3T and 4T  are taken as father nodes, respectively, and the decision tree 

child node clusters ( )TeC ¬
 and the motive iteration clusters vC  are built as shown in Figure 7. 

 

Figure 7. Building the decision tree child node clusters ( )TeC ¬
 and the motive iteration clusters vC . 

Tourist sight 1T  is taken as father node to build the decision tree and six trees are formed in 

total. Each decision tree contains three motive iteration sub-intervals ( ), 1T Te eH + , the corresponding 

three sub-interval motive iteration values ( ), 1T Te eW + , one motive iteration interval ( ),1T TmH , and 

one interval motive iteration value ( ),1T TmW . Each decision tree and sub-interval relates to the 

motive iteration function ( )eW T
 and function value, and the maximum value of motive iteration 

function ( )eW T
 relates to motive iteration cluster local optimal solution CvW  

   . Regarding the 

other tourist sights 2T , 3T and 4T , the method to generate the decision tree and local optimal 
solution is identical. From the basic GIS service data for Zhengzhou city, the motive iteration factor 
c  and disturbance factor ε  of each sub-interval are constructed, as Table 4 and Figure 8 indicates. 
In Figure 8, the abscissa is c  and the ordinate is -ε . According to the algorithm in the third 
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Tourist sight T1 is taken as father node to build the decision tree and six trees are formed in total.
Each decision tree contains three motive iteration sub-intervals H(Te, Te+1), the corresponding three
sub-interval motive iteration values W(Te, Te+1), one motive iteration interval H(T1, Tm), and one
interval motive iteration value W(T1, Tm). Each decision tree and sub-interval relates to the motive
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iteration function W(Te) and function value, and the maximum value of motive iteration function
W(Te) relates to motive iteration cluster local optimal solution W[Cv]. Regarding the other tourist
sights T2, T3 and T4, the method to generate the decision tree and local optimal solution is identical.
From the basic GIS service data for Zhengzhou city, the motive iteration factor c and disturbance factor
ε of each sub-interval are constructed, as Table 4 and Figure 8 indicates. In Figure 8, the abscissa is c
and the ordinate is −ε. According to the algorithm in the third segment, each decision tree sub-interval
motive iteration value W(Te, Te+1), interval motive iteration value W(T1, Tm), motive iteration function
W(Tm) value, and motive iteration cluster local optimal solution W[Cv] are obtained; the initial values
are all W(T1) = 1.000, as Table 5 shows. Each decision tree’s sub-interval motive iteration values and
interval motive iteration values are shown in Figures 9 and 10.

Table 4. The tourist sight motive iteration factors, c and disturbance factors, ε for the simulation experiment.

Sub-Interval c1 (ε1) c2 (ε2) c3 (ε3) c4 (ε4) c5 (ε5)

T1, T2(T2, T1) 0.233 (−0.040) 0.400 (−0.012) 0.100 (−0.006) 0.083 (−0.002) 0.391 (−0.010)

T1, T3(T3, T1) 0.123 (−0.110) 0.300 (−0.022) 0.100 (−0.018) 0.050 (−0.003) 0.254 (−0.020)

T1, T4(T4, T1) 0.345 (−0.080) 0.400 (−0.012) 0.100 (−0.015) 0.100 (−0.002) 0.549 (−0.010)

T2, T3(T3, T2) 0.175 (−0.120) 0.400 (−0.024) 0.100 (−0.024) 0.067 (−0.003) 0.412 (−0.020)

T2, T4(T4, T2) 0.141 (−0.150) 0.400 (−0.014) 0.100 (−0.019) 0.059 (−0.003) 0.502 (−0.010)
T3, T4(T4, T3) 0.097 (−0.090) 0.400 (−0.022) 0.100 (−0.031) 0.048 (−0.004) 0.212 (−0.020)

Table 5. Decision tree interval motive iteration values and global optimal solution.

Father Node σ Decision Tree W(Te, Te+1) W(Tm) W[Cv]

T1

1 T1 − T2, T3, T4 1.137 1.121 0.794 1.000 2.137 3.258 4.052

5.322

2 T1 − T2, T4, T3 1.137 1.171 0.837 1.000 2.137 3.308 4.145
3 T1 − T3, T2, T4 0.654 0.564 0.482 1.000 1.654 2.218 2.700
4 T1 − T3, T4, T2 0.654 0.393 0.276 1.000 1.654 2.047 2.323
5 T1 − T4, T2, T3 1.375 1.457 1.490 1.000 2.375 3.832 5.322
6 T1 − T4, T3, T2 1.375 1.011 0.976 1.000 2.375 3.386 4.362

T2

1 T2 − T1, T3, T4 1.137 0.767 0.490 1.000 2.137 2.904 3.394

4.904

2 T2 − T1, T4, T3 1.137 1.580 1.187 1.000 2.137 3.717 4.904
3 T2 − T3, T1, T4 0.963 0.623 0.812 1.000 1.963 2.586 3.393
4 T2 − T3, T4, T1 0.963 0.658 0.864 1.000 1.963 2.621 3.485
5 T2 − T4, T1, T3 1.006 1.384 0.972 1.000 2.006 3.390 4.362
6 T2 − T4, T3, T1 1.006 0.695 0.402 1.000 2.006 2.701 3.103

T3

1 T3 − T1, T2, T4 0.654 0.719 0.668 1.000 1.654 2.373 3.041

4.567

2 T3 − T1, T4, T2 0.654 0.858 0.835 1.000 1.654 2.512 3.347
3 T3 − T2, T1, T4 0.963 1.092 1.512 1.000 1.963 3.055 4.567
4 T3 − T2, T4, T1 0.963 0.962 1.318 1.000 1.963 2.925 4.243
5 T3 − T4, T1, T2 0.690 0.912 1.031 1.000 1.690 2.602 3.633
6 T3 − T4, T2, T1 0.690 0.633 0.694 1.000 1.690 2.323 3.017

T4

1 T4 − T1, T2, T3 1.375 1.590 2.256 1.000 2.375 3.965 6.221

6.221

2 T4 − T1, T3, T2 1.375 0.964 0.921 1.000 2.375 3.339 4.260
3 T4 − T2, T1, T3 1.006 1.144 0.773 1.000 2.006 3.150 3.923
4 T4 − T2, T3, T1 1.006 0.970 0.629 1.000 2.006 2.976 3.605
5 T4 − T3, T1, T2 0.690 0.398 0.410 1.000 1.690 2.088 2.498
6 T4 − T3, T2, T1 0.690 0.605 0.660 1.000 1.690 2.295 2.955
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4.2.2. Data Result Analysis and Discussion

Motive Iteration Cluster Cv and Child Node Cluster C(¬Te)

As to Figure 7, the selected four tourist sights are set as father nodes to form child node clusters
C(¬Te) and the motive iteration cluster Cv, respectively. Since the initial father nodes are different from
each other, the child node clusters that are formed have different distribution shapes.

In terms of geographical distribution, child node clusters C(¬T1) and C(¬T2) formed by tourist
sights T1 and T2 have a long zonal distribution with a large opening angle directed northwest and
southeast. The child node clusters C(¬T3) and C(¬T4) formed by T3 and T4 have a comparatively
short zonal distribution with a small opening angle directed southeast and northwest. Regarding the
different shapes, opening angles and directions, the zonal distributions of C(¬T1) and C(¬T2) that
account for child nodes T2, T3, T4 and T1, T3, T4 are relatively discrete in spatial clustering distribution.
Child nodes T1, T2, T4 and T1, T2, T3 are relatively concentrated in spatial clustering distribution.
In general, a more concentrated child cluster is much more beneficial because they have shorter times
and ferry distances between tourist sights within the cluster, more convenient ferry access, lower taxi
costs, and less traffic congestion, all of which contribute to generating a globally optimal solution.
Regarding the iterating result, this simulation experiment’s global optimal solution appears in motive
iteration cluster C4 formed by the tourist sight T4 father node.

Motive Iteration Factor c and Disturbance Factor ε

Considering Table 4 and Figure 8, the motive iteration factor c and disturbance factor ε vary in
different sub-intervals. In the first group, sub-interval H(T1, T4) has the highest factor c value while
sub-interval H(T3, T4) has the lowest factor c value. Sub-interval H(T2, T4) has the lowest −ε value,
which has the strongest disturbance influence. Sub-interval H(T1, T2) has the highest −ε value with
the weakest disturbance influence. In terms of the factor value, according to the clustering principle,
sub-intervals H(T1, T3), H(T2, T3), H(T2, T4) and H(T3, T4) are clustered in one group, while H(T1, T2)

and H(T1, T4) are clustered in another group.
In the second group, all sub-intervals factor c values are 0.400 except that of H(T1, T3), which is

0.300. Sub-interval H(T2, T3) has the lowest −ε value, whose disturbance influence is the strongest.
Sub-intervals H(T1, T2) and H(T1, T4) have the highest −ε value, whose disturbance influence is
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the weakest. Sub-intervals H(T1, T3), H(T2, T3), and H(T3, T4) are clustered in one group, whereas
sub-intervals H(T1, T2), H(T1, T4) and H(T2, T4) are clustered in another group.

In the third group, all sub-intervals factor c values are 0.100. Sub-interval H(T3, T4) has the lowest
−ε value, whose disturbance influence is the strongest. Sub-interval H(T1, T2) has the highest −ε
value, whose disturbance influence is the weakest. Sub-intervals H(T1, T3), H(T1, T4), H(T2, T3) and
H(T2, T4) are clustered in one group. The other two sub-intervals form two clusters.

In the fourth group, sub-interval H(T1, T4) has the lowest factor c value, whereas sub-interval
H(T1, T3) has the lowest factor c value. Sub-intervals H(T1, T2) and H(T1, T4) have the highest −ε
value, whose disturbance influence is the weakest. Sub-interval H(T3, T4) has the lowest −ε value,
whose disturbance influence is the strongest. Sub-intervals H(T1, T2) and H(T1, T4) are clustered
in one group, whereas sub-intervals H(T1, T3), H(T2, T3), H(T2, T4) and H(T3, T4) are clustered in
another group.

In the fifth group, sub-interval H(T1, T4) has the highest factor c value, whereas sub-interval
H(T3, T4) has the lowest factor c value. Sub-intervals H(T1, T2), H(T1, T4), and H(T2, T4) have the
highest −ε value, whose disturbance influence is the weakest, and they are clustered in one group.
Sub-intervals H(T1, T3), H(T2, T3), and H(T3, T4) have the lowest−εvalue, whose disturbance influence
is the strongest, and they are clustered in one group.

Decision Tree Sub-Interval Motive Iteration Value W(Te, Te+1)

As can be observed from Table 5 and Figure 9, the motive iteration clusters generated from
different tourist sight father nodes have large differences in terms of the sub-interval motive iteration
values, the W(Te, Te+1) output values, and the tendency curves. Each sub-interval’s output value is
determined by the previous sub-interval, and the value fluctuates. The values randomly vary up and
down with the change in tourists’ travel times and locations, which are determined by the sub-intervals
initial value and factors c and ε.

Compare the four motive iteration cluster W(Te, Te+1) values and the tendency curves of the cluster
C3 generated from tourist sight father node T3. These are most concentrated, which accounts for why
the influence of each cluster C3 decision tree relative tour routes on tourists is similar and in the same
level. Tourists can choose any one of the tour routes and obtain the same motive benefit satisfaction.

Motive iteration cluster W(Te, Te+1) tendency curves for clusters C1, C2 and C4 are relatively
discrete. For cluster C1, the tendency curves of the decision trees σ = 1, 2, 6 relative tour routes are close
and can be clustered in one group, and the tendency curves of the decision trees σ= 3, 4 relative tour
routes are close and can be clustered in another group. The tendency curves of the decision tree σ= 5
relative tour route can be clustered in one group, and it has the greatest influence on tourists’ motive
benefit satisfaction. Regarding cluster C2, the tendency curves of the decision trees σ= 2, 5 relative
tour routes are close and can be clustered in one group, and the tendency curves of the decision trees
σ= 1, 3, 4, 6 relative tour routes are close and can be clustered in another group. Regarding cluster C4,
the tendency curves of the decision trees σ= 2, 3, 4 relative tour routes are close and can be clustered
in one group, and the tendency curves of the decision trees σ= 5, 6 relative tour routes are close and
can be clustered in another group. The tendency curves of the decision tree σ= 1 relative tour route
can be clustered in one group, and it has the greatest influence on tourists’ motive benefit satisfaction.
The tour routes clustered in one group have a similar influence on tourists’ motive benefit satisfaction.
Tourists may choose any one of the tour routes and obtain the same motive benefit satisfaction.

Decision Tree Interval Motive Iteration Value W(Tm)

Considering Table 5 and Figure 10, the motive iteration clusters generated from different tourist
sight father nodes have large differences in the interval motive iteration values. In terms of output
value W(Tm), each motive iteration cluster’s function W(Tm) is monotonically increasing. Comparing
four groups of motive iteration W(Tm) output values, the tendency curves of the cluster C3 generated
from tourist sight father node T3 are the most concentrated, because the cluster sub-intervals’ tendency
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curves are the most concentrated. It also accounts for why the influence of each cluster C3 decision
tree relative tour routes for tourists is similar and in the same level. Tourists may choose any one of
the tour routes and obtain the same motive benefit satisfaction. Regarding cluster C1, the tendency
curves of the decision trees σ = 1, 2, 6 relative tour routes are close and can be clustered in one group,
and the tendency curves of the decision trees σ= 3, 4 relative tour routes are close and can be clustered
in another group. The tendency curves of the decision tree σ= 5 relative tour route can be clustered in
one group, and it has the greatest influence on tourists’ motive benefit satisfaction. Regarding cluster
C2, the tendency curves of the decision trees σ= 2, 5 relative tour routes are close and can be clustered
in one group, and the tendency curves of the decision trees σ= 1, 3, 4, 6 relative tour routes are close
and can be clustered in another group. Regarding cluster C4, the tendency curves of the decision trees
σ= 2, 3, 4 relative tour routes are close and can be clustered in one group, and the tendency curves of
the decision trees σ= 5, 6 relative tour routes are close and can be clustered in one group. The tendency
curves of the decision tree σ= 1 relative tour route can be clustered in one group, and it has the greatest
influence on tourists’ motive benefit satisfaction. The tour routes clustered in one group have a similar
influence on tourists’ motive benefit satisfaction, and tourists may choose any one of the tour routes
and obtain the same motive benefit satisfaction.

The Motive Iteration Cluster Local Optimal Solution W[Cv] and Global Optimal Solution W[Cv]
max

Table 5 presents the motive iteration cluster descending sub-vector
→

Ka and motive iteration cluster

descending vector
→

Rb that are obtained.

• As to cluster C1,
→

K1 =
[

5.322 4.362 4.145 4.052 2.700 2.323
]
;

• As to cluster C2,
→

K2 =
[

4.904 4.362 3.485 3.394 3.393 3.103
]
;

• As to cluster C3,
→

K3 =
[

4.567 4.243 3.633 3.347 3.041 3.017
]
;

• As to cluster C4,
→

K4 =
[

6.221 4.260 3.923 3.605 2.955 2.498
]
;

• Cluster C1~C4,
→

R =
[

6.221 5.322 4.904 4.567
]
.

In Figure 10, the six best values of all four clusters are shown. The highest one is the cluster’s local
optimal solution W[Cv]. In the four motive iteration clusters, the decision trees σ = 5, σ = 2, σ = 3 and
σ = 1 motive iteration values are local optimal solutions W[Cv]; they are W[C1]= 5.322, W[C2]= 4.904,
W[C3]= 4.567 and W[C4]= 6.221, respectively. According to the definition, motive iteration cluster
global optimal solution W[Cv]

max is maxW[Cv], it is thus W[C4]= 6.221 whose relative tour route is the
first decision tree in cluster C4, shown as the red route in Figure 11.

The local optimal solution W[Cv] is the iteration value of the cluster optimal route. If tourists
choose one starting tourist sight for the trip, the smart machine will output all the tour routes related

to the cluster as descending sub-vector
→

Ka elements and highly recommends the first element tour
route for tourists. Considering a tourist’s own needs and interests, they choose the tour route by
themselves. For example, a tourist obtains accommodation next to T2 the Erqi memorial and he takes
this tourist sight as the starting one to visit. In this case, since the tour route is T2 − T1, T4, T3, which is
Erqi memorial, Bishagang park, Zhongyuan Wanda, and Henan museum, and is the cluster’s optimal
tour route, the smart machine will highly recommend it to the tourist. If tourists do not choose the
starting tourist sight, the smart machine will output all the tour routes related to the cluster descending

vector
→

Rb elements and specifically recommends the first element tour route for tourists, considering
the tourist’s own needs and interests, and they choose a tour route themselves. In the simulation
experiment, the smart machine highly recommends the cluster C4 tour route T4 − T1, T2, T3 which is
Zhongyuan Wanda, Bishagang park, Erqi memorial, and Henan museum, the red route. Figure 11
shows the relative tour routes of the motive iteration decision tree local optimal solutions, of which the
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red noted route is the global optimal solution tour route. The decision tree father nodes for Figure 11a–d
are tourist sights T1~T4, respectively.
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The Advantage of the Algorithm

As to the study, the algorithm designed in the paper could plan optimal tour routes for tourists
and help them to get best motive benefits. Firstly, it considers tourists’ individualized needs and
interests. The smart machine designed in the study can automatically select interested tourist sights
and plan optimal routes according to the basic information provided by tourists, which is convenient
and intelligent. The planned routes combine factors and disturb factors of GIS service, which are
all genuine and precise factors tourists must consider and deal with during the whole trip. In this
aspect, tourists will not plan routes by themselves; rather, all the optimal routes are planned by the
smart machine. This process is better than the procedure whereby tourists find mass information on
the Internet and plan routes by themselves, in which many key factors may be neglected and cannot
provide the best travel experience and motive benefits. Meanwhile, the smart machine only considers
tourists’ profits and interests, but travel companies mainly consider their own profits to earn more
money, which will neglect tourists’ needs and interests. In all, the optimal routes of smart machine can
meet the needs and interests of tourists and thus provide better information than mass tourism data on
the Internet and travel companies.

5. Conclusions

Some critical issues and existing problems in smart tourism and tourism GIS are discussed and
analyzed in the study. Mining the most valuable tour route knowledge from big data-level information
is the key to increasing the motive benefit satisfaction. When planning a trip and tour routes, tourists
are usually unfamiliar with a strange city and its tourism services information. Travel agencies provide
planned tour routes for tourists to gain profits, and they insufficiently consider tourists’ needs and
interests since they provide group tours with fixed schedules, offer limited ferry transportation ways,
and confine the range of activities for tourists.

Referring to Reference [5]’s concept of using a scalable geospatial analysis based on cloud
computing platform to detect tourism destinations, this study establishes basic city tourist sight data
information and GIS data as independent variables to build a feature interest tourist sight extracting
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matrix, which is not scalable. Reference [5] uses a cloud computing platform, whereas this study
develops a new calculating system to obtain iteration values.

Referring to Reference [17]’s concept of oriented spanning trees, this study also generates spanning
trees. Reference [17] adds genetic and multi-criteria thoughts to solve the path problems; in this study,
there is one criterion, which aims to determine the maximum iteration value.

Representative tourist sights and service functions are integrated and are used as a data resource
to build the algorithm. The tourist sight classification is a subset, and it is an effective means to group
and segment tourists’ needs and interests. It is also the basis upon which to build the tourist sight
spatial interest field mapping model.

An age index is used to group tourists because this standard has broad coverage and strong
representation because similarly aged people have similar interests. The developed smart tourist sight
extracting algorithm model is highly random and a strict logic is used in the algorithm, covering all
the tourist sights, with each tourist sight having the same probability of being selected. Considering
one-day trips, in order to ensure that tourists have an enjoyable trip experience at tourist sights to
obtain the best motive benefit satisfaction, the smart machine sets an upper limit for the number of
selected tourist sights and then stores, manages, and plans tourist sights and tour routes accordingly.

Referring to Reference [18]’s approach to solving shortest-distance problems, in designing the
algorithm and smart machine, this study supplements more details to meet a majority of the tourists’
needs. Two principles are applied; one is the principle of proximity, and the other is the principle of
completely random. Considering these two principles, a smart motive iteration decision tree algorithm
is designed and developed. A quantitative method is used to evaluate the motive iteration trees and
tour routes generated from different tourist sight father nodes and the results are used as the basis for
smart machine recommendations for tourist sights and tour routes.

Compared with Reference [39]’s application of spatial partitioning and k-means clustering, the
concept of clustering is also used in this study. Reference [39] applies k-means clustering to habitat
occupation in Propithecus perrieri. Similarly, the m-central point clusters are developed, where each
tourist sight is used as father node to generate decision trees. When a tourist chooses situation one
and starts at the closest tourist sight, only one cluster will be studied and used to determine the
optimal tour route, which will decrease the cost. When a tourist chooses situation two and randomly
chooses a starting tourist sight, the smart machine needs to determine the global optimal solution and
recommend the best tour route for tourists.

The recommended tour routes obey the optimum principle, and individualized interests and
needs are considered. In tour route planning, it avoids tourists’ subjective cognition and considers
mainly individualized needs most, in addition to objective conditions. The methodology does not seek
to pursuit profit as do travel agencies; instead, it is based on serving tourists. Regarding massive and
big data-level tourism information, this study presents a method to access valuable and concealed tour
route knowledge, which are relevant to tourists’ needs and interest. The algorithm developed in the
study is practical and its performance are an effective examination of data mining in mass tourism data.
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Abbreviations

Meaning Meaning of Subscript and Superscript
P tourist sight spatial data set None
Pr tourist sight spatial data subset r: subset number
PrQs Subset element tourist sight s: element tourist sight number in subset
t tourist sight classification number None
pr tourist sight number of the subset r: subset number
→

Pr tourist sight extracting base vector r: subset number

P tourist sight extracting matrix None
Gi Age group classification i: age group number
n Number of people in statistics None
ni Age group Gi number of people i: age group number
age Age index None

ki,r Number of people visiting Gi
i: age group number
r: subset number

ωi·r Visited rate of Pr
i: age group number
r: subset number

m Number of tourist sight to be visited None
T Selected tourist sight set None
Te Selected tourist sight set element e: Selected tourist sight set number
W(Te) Motive iteration function e: Selected tourist sight set number

H(Te, Te+1) Motive iteration sub-interval
Te: Selected tourist sight set element
e: Selected tourist sight set number

W(Te, Te+1) Sub-interval motive iteration value
Te: Selected tourist sight set element
e: Selected tourist sight set number

H(T1, Tm) Motive iteration interval Tm: The final tourist sight to be visited
W(T1, Tm) Interval motive iteration value Tm: The final tourist sight to be visited
c Motive iteration factor None
δ Specific factor None
ε Motive iteration disturbance factor None
µ1 Specific disturbance factor None
Treeσ Motive iteration decision tree σ: Tree number

C(¬Te) Child node cluster
Te: Selected tourist sight set element
e: Selected tourist sight set number

Cv Motive iteration cluster v: Cluster number
W[Cv] Decision tree local optimal solution Cv: Motive iteration cluster
W[Cv]

max Decision tree global optimal solution Cv: Motive iteration cluster
→

Ka Motive iteration cluster descending sub-vector
a: Motive iteration cluster descending
sub-vector number

→

Rb Motive iteration cluster descending vector
b: Motive iteration cluster descending vector
number

∀ arbitrary None
∪ Join None
Z+ Positive integer None
R+ Positive real number None
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