
 International Journal of

Geo-Information

Article

Comparison of GNSS-, TLS- and Different Altitude
UAV-Generated Datasets on the Basis of
Spatial Differences

Huseyin Yurtseven

Department of Surveying and Cadastre, Faculty of Forestry, Istanbul University—Cerrahpasa, Istanbul 34473,
Turkey; huseyiny@istanbul.edu.tr; Tel.: +90-212-338-2400

Received: 8 March 2019; Accepted: 1 April 2019; Published: 3 April 2019
����������
�������

Abstract: In this study, different in-situ and close-range sensing surveying techniques were compared
based on the spatial differences of the resultant datasets. In this context, the DJI Phantom 3
Advanced and Trimble UX5 Unmanned Aerial Vehicle (UAV) platforms, Zoller + Fröhlich 5010C
phase comparison for continuous wave-based Terrestrial Laser Scanning (TLS) system and Network
Real Time Kinematic (NRTK) Global Navigation Satellite System (GNSS) receiver were used to obtain
the horizontal and vertical information about the study area. All data were collected in a gently (mean
slope angle 4%) inclined, flat vegetation-free, bare-earth valley bottom near Istanbul, Turkey (the size
is approximately 0.7 ha). UAV data acquisitions were performed at 25-, 50-, 120-m (with DJI Phantom
3 Advanced) and 350-m (with Trimble UX5) flight altitudes (above ground level, AGL). The imagery
was processed with the state-of-the-art SfM (Structure-from-Motion) photogrammetry software. The
ortho-mosaics and digital elevation models were generated from UAV-based photogrammetric and
TLS-based data. GNSS- and TLS-based data were used as reference to calculate the accuracy of the
UAV-based geodata. The UAV-results were assessed in 1D (points), 2D (areas) and 3D (volumes) based
on the horizontal (X- and Y-directions) and vertical (Z-direction) differences. Various error measures,
including the RMSE (Root Mean Square Error), ME (Mean Error) or MAE (Mean Average Error), and
simple descriptive statistics were used to calculate the residuals. The comparison of the results is
simplified by applying a normalization procedure commonly used in multi-criteria-decision-making
analysis or visualizing offset. According to the results, low-altitude (25 and 50 m AGL) flights feature
higher accuracy in the horizontal dimension (e.g., mean errors of 0.085 and 0.064 m, respectively) but
lower accuracy in the Z-dimension (e.g., false positive volumes of 2402 and 1160 m3, respectively)
compared to the higher-altitude flights (i.e., 120 and 350 m AGL). The accuracy difference with
regard to the observed terrain heights are particularly striking, depending on the compared error
measure, up to a factor of 40 (i.e., false positive values for 120 vs. 50 m AGL). This error is attributed
to the “doming-effect”—a broad-scale systematic deformation of the reconstructed terrain surface,
which is commonly known in SfM photogrammetry and results from inaccuracies in modeling
the radial distortion of the camera lens. Within the scope of the study, the “doming-effect” was
modeled as a functional surface by using the spatial differences and the results were indicated that
the “doming-effect” increases inversely proportional to the flight altitude.

Keywords: accuracy assessment; terrestrial laser scanning; unmanned aerial vehicle; digital surface
model; “doming effect”; structure from motion

1. Introduction

Considering recent developments, different equipment and methods are used in the generation of
information related to the surface of the ground and objects on it. The spatial data to be used in the
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generation of the spatial information can be acquired with two different approaches. The first is to
collect the data using ground-based surveying techniques. At this stage, many different equipment can
be used, such as Global Navigation Satellite System (GNSS) receivers, total station (TS), terrestrial laser
scanner (TLS), etc. [1]. The other approach is to collect the spatial data using remote sensing techniques
such as photogrammetry, radar-based and laser-based techniques [2,3]. Although the ground-based
surveying techniques are more accurate than the remote sensing techniques, the data acquisition can
be time-consuming when the applications require high-resolution information [4]. In the last decade,
unmanned aerial vehicle (UAV)-based photogrammetric and laser-based surveying systems have
become popular in recent years due to their advantages. In obtaining ultra-high-resolution (UHR) data
in small areas, TLSs and UAVs can be operated at optimal costs with high accuracies [5]. However,
many factors affect the accuracy of the datasets to be produced. In this context, the TLS-derived
dataset accuracy is mostly affected by user-based errors, which are usually caused by the creation
of a scanning pattern in the field without considering the TLS specifications or the topography.
Equipment-based errors are related to the technical specifications of the TLS, which are provided by the
system manufacturers often in an incomparable manner [6,7]. Other important error sources are the
surface reflectance or reflectivity of the scanned object and the Ground Control Point (GCP) coordinate
accuracy in georeferencing.

The factors that affect the accuracy of UAV-based photogrammetric data can be classified into six
categories. The first category is related to GCP features such as the distribution, coordinate accuracy
and number of GCPs [8]. The second category is related to on-UAV data collection systems and
their features. The camera [9,10], Inertial Measurement Unit (IMU) [11], GNSS receiver features [12]
and IMU-GNSS-camera timing synchronization and locational calibration on the UAV platform [13]
directly affect the accuracy of the photogrammetric data. The flight and data acquisition parameters
can be grouped into another category, such as the flight path pattern (parallel or cross) [14], flight
altitude [15,16], number of photos, overlap ratio [17], and acquiring nadir or off-nadir (oblique)
imagery [18]. For the study area, the topographic characteristics [19,20], area size, lighting conditions
and color contrast of ground objects are also important variables. UAV platform characteristics such as
the flight principle (fixed wing, multicopter, etc.) and gimbal precision (if gimbal is used) affect the
vibration or speed. The speed and vibration can cause a blurring effect on images. The last category is
related to photogrammetric software algorithms. The use of approaches such as Structure from Motion
(SfM), Multi-View Stereo (MVS), and conventional affects the accuracy of the resulting datasets [21–24].

Nowadays, the use of SfM-based photogrammetry is preferred for topographical modeling and
ortho-data generation using images acquired with UAVs and low-cost or not-metric cameras [25–30].
After recent developments in computer vision technology, SfM has gained popularity as an inexpensive
solution compared to traditional photogrammetry to extract the 3D structure of a scene from multiple
overlapping photographs [31,32]. Many commercial and open-source software packages use SfM
algorithms. Although UAV-SfM-based data achieve UHR details, they can also have systematic errors
such as “doming”, which restrict their wider use [33].

The “doming effect” is a broad-scale systematic deformation of the SfM-based reconstructed terrain
surface and is related to exclusively nadir imagery collection, the using of near-parallel flight paths or
incorrect specification of the camera intrinsic parameters [21,33]. Taking the off-nadir imagery and
designing a distributed network of GCPs can help to mitigate the “doming effect” [33–36]. Wackrow
and Chandler [37] demonstrated that defining the relationship between the “domes” and the lens
model could minimize this systematic error. Magri and Toldo [38] used an automatic ground detection
method to capture the doming deformation as a paraboloid plane and used the estimated paraboloid
as a parameter to correct the scene geometry. However, the “doming effect” is only mitigated and not
completely removed using these approaches.

This study investigated the effects of different altitudes, platforms and camera combinations on
the data accuracy and “doming effect” by keeping other error sources constant. For this purpose,
an experimental environment was created. A UAV-SfM-based photogrammetric point cloud (PC)
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and ortho-mosaic datasets were generated using one low-cost (DJI Phantom 3 Advanced) and one
mapping purpose (Trimble UX5) UAV system at four different flight altitudes. The reference datasets
were collected with two state-of-the-art surveying instruments (TLS and GNSS) to serve the accuracy
assessment analysis. Accuracy assessments were performed in all three dimensions based on the
spatial differences. Various error metrics were calculated for the point-based horizontal (X and Y) and
vertical (Z) coordinate and the surface model-based areal and volumetric differences. All difference
metrics were normalized to percentage scores, so the comparison could be performed in a single
denominator. According to the obtained comparison results, the “doming effect” was modeled and
discussed in different perspectives. These results are considered a guide for the UAV community in
selecting the appropriate method to generate the UAV-SfM based UHR datasets.

2. Materials and Methods

Within the scope of the study, a special workflow was established (Figure 1), and the study area
was prepared according to the study goals.

Figure 1. General workflow.

2.1. Study Area

The study area is located in the northern part of Istanbul University—Cerrahpasa Education
Research and Practice Forest near Sariyer, Istanbul (41◦10′20” N, 28◦59′56” E). The study area dimension
is approximately 40 m wide and 200 m long, which covers an area of 6566.6 m2; the slope is stable
and approximately 4% (Figure 2). The most important factor in the selection of the study area is the
presence of a vegetation-free bare earth. Some problems may arise in the modeling of the vegetation
top surface with TLS. Hence, the study was performed in a bare earth area, where the data could be
more objectively assessed.
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Figure 2. Study area.

2.2. Data Acquisitions

In this study, five different surveying systems were used for the data acquisition. To ensure
the spatial alignment of the data obtained from different data sources (with GCPs) for the accuracy
analysis (as reference points), in total, 377 points were established in the study area by using
National Continuously Operating Reference Stations (CORS)-based Network Real-Time Kinematic
(NRTK) GNSS (Pentax SMT-888) receiver. Two of these points were used as stationary points for the
TS-based surveying. Fifteen specially designed GCP plates were distributed across the study area as
photogrammetric GCPs. In this context, two types of GCP plates were used: 1-m GCP plates were
used in the 350-m flight altitude (AGL) data acquisitions, and 0.3-m GCP plates were used in the 25-,
50- and 120-m flight altitude (AGL) data acquisitions. TS stationary points and photogrammetric
GCPs were not used as reference in the accuracy analyses. Then, 35 of the remaining 360 points
were marked with spray paint to the ground and used as the reference point (RP) to determine the X-
and Y-coordinate accuracy. All 360 points were used as RPs to determine the Z-coordinate accuracy
(Figure 2). All point coordinates were surveyed in the Turkish National Reference Frame (TUREF)
Transverse Mercator (TM) 30 (Central Meridian) (EPSG: 5254) coordinate system. Each coordinate
measurement was performed with a 10-s session, so that the GNSS field works were completed in 3 h
6 min in total.

The TLS-based data collection was performed to generate the surface model, which was accepted
as a reference. The Zoller+Fröhlich 5010c phase-based (phase comparison for continuous wave) TLS
System was used to obtain terrestrial PC data with 0.018◦ angular resolution. The TLS system can scan
up to 187 m range with 360◦ horizontal and 320◦ vertical angle from each scan station. Between two
scan stations, the approximate horizontal distance was 20 m, and TLS was installed at approximately
2 m height at each scan station. Six portable targets were used as the GCP to register the PC data of
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each scan station to the other and georeference to the project coordinate system (TUREF TM30, EPSG:
5254). In total, 21 TLS GCPs were established, and the coordinate acquisitions were simultaneously
performed with TS to the TLS process (Figure 3). With this data acquisition pattern, the TLS field
works were accomplished with 10 TLS scan stations in 2 h 35 min.

Figure 3. TLS and TS data acquisition.

Photogrammetric data acquisitions were performed with the Trimble UX5 UAS and DJI Phantom
3 Advanced UAV platforms (Table 1).

Table 1. UAV platform specifications.

Features Trimble UX5 DJI Phantom 3 Advanced

Platform Type Fixed Wing Multicopter
Purpose Mapping Hobby, photography, videography

Takeoff-Landing

Takeoff: Catapult launch
Landing: Belly

(Min. 50 m × 30 m open area for
landing)

Vertical takeoff and landing

Cruise Altitude
(from Takeoff Location)

(Min—Max)

Min.: 75 m
Max.: 750 m

(Mapping purpose autonomous
flight)

Min.: 10 m
Max.: 500 m

Endurance 50 min. 23 min.
Max Operation Distance 5000 m 3500 m

Cruise speed 80 km/h Min.: 0 km/h
Max.: 57 km/h

Camera Properties

Fixed RGB or NIRRG Sony Nex5T
mirrorless APSC

Res.: 4912 × 3264 pixels (16MP)
FOV: 84◦

Focal Lenght: 15.517 mm
Pixel Length: 4.75 micron

RGB with Gimbal
Res.: 4000 × 3000 pixels (12MP)

FOV: 94◦

Focal Lenght: 3.61 mm
Pixel Length: 1.56 micron

Positional Data Recording L1 GNSS (X, Y, Z Coor.)
IMU (Yaw, Pitch, Roll Angles) L1 GNSS (X, Y, Z Coor.)

Cost (Approximately in Turkey) 65,000 USD 1000 USD

Photogrammetric data acquisitions were performed at four different flight altitudes (25, 50, 120
and 350 m AGL). The 25-, 50- and 120-m AGL data acquisitions were performed with the DJI Phantom
3 Advanced UAV, and the 350-m AGL data acquisition was performed with the Trimble UX5 UAS
platform (Table 2). The study area is located at the bottom of a valley. The fixed-wing Trimble UX5 UAS
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platform has a large turning radius between flight strips. To obtain flight safety, data acquisitions were
not performed under the 350-m AGL flight altitude with the Trimble UX5 UAS platform. The minimum
AGL flight altitude of 25 m was decided by considering the maximum tree height in the study area.
The AGL altitudes of 25 and 50 m offer 1- and 2-cm ground sampling distances (GSD), respectively.
The AGL altitude of 120 m (~400 feet) is the maximum altitude allowed for civil flights as specified in
the UAV regulations of most countries [39–43]. Since the 120-m flight altitude (AGL) can be accepted as
an international maximum standard for UAV operations, it was preferred as an alternate flight altitude.

Table 2. Flight parameters.

Flight
Altitude UAV Platform Overlap Ratios

(% Forward—% Side)
Number of

Photos
Flight

Duration
Total 3D Model

Area (m2)

25 m DJI Phantom 3
Advanced 95–95% 483 21 min 19,610.60

50 m DJI Phantom 3
Advanced 95–95% 344 15 min 33,898.84

120 m DJI Phantom 3
Advanced 95–95% 94 5 min 81,870.75

350 m Trimble UX5 80–80% 42 6 min 371,640.92

2.3. Data-Processing and Accuracy Assessment Procedures

The photogrammetric processes were performed with the Agisoft PhotoScan Professional Edition
V1.2.2 software (http://www.agisoft.ru), which uses SfM-based techniques. Initially, the cameras in two
UAV systems were calibrated with a set of checkerboard images. The camera calibration parameters,
image coordinates and image orientation (yaw, pitch, roll) parameters (for Trimble UX5 imagery) were
defined for each project. Then, the tie points were determined for each image pair, and a georeferenced
image block was generated by using 15 GCPs in addition to the aforementioned parameters. Finally,
photogrammetric PCs and ortho-mosaics were generated from the image blocks.

All TLS-based raw scans were registered and georeferenced using the Z+F LaserControl V8.6.0
software in the accordance with 21 TLS GCP coordinates. After the geo-referencing, the noise data were
filtered with the “Range Filter” to remove the points that should not be in the range of 0.5–1 m from
the TLS location. Then, the laser-based PC was archived with the intensity information for analysis.

After the data acquisitions and pre-processing, three different data types were prepared for
analysis: PCs, ortho-imagery and RP locations on the generated datasets. First, PC data obtained
from four different sources were clipped by the boundary data of the study area for the objective
evaluation. After clipping, all PC data were transformed to raster-based DSM with the gridding
procedure. Gridding is the most efficient method to eliminate the irregularly spaced point-to-point
distances [44–47]. The choice of the optimal grid resolution is an ongoing research topic and related to
many different factors such as the point density, spatial accuracy of points, size of the area, processing
power of the computer, geometry of the point patterns, complexity of the terrain, cartographic
standards, and gridding or interpolation technique requirements [48,49]. In the gridding procedure,
various interpolation techniques have been studied by researchers, and each technique has its own
advantages depending on the characteristics of the datasets [50–60]. Interpolation is generally used
to obtain the values at unsampled locations [61] based on the geographic principle of “everything
is related to everything else, but near things are more related than distant things” [62]. In studies
using UAV or TLS systems, the data resolutions or point densities are very high especially in the TLS
dataset, which implies that there is also no unsampled location in the research area. Therefore, the
use of an interpolation procedure was considered superfluous to grid all datasets. However, in these
datasets, there may be areas with low data densities due to different error sources such as noise or
image matching conflicts. This situation causes irregularly spaced data densities. At this point, to
objectively evaluate the datasets, the inverse distance weighted (IDW) interpolation with the binning
approach was used for gridding. Binning techniques provide a simple and natural method to handle

http://www.agisoft.ru
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large amounts of data [63,64]. The binning approach lays a regular grid over the PC dataset, and the
minimum, maximum or average of point elevations in each bin grid is accepted as a grid value.

The bin size or resolution of the grid structure (r) was determined from the point density (d) of
the area of interest (points per m2) using Equation (1).

r =
1
√

d
(1)

This equation is basically based on the principle that there should be one point in each grid
cell. However, due to irregular point spacing, some grids do not have any point, or some of them
have more than one points. If a grid does not have any point in it, the IDW interpolation is used to
estimate the grid value from the neighbor grid points. Contrarily, if a grid has more than one point in
it, the minimum, maximum or average of point elevations can be used as a grid value.

Photogrammetric and laser-based PCs have different data characteristics. The 3D model obtained
from photogrammetric processes is related to the upper surface of the object or the ground. Thus,
the transformation of the photogrammetric PC data to raster the surface model was performed using
the average binning combined IDW approach. Meanwhile, the 3D model generated by the laser
scanning process, which is an active remote sensing tool, is formed by laser beams, which enables the
modeling of every surface that can be reached by laser beams. For example, the upper surface of the
vegetation and the area under the vegetation surfaces can be modeled by the laser beams that pass
through the gaps. In the gridding stage of the TLS based PC data, two different raster datasets were
generated using the minimum and maximum binning combined IDW approach. These two datasets
actually represent the bare earth surface model (digital elevation model, DEM) and the surface model
(digital surface model, DSM).

After obtaining the surface models, the accuracy assessment procedures were performed. In this
stage, the point and surface model-based differences were investigated. The point-based assessments
were performed by separately evaluating the horizontal (X and Y) and vertical (Z) coordinate differences,
surface-based evaluations were performed by evaluating the areal and volumetric differences of the
DSMs. Although TLS- and GNSS-based data were used as a reference, the cross evaluation was
performed to evaluate the differences among all data.

To obtain the horizontal (X and Y) coordinate accuracy, six datasets were compared by using the
residuals and root mean square errors (RMSE) of 35 RPs. The RP locations were interpreted from each
photogrammetric ortho-mosaic (25-, 50-, 120- and 350-m AGL) and the TLS-based data. Since the PC
data did not contain color information, RP locations were interpreted from the ortho-model obtained
from the PC intensity information (also called reflectance values).

RMSE(X,Y) =

√√
1
n

n∑
i=1

[(
xEva(i) − xRef(i)

)2
+

(
yEva(i) − yRef(i)

)2
]

(2)

Vertical (Z) coordinate accuracy analyses were examined over 360 RPs for seven dataset. In this
study, six DSM datasets were generated using UAV-based photogrammetric (25-, 50-, 120- and 350-m
AGL) and TLS-based (minimum and maximum surface models) techniques. To compute the vertical (Z)
coordinate differences among these datasets, the horizontal RP coordinates (collected with CORS-NTRK
supported GNSS receiver) were superimposed to the DSM datasets, and the vertical information
(Z coordinates) were extracted. Regression analysis was performed to compare the vertical (Z) point
coordinates. Then, the vertical residuals were calculated to determine the differences of each dataset.
Generally, to determine the accuracy measures to use in the accuracy assessment, distributions of the
residuals are tested. However, the normal distribution of the error is a rare case for laser scanning
or digital-photogrammetry-derived vertical data due to outliers. Although removing the outliers
or mitigating their impact on the population is an approach to achieve a normal distribution, if the
outliers are measured as accurately as other members of the population, they should be evaluated
with other members of the population. In this context, the normal distribution accuracy measures and
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distribution-free accuracy measures were used together. The normality of the residual distribution
was investigated via quantile–quantile (Q–Q) plots and histograms. The descriptive statistics, mean
error (MA), mean absolute error (MAE) and root mean square error (RMSE) of the residuals were
calculated and used as the normal distribution accuracy measures. In addition, as suggested by Höhle
and Höhle [65], the median and Normalized Median Absolute Deviation (NMAD) of residuals (∆h)
were used as distribution free accuracy measures.

ME(Z) =
1
n

n∑
i=1

(ZEva(i) −ZRef(i)) (3)

MAE(Z) =
1
n

n∑
i=1

(∣∣∣ZEva(i) −ZRef(i)

∣∣∣) (4)

RMSE(Z) =

√√
1
n

n∑
i=1

(ZEva(i) −ZRef(i))
2 (5)

NMAD = 1.4826·median
(
∆h(i) −median(∆h)

)
(6)

The final assessments were made on the DSM datasets by evaluating the areal and volumetric
changes. To determine the areal and volumetric differences among the DSMs, the false positive,
false negative, no difference, absolute difference zones and absolute difference volume per area
were calculated for each pair of datasets. In this context, the false positive defines the zones where
the evaluated-reference difference is positive, and the false negative defines the zones where the
evaluated-reference difference is negative (Figure 4).

Figure 4. Visual definition of false positive, false negative and no difference areas and volumes.

3. Results

3.1. Data Processing Results

According to the TLS data registration and georeferencing process results, the average,
standard and maximum deviations were obtained as 2.6 mm, 1.6 mm and 6.6 mm, respectively.
The CORS-NRTK-supported GNSS measurements had near-one centimeter level nominal accuracy.
In addition, according to the SfM process results of the 25-, 50-, 120-and 350-m AGL altitude
photogrammetric data, total GCP RMSEs were obtained at 0.55, 0.28, 0.04 and 0.01 m, respectively.
In this context, the data obtained by TLS and GNSS were proven reliable to use as the reference.
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After the dataset generation procedures, all datasets were clipped with the study area border, and
the analysis was performed using clipped datasets. DSM resolutions were calculated using Equation (1)
according to the point density parameters of each PC dataset. The ultimate datasets properties and
visuals are shown on Table 3 and Figure 5.

Figure 5. DSM (and DEM for TLS), PC, ortho datasets generated from UAV and TLS -based data.
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Table 3. Final dataset properties in study area.

Dataset Ortho-Mosaic
Resolution (m)

Total Point Count
inside the

Study Area

Point Density
(Point/m2)

Calculated
Resolution from
Equation (1) (m)

Accepted
Resolution for

DSM (m)

TLS 0.006 * 197,806,322 30,123.096 0.006 0.010
UAV 25 m 0.010 15,477,265 2356.968 0.021 0.020
UAV 50 m 0.020 4,669,434 711.089 0.038 0.040

UAV 120 m 0.048 780,718 118.892 0.092 0.090
UAV 350 m 0.094 207,076 31.535 0.178 0.180

* Intensity data were used to generate ortho-model.

3.2. Accuracy Assessment Results

The accuracy of each dataset type (RP based X-Y, RP based Z and DSM) was analyzed by
cross-evaluation of the same-type datasets obtained from different data sources. All obtained difference
variables for all datasets in the same accuracy class were compared to each other.

3.2.1. Point-Based Analysis

Point-based vertical and horizontal accuracy assessments were performed separately. To obtain
horizontal accuracy, 35 RPs were used. Horizontal accuracies or coordinate differences were examined
on six datasets. These datasets were the GNSS-based horizontal (X and Y) RP coordinates, the interpreted
horizontal RP coordinates of the TLS intensity-data based ortho-model and 350-, 120-, 50- and 25-m
AGL flight altitude ortho-mosaics. In this context, the minimum, maximum, standard deviation and
RMS values in each pair of datasets were calculated for the cross-data evaluations (Table 4).

According to the horizontal analysis results, the GNSS-TLS comparison has the best results with
0.1 cm mean and 0.3 cm RMS difference values. These values were interpreted as extraordinary for
the 0.6-cm-resolution intensity-based ortho-model and ignored. The comparison results between the
GNSS and the ortho-model produced using the data acquired from the flight height of 50 m AGL
(GNSS-50) was also remarkable with 6.4 cm mean and 8.5 cm RMS difference values. After these
results, the comparison results (mean and RMS) of GNSS-25 (8.5 cm and 11.1 cm), GNSS-120 (9.0 cm
and 10.7 cm) and GNSS-350 (10.5 cm and 11.5 cm) were obtained. These results were also supported by
TLS measurements. However, the narrowest distribution of difference was achieved by the GNSS-350
comparison with 23.5 cm maximum difference and 4.8 cm standard deviation values.

According to the horizontal coordinate-based analysis results, a simple multi-criteria
decision-making analysis was used to find the most reliable dataset. In this context, the mean
(Mean Diff.), minimum (Min Diff.), maximum (Max Diff.), RMS difference (RMS Diff.) and standard
deviation of horizontal differences (Std. Dev. Diff.) were used, and the results of each type of
analysis were normalized to the percentage score according to their maximum and minimum values.
The analysis was performed for each dataset type by calculating the same weighted mean of scores.
According to the horizontal simple multi-criteria decision-making analysis scores, the GNSS and TLS
scores were almost identical. Among the UAV-based data, the 50-m AGL achieved the highest score
(Table 5).
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Table 4. Horizontal (X,Y) coordinate difference results and frequency-density histograms of residuals.

EVALUATED

GNSS XY TLS XY 350 XY 120 XY 50 XY 25 XY

R
EF

ER
EN

C
ED

G
N

SS
X

Y

R
es

id
ua

l(
m

) Min 0.000 0.021 0.009 0.009 0.010

Max 0.009 0.235 0.323 0.259 0.281

StdDev 0.002 0.048 0.058 0.057 0.071

Mean 0.001 0.105 0.090 0.064 0.085

RMS (m) 0.003 0.115 0.107 0.085 0.111

Fr
eq

ue
nc

y
A

xi
s

T
LS

X
Y

R
es

id
ua

l(
m

) Min 0.022 0.009 0.009 0.010

D
en

si
ty

A
xi

s

Max 0.236 0.322 0.258 0.280

StdDev 0.048 0.058 0.056 0.071

Mean 0.105 0.090 0.064 0.084

RMS (m) 0.115 0.107 0.085 0.110

35
0

X
Y

R
es

id
ua

l(
m

) Min 0.013 0.013 0.025
Max 0.261 0.454 0.506

StdDev 0.053 0.083 0.108
Mean 0.124 0.128 0.150

RMS (m) 0.135 0.152 0.185

12
0

X
Y

R
es

id
ua

l(
m

) Min 0.010 0.004
Max 0.211 0.251

StdDev 0.040 0.068
Mean 0.079 0.105

RMS (m) 0.088 0.125

50
X

Y

R
es

id
ua

l(
m

) Min 0.001
Max 0.125

StdDev 0.036
Mean 0.046

RMS (m) 0.058

25
X

Y

Horizontal Difference Axis

Table 5. Simple multi-criteria decision making analysis scores of horizontal coordinate based
analysis results.

Analysis Type GNSS XY TLS XY 350 XY 120 XY 50 XY 25 XY

Mean Diff. Scores 54.71 54.64 18.75 35.31 49.97 37.74
Min Diff. Scores 60.13 60.06 25.13 64.14 66.67 61.22
Max Diff. Scores 57.28 57.34 33.74 46.74 44.17 43.73

Std Dev Diff. Scores 57.56 57.62 37.96 49.89 50.60 35.08
RMS Diff. Scores 55.37 55.34 24.39 39.75 50.01 36.79

Mean Score 57.01 57.00 27.99 47.17 52.28 42.91

Point-based vertical accuracy assessment or vertical coordinate differences were examined on
seven datasets by using 360 RPs. These datasets were the GNSS based vertical (Z) RP coordinates and
the superimposed RPs vertical coordinates of the TLS-based minimum (TLS Min) and maximum (TLS
Max) and the UAV-based raster surface models (350 Z, 120 Z, 50 Z and 25 Z). Primarily, a simple linear
regression analysis was performed to compare the vertical (Z) coordinates of each dataset pair (Table 6).
According to the regression analysis results, R2 varied between 0.937 (with 71 cm root mean square
deviation, RMSD) and 0.999 (with 16.83 cm RMSD). At this point, the regression analysis between the
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data obtained by TLS (TLS Max Z vs. TLS Min Z) was ignored (R2 = 1.000, RMSD = 1.58 cm) because
the two datasets were derived from a single data.

Table 6. Simple linear regression models of the evaluated and referenced vertical (Z) coordinate datasets
and frequency-density histograms of vertical (Z) coordinates in cross-plane.

EVALUATED

GNSS Z TLS Max Z TLS Min Z 350 Z 120 Z 50 Z 25 Z

R
EF

ER
EN

C
ED

Fr
eq

ue
nc

y
A

xi
s

G
N

SS
Z

R2 = 0.9993
Adj.R2 = 0.9993

y = 1.0002x +
0.0837

RMSD = 0.0727

R2 = 0.9993
Adj.R2 = 0.9993

y = 1.0000x +
0.0985

RMSD = 0.0725

R2 = 0.9995
Adj.R2 = 0.9995

y = 0.9985x +
0.2287

RMSD = 0.0621

R2 = 0.9997
Adj.R2 = 0.9997

y = 1.0018x −
0.0809

RMSD = 0.1683

R2 = 0.9834
Adj.R2 = 0.9834

y = 0.9832x +
1.6381

RMSD = 0.3626

R2 = 0.9382
Adj.R2 = 0.9381

y = 0.9652x +
3.3146

RMSD = 0.7031

D
en

si
ty

A
xi

s

T
LS

M
ax

Z R2 = 1.0000
Adj.R2 = 1.0000

y = 0.9997x +
0.0163

RMSD = 0.0158

R2 = 0.9993
Adj.R2 = 0.9993

y = 0.9978x +
0.1837

RMSD = 0.0748

R2 = 0.9996
Adj.R2 = 0.9996

y = 1.0012x −
0.1305

RMSD = 0.2691

R2 = 0.9842
Adj.R2 = 0.9841

y = 0.9830x +
1.5512

RMSD = 0.3544

R2 = 0.9398
Adj.R2 = 0.9396

y = 0.9655x +
3.1907

RMSD = 0.6942

T
LS

M
in

Z R2 = 0.9993
Adj.R2 = 0.9993

y= 0.9981x +
0.1693

RMSD = 0.0753

R2 = 0.9996
Adj.R2 = 0.9996

y = 1.0014x −
0.1457

RMSD = 0.2925

R2 = 0.9844
Adj.R2 = 0.9844

y = 0.9834x +
1.5248

RMSD = 0.3514

R2 = 0.9403
Adj.R2 = 0.9401

y = 0.9660x +
3.1531

RMSD = 0.6913

35
0

Z

R2 = 0.9997
Adj.R2 = 0.9997
y = 1.0030x −

0.2879
RMSD = 0.5744

R2 = 0.9827
Adj.R2 = 0.9827

y = 0.9841x +
1.4652

RMSD = 0.3703

R2 = 0.9370
Adj.R2 = 0.9369

y = 0.9658x +
3.1698

RMSD = 0.7100

12
0

Z

R2 = 0.9838
Adj.R2 = 0.9838

y = 0.9815x +
1.7111

RMSD = 0.3581

R2 = 0.9389
Adj.R2 = 0.9387

y = 0.9637x +
3.3746

RMSD = 0.6994

50
Z

R2 = 0.9851
Adj.R2 = 0.9850

y = 0.9975x +
0.2989

RMSD = 0.3456

25
Z

Z Values

To determine the point-based vertical differences between the datasets, the minimum, maximum,
standard deviation, median, NMAD and RMS values in each pair of datasets were calculated from the
actual and absolute differences (Table 7). In addition, distributions of the residuals were tested via
visual methods (Q-Q plots and histograms) (Figure S1).

A close examination of the vertical difference values shows that the results were quite different
from the situation of the horizontal coordinate differences. According to the results of the vertical
difference analysis performed with reference to the GNSS-acquired vertical coordinates, the best results
were obtained by the 120-m AGL flight with 7.9 cm mean, 7.9 cm absolute and 9.3 cm RMS difference
values. In addition, when the entire vertical difference results were examined (Table 7), “TLS min” had
the best comparison results, where the mean of the mean absolute differences was 17.9 cm, and the
mean of the RMS differences was 22.3 cm. After this result, we obtained the difference comparison
results (mean of the mean absolute differences and mean of the RMS differences) of the 120-m AGL
flight (18 cm and 22.6 cm), TLS max (18.2 cm and 22.6 cm), 350-m AGL flight (19.2 cm and 23.7 cm),
GNSS (21.2 cm and 26.6 cm), 50-m AGL flight (30 cm and 36.8 cm) and 25-m AGL flight (53.8 cm and
66.1 cm).

To find the most reliable dataset according to the results of the vertical-coordinate-based analysis,
the vertical mean absolute difference (Mean A. Diff.), vertical minimum absolute difference (Min A. Diff.),
vertical maximum absolute difference (Max A. Diff.), standard deviation of vertical absolute differences
(Std. Dev. A. Diff.), vertical RMS difference (RMS Diff.), median, NMAD and regression analysis
results (R2 and RMSD) were evaluated by the multi-criteria decision-making analysis. According to the
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vertical simple multi-criteria decision-making analysis scores, GNSS Z was the most reliable vertical
dataset; among the UAV-based data, the highest score was achieved by 350 Z (Table 8).

Table 7. Vertical (Z) coordinate difference results.

EVALUATED

TLS Max Z TLS Min Z 350 Z 120 Z 50 Z 25 Z
Diff.
(m)

A. Diff.
(m)

Diff.
(m)

A. Diff.
(m)

Diff.
(m)

A. Diff.
(m)

Diff.
(m)

A. Diff.
(m)

Diff.
(m)

A. Diff.
(m)

Diff.
(m)

A. Diff.
(m)

G
N

SS
Z

Min −0.016 0.011 −0.027 0.004 −0.113 0.000 −0.028 0.000 −0.345 0.000 −0.666 0.001

R
EF

ER
EN

C
ED

Max 0.523 0.523 0.521 0.521 0.351 0.351 0.269 0.269 1.097 1.097 2.045 2.045
Std Dev 0.073 0.073 0.072 0.072 0.062 0.059 0.048 0.047 0.366 0.250 0.710 0.456

Mean 0.105 0.105 0.096 0.096 0.097 0.099 0.079 0.079 0.145 0.304 0.224 0.589
Median 0.085 0.085 0.076 0.076 0.089 0.089 0.068 0.068 0.048 0.230 0.036 0.481
NMAD 0.041 0.040 0.043 0.039 0.377 0.733

RMS 0.128 0.120 0.115 0.093 0.394 0.744

T
LS

M
ax

Z

Min −0.163 0.000 −0.366 0.000 −0.408 0.000 −0.492 0.001 −0.763 0.002
Max 0.000 0.163 0.200 0.366 0.123 0.408 0.876 0.876 1.818 1.818

Std Dev 0.016 0.016 0.075 0.054 0.056 0.049 0.358 0.199 0.701 0.405
Mean −0.009 0.009 −0.008 0.053 −0.026 0.038 0.040 0.300 0.119 0.585

Median −0.004 0.004 0.002 0.037 −0.015 0.022 −0.045 0.293 −0.048 0.549
NMAD 0.006 0.055 0.031 0.401 0.783

RMS 0.018 0.075 0.062 0.360 0.711

T
LS

M
in

Z

Min −0.365 0.000 −0.407 0.000 −0.475 0.001 −0.738 0.000
Max 0.200 0.365 0.132 0.407 0.876 0.876 1.819 1.819

Std Dev 0.076 0.052 0.056 0.047 0.355 0.201 0.698 0.407
Mean 0.001 0.054 −0.017 0.035 0.049 0.296 0.128 0.582

Median 0.014 0.039 −0.006 0.020 −0.034 0.289 −0.042 0.549
NMAD 0.054 0.030 0.393 0.774

RMS 0.076 0.059 0.358 0.710

35
0

Z

Min −0.230 0.000 −0.528 0.001 −0.857 0.002
Max 0.201 0.230 0.998 0.998 1.946 1.946

Std Dev 0.050 0.036 0.373 0.211 0.717 0.416
Mean −0.018 0.039 0.049 0.311 0.127 0.597

Median −0.020 0.031 −0.052 0.286 −0.067 0.545
NMAD 0.037 0.394 0.754

RMS 0.053 0.376 0.728

12
0

Z

Min −0.417 0.001 −0.753 0.000
Max 0.989 0.989 1.937 1.937

Std Dev 0.362 0.211 0.707 0.418
Mean 0.066 0.301 0.145 0.588

Median −0.027 0.271 −0.039 0.520
NMAD 0.386 0.364

RMS 0.368 0.722

50
Z

Min −0.398 0.000
Max 0.948 0.948

Std Dev 0.346 0.208
Mean 0.078 0.287

Median −0.008 0.252
NMAD 0.364

RMS 0.354

Table 8. Simple multi-criteria decision making analysis scores of vertical coordinate based
analysis results.

Analysis Type GNSS Z TLS Max Z TLS Min Z 350 Z 120 Z 50 Z 25 Z

R2 Scores 78.68 78.68 79.42 79.47 78.39 74.50 15.16
RMSD Scores 67.67 66.72 66.29 57.45 45.57 50.84 10.00

Mean A. Diff. Scores 65.48 70.65 71.13 68.85 70.89 50.53 10.10
Min A. Diff. Scores 74.49 79.11 91.04 93.08 97.86 93.84 92.57
Max A. Diff. Scores 66.09 71.86 71.90 70.94 71.09 57.43 15.55

Std Dev A. Diff. Scores 67.36 73.50 73.50 72.22 72.97 55.16 16.18
RMS Diff. Scores 65.92 71.42 71.74 69.84 71.38 51.79 11.43

Median 86.18 40.27 43.51 39.31 38.82 30.33 24.98
NMAD 73.44 72.49 72.92 72.05 73.51 51.08 11.63

Mean Score 71.70 69.41 71.27 69.25 68.94 57.28 23.07

3.2.2. Areal and Volumetric Analysis

The areal and volumetric difference analyses were performed on the TLS-based minimum (TLS
Min) and maximum (TLS Max) raster surface models and UAV-based 350-, 120-, 50- and 25-m flight
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DSMs. In this context, the false positive (F.P.), false negative (F.N) and no difference zones were
determined for each pair of datasets. The total (T. Diff.) and absolute total (A.T. Diff.) areal and
volumetric differences were also calculated (Table 9 and Figure 6).

Table 9. Volumetric and areal differences for each DSM pair.

EVALUATED

TLS Min Z 350 Z 120 Z 50 Z 25 Z
Volume

(m3)
Area
(m2)

Volume
(m3)

Area
(m2)

Volume
(m3)

Area
(m2)

Volume
(m3)

Area
(m2)

Volume
(m3)

Area
(m2)

T
LS

M
ax

Z

F.P. 0.000 0.000 168.763 3245.343 30.530 1732.374 1159.574 3149.960 2401.601 3257.313

R
EF

ER
EN

C
ED

F.N. 58.359 5178.640 225.280 3320.448 247.318 4833.053 807.084 3416.043 1420.857 3308.710
T. Diff. −58.359 5178.640 −56.518 75.105 −216.788 3100.679 352.491 266.083 980.743 51.397

A.T. Diff. 58.359 5178.640 394.043 6565.791 277.848 6565.428 1966.658 6566.003 3822.458 6566.023

No Diff. Area (m2) 1387.970 0.712 0.587 0.053 0.025
A.T. Diff. V/A 0.011 0.060 0.042 0.300 0.582

T
LS

M
in

Z

F.P. 196.805 3719.098 46.800 2380.819 1182.040 3217.421 2424.525 3294.550
F.N. 194.846 2847.013 205.061 4184.533 771.108 3348.571 1385.424 3271.469

T. Diff. 1.959 872.085 −158.261 1803.714 410.932 131.150 1039.101 23.081
A.T. Diff. 391.651 6566.112 251.861 6565.352 1953.149 6565.992 3809.949 6566.019

No Diff. Area (m2) 0.391 0.662 0.064 0.028
A.T. Diff. V/A 0.060 0.038 0.297 0.580

35
0

Z

F.P. 65.779 1923.091 1229.582 3181.161 2471.911 3270.461
F.N. 225.750 4637.043 821.065 3382.532 1435.583 3295.330

T. Diff. −159.972 2713.952 408.518 201.371 1036.327 24.869
A.T. Diff. 291.529 6560.134 2050.647 6563.692 3907.494 6565.791

No Diff. Area (m2) 0.534 0.142 0.036
A.T. Diff. V/A 0.044 0.312 0.595

12
0

Z

F.P. 1263.954 3306.675 2510.298 3340.528
F.N. 694.730 3257.542 1313.198 3224.757

T. Diff. 569.224 49.134 1197.101 115.771
A.T. Diff. 1958.684 6564.217 3823.496 6565.286

No Diff. Area (m2) 0.047 0.009
A.T. Diff. V/A 0.298 0.582

50
Z

F.P. 1248.394 3377.674
F.N. 620.406 3187.482

T. Diff. 627.988 190.192
A.T. Diff. 1868.799 6565.156

No Diff. Area (m2) 0.036
A.T. Diff. V/A 0.285

Figure 6. Clipped DSMs, DSM differences and difference zones of DSM pairs.
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When the analysis results were interpreted, the minimum volumetric and areal differences were
predictably obtained with the TLS Max Z–TLS Min Z comparison. However, the maximum volumetric
difference was obtained with the 350 Z–25 Z comparison. Although the maximum areal difference was
obtained with the TLS Min Z–350 Z comparison, the volumetric difference of this comparison was the
fifth best result. To eliminate this contradiction and more objectively interpret the comparison results,
the difference volume per square meter (A.T. Diff. V/A) was calculated for each pair of datasets using
the absolute total volumetric and absolute total areal difference values.

In this context, to find the most reliable dataset, all areal and volumetric difference metrics were
evaluated by the multi-criteria decision-making analysis (Table 10). According to analysis results,
TLS Min was the most reliable vertical dataset compared to other datasets. According to the analysis
results, TLS Min was the most reliable vertical dataset. Among the UAV-based data, the 120 Z and
350 Z scores were almost identical (43.75 and 43.64, respectively).

Table 10. Simple multi-criteria decision making analysis scores of areal and volumetric analysis results.

Analysis Type TLS Max Z TLS Min Z 350 Z 120 Z 50 Z 25 Z

F.P. Vol. Scores 70.04 69.33 67.07 68.79 51.53 11.91
F.N. Vol. Scores 64.17 66.27 62.09 65.23 50.30 14.56

A.T. Diff. Vol. Scores 67.64 67.92 64.96 67.20 50.61 11.98
F.P. Area Scores 38.78 32.18 17.51 31.79 12.71 11.05
F.N. Area Scores 50.06 60.58 72.15 49.38 79.78 82.39

A.T. Diff. Area Scores 20.02 20.01 0.13 0.15 0.08 0.03
No Diff. Area Scores 20.02 20.02 0.03 0.03 0.00 0.00
A.T. Diff. V/A Scores 67.84 68.12 65.22 67.47 50.81 12.03

Mean Score 49.82 50.55 43.64 43.75 36.98 17.99

3.3. Experimental Doming Modeling

According to all vertical data comparison results, the most unreliable vertical datasets were the
25-m and 50-m AGL surface models. When the entire vertical evaluation results were assessed, it is
striking that 25-m and 50-m AGL altitude surface model datasets were extremely warped along the
study area. This warping effect is expressed as “doming” in the literature [33,35–37] and can be more
clearly observed in datasets with the vertical profile analysis (Figure 7).

Figure 7. Comparison of surface model differences (b) and surface model elevations (c) along the same
profile line A–B (a).
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To define the “doming effect”, domes were mathematically modeled as surface functions and
spheres. In this context, spherical dome models were generated from the quadratic and cubic surface
functions of the GNSS Z–50 Z and GNSS Z–25 Z differences. The spatial conformity of the spherical
dome models and the quadratic and cubic surface functions with the actual residuals was tested, and
the mean and standard deviation of distances were calculated (Figure S2 and Table 11).

Table 11. Spatial parameters of fitted functional and spherical surfaces.

Quadratic Functions Cubic Functions

GNSS Z–50 Z GNSS Z–25 Z GNSS Z–50 Z GNSS Z–25 Z

Mean Distance of actual
residuals from fitted

surfaces (m)
−0.0003 −0.0006 −0.0002 −0.0003

Std. Dev. of distances from
fitted surfaces (m) 0.042 0.060 0.040 0.048

Radius of Spherical Dome
Model (m) 3478.919 1839.072 3452.649 1831.117

Mean Distance of actual
residuals from fitted

spheres (m)
0.066 0.064 0.081 0.075

Std. Dev. of distances from
fitted spheres (m) 0.048 0.055 0.053 0.059

According to the results, an approximately 1.9-fold difference was obtained between the fitted
sphere radii of GNSS Z–50 Z and GNSS Z–25 Z. In addition, cubic surface functions had better results
than the other surface fitting models. To verify the results, the functional and spherical surfaces were
used to remove the “doming” from the 25- and 50-m DSMs. In this context, 25- and 50-m DSMs were
regenerated by using quadratic, cubic, quadratic-based spherical and cubic-based spherical surfaces.
Subsequently, the surface model differences of the regenerated 25- and 50-m DSMs from TLS-Max,
TLS-Min, 350- and 120-m DSMs were recalculated. According to the vertical profile analysis results of
the difference surfaces, the quadratic and spherical models delivered some deformations (Figure 8).
The results indicate that cubic surface functions are the best tools to model the “doming effect”.

Figure 8. Differences of regenerated 25 Z and 50 Z surface models from other surface models along the
profile line A-B in Figure 7. Regenerated 25 Z and 50 Z surface models derived from: quadratic surface
functions (a); cubic surface functions (b); quadratic function based spherical surfaces (c); and cubic
function based spherical surfaces (d).
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4. Discussion

Each equipment or technique has its own methodological procedures, options, specifications, data
characteristics and accuracies. An accuracy assessment should be performed, especially if the findings
are to be used as an input in the decision-making process [3,66]. In addition, to find the effect of a specific
factor on the accuracy, first, all possible sources of errors should be kept constant in an experimental
environment. In this context, according to results, the UAV-SfM surveying workflow-derived data
production has some key points. The spatial accuracy of the UAV-SfM-derived data is substantially
based on the GNSS data accuracy. Two types of GNSS inputs are used in photogrammetric processes:
GCP coordinates and image coordinates. In this study, the GCP coordinates were collected with the
dual-frequency (L1+L2) NRTK GNSS receiver. The image coordinates were synchronously collected to
the image acquisitions with the on-UAV GNSS receivers. Both UAV platform (DJI Phantom 3 Adv.
and Trimble UX5) have single-frequency (L1) GNSS receivers and no RTK capabilities. As known,
the dual-frequency NRTK GNSS receivers acquire more accurate location information than the
single-frequency GNSS receivers [14]. Thus, this information should be considered when determining
the precision thresholds in photogrammetric processes.

Another point to consider is the photogrammetry software to use in the study. Although
the performance of different SfM-based software packages is discussed in the literature [67,68],
the development of better image-matching algorithms and techniques is an ongoing research
topic [21,69,70].

Increasing the resolution or point density is one of the factors that affects the cost of the data
acquisition, and generating accurate information from low-resolution data is a challenge. In this study,
five different ortho imagery datasets (25-, 50-, 120-, and 350-m AGL flights and intensity-based TLS)
were generated, and the results indicate that increasing the resolution of the UAV imagery does not
always lead to more accurate results, as similarly reported by Gómez-Candón, et al. [71].

The selection of appropriate techniques to use in the accuracy assessment of the third-dimension
data requires an additional evaluation. By nature, PC datasets show an irregular point distribution on
the surface. Although different techniques can be used in comparing the PC datasets with one another,
such as the iterative closest point (ICP) algorithm, the irregular distribution of points can be considered
a difficulty. At this point, it is obviously easier to compare the datasets by transforming the irregularly
spaced PC data into a regular spaced grid (raster) structure. However, an interpolation technique must
be used to perform this transformation. The selection of an appropriate interpolation technique to
obtain raster-based surface model datasets from PCs is another factor to consider. When the literature
is examined, some interpolation techniques are widely studied [49,57,72]. However, as stated by
Kim, et al. [73], using an interpolation routine can result in over-smoothed raster surface models. In this
context, it is appropriate to create a raster surface model from the ultra-high density PCs with at least
one point in each raster grid cell. Accordingly, in this study, the raster-based surface model datasets
were generated from photogrammetric and TLS-based PCs using the IDW interpolation combined
binning approach. The accuracy assessment of the surface models was performed based on the
point-based coordinate, areal, volumetric differences. All assessment results show that similarly to the
2D assessments, increasing the resolution does not always lead to more accurate results. In particular,
the low-altitude data (25- and 50-m AGL flights) were affected by the phenomenon called the “doming
effect”, which is considered an imperfection of the 3D reconstruction algorithm for photogrammetric
processes. In addition, according to the results, the “doming effect” increased by 1.9-fold and was
inversely proportional to the increase from 25 to 50 m AGL flight altitudes. These two datasets
were generated using the DJI Phantom 3 Adv. UAV system. The 120-m AGL data acquisitions were
also performed using the DJI Phantom 3 Adv. UAV system. However, the 120-m AGL DSM was
obtained as doming-free. Among these three data acquisition procedures, only the AGL flight altitudes
were changed, whereas the computational parameters were identical. Due to the differences in flight
altitudes, the GSD of photos and number of photos varied. To define the doming effect, the deformation
of the difference surfaces was modeled as quadratic and cubic surface functions. The quadratic- and
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cubic-based fitted spherical surfaces were also modeled. Magri and Toldo [38] demonstrated that
the quadratic surface functions derived from the bare earth surface model can be used to model the
“doming effect”. Differently, in this study, the “doming effect” was modeled via the vertical coordinate
differences of RPs from doming-affected DSMs. The findings of the current study indicate that the cubic
surface functions had better results than the quadratic surface functions. In this context, three possible
scenarios can be set up to generate doming-free DSMs, such as increasing the number of checkpoints
to model the cubic function of the dome by using the check point coordinates and domed surface
differences. The other less intensive solution is to derive the cubic function of the dome by using the
differences between a doming-free surface and a domed surface. According to results for this study
area, doming-free surfaces were generated at minimum 120 m AGL flight altitude. The differences
between the two datasets can be determined by systematically employed points and be used as a
base to model the cubic dome function. Subsequently, by applying the cubic function-derived surface
model to the domed DSM, doming-free DSM can be achieved.

5. Conclusions

This study was conducted to investigate the effects of different altitudes, platforms and
camera combinations on the UAV-SfM based data accuracy and “doming effect”. The time spent
performing the study and the accuracy of the data are the most important factors affecting the
cost. This study demonstrated that it is possible to use the low-cost UAVs for mapping purposes in
appropriate conditions.

According to the vertical and horizontal accuracy and multi-criteria decision-making analysis,
the 120-m AGL flight provided the most reasonable accuracy for the low-cost UAV system with the
mean multi-criteria decision-making analysis score of 53.29. For the mapping purpose UAV system
(350-m AGL flight), the score was 46.96. When these datasets were compared with the data obtained
using ground-based measurement methods, satisfactory results were obtained. As indicated in study,
systematic “doming effect” was determined in the processed data of low-altitude flights (50 and
25 m AGL). This problem is generally manifested by extreme GCP-RMSE values in photogrammetric
processes. In this study, total GCP-RMSEs were obtained as 0.28 and 0.55 m for 50 and 25 m AGL
flights, respectively. The change in GCP-RMSEs for these datasets was about twofold. According to the
vertical and volumetric difference and fitted surface analysis results, the difference ratio of “doming
effect” increased by 1.9-fold and was inversely proportional to the increase from 25 to 50 m AGL
flight altitudes. In this context, it was concluded that decreasing the distance between the surface
and the sensor increases the “doming effect” on the data. The analysis also showed that the “doming
effect” can be modeled by using cubic surface functions. One of the major findings of this study is
that the “doming effect” can be effectively mitigated by applying these functional surfaces over the
domed DSMs.

SfM-based photogrammetric 3D data production has several drawbacks, and those are mostly
based on the use of optical imagery. In this context, the photogrammetry-based disadvantages can be
substantially eliminated by post-processing procedures based on referenced data. Another approach
that can be suggested to completely eliminate the disadvantages of the photogrammetry, is the laser
scanning assisted image acquisition. However, the higher cost of the laser scanners and integrated
high-precision navigational components (IMU and GNSS) limits the widespread usage of this technique.
The UAV-SfM combination provides relatively acceptable results and cost-effective data in obtaining
DSM and ortho-images when the conditions set forth in this study are taken into account. It should also
be noted that, if the case is to obtain the digital terrain model, the UAV-SfM combination is employed
only in bare ground terrain or very low vegetation covered areas.

Supplementary Materials: The following are available online at http://www.mdpi.com/2220-9964/8/4/175/s1,
Figure S1: Q-Q plots and histograms of vertical residuals. Figure S2: Quadratic and Cubic surface functions
and parameters, Quadratic and Cubic surface function-based spherical dome model parameters, the mean and
standard deviation of difference distances of the generated models from the actual residual points.

http://www.mdpi.com/2220-9964/8/4/175/s1
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