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Abstract: Since populations in the developing world have been rapidly increasing, accurately 

determining the population distribution is becoming more critical for many countries. One of the 

most widely used population density estimation methods is dasymetric mapping. This can be 

defined as a precise method for areal interpolation between different spatial units. In most 

applications of dasymetric mapping, land use and land cover data have been considered as ancillary 

data for the areal disaggregation process. This research presents an alternative dasymetric approach 

using area specific ancillary data for hilly area population mapping in a GIS environment. 

Specifically, we propose a Hilly Area Dasymetric Mapping (HDM) technique by combining 

topographic variables and land use to better disaggregate hilly area population distribution at fine-

grain division of ancillary units. Empirical results for Sri Lanka’s highest mountain range show that 

the combined dasymetric approach estimates hilly area population most accurately and because of 

the significant association that is found to exist between topographic variables and population 

distribution within this setting. This research is expected to have significant implications for 

national and regional planning by providing useful information about actual population 

distributions in environmentally hazardous and sparsely populated areas. 

Keywords: Hilly area Dasymetric Mapping (HDM), population estimation; area specific ancillary 

data; topographic variables; GIS and cartographic application 

 

1. Introduction 

Accurate mapping of population distribution has become very important in a variety of 

applications, such as urban and regional planning, disaster management, resources and facility 

allocation, risk-assessment, and socioeconomic development policy [1–12]. This is particularly true 

for developing countries with a rapid population growth and inaccurate or unavailable census data. 

Sri Lanka is one of the South Asian countries that are experiencing explosive population growth, with 

unbalanced geographic concentrations in several specific cities. More reliable estimation of 

population distribution is therefore continuously needed in Sri Lanka for national land planning 

[13,14]. With the rapid expansion of population, the ‘land-human ratio’ of Sri Lanka has declined and 

the number of people living in environmentally risky and unstable areas, such as areas with the 

potential for landslides and mass erosion, has been increasing. One of the main reasons for this 

sprawling may be unplanned and very fast urbanization elsewhere in the country. Many negative 
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impacts of rapid urbanization in Sri Lanka have been observed and studied, for example, land use-

cover changes [15], rapid removal of vegetation cover, rapid increment of land surface temperature 

and formation of urban heat islands [16–19], degradation of residential conditions, and 

environmental pollution [20,21]. Due to these rapid nationwide changes, people seek alternative 

areas for housing, even in environmentally sensitive areas. Specifically, hilly areas that comprise a 

large portion of Sri Lanka land, have gradually become occupied by residents. However, the 

population of these hilly areas has never been systematically investigated. Investigation of the 

population distribution of such unsafe but obviously populated areas is an important task for federal 

government and local authorities for national land planning and taxation. On the other hand, from 

the perspective of management for national forest preservation, it would also be important to look 

over ongoing deforesting and land development for planting and housing in mountainous areas of 

Sri Lanka. 

This paper focuses on examining the population distribution of hilly areas in Sri Lanka using a 

scientific estimation method. To achieve this, we propose an alternative dasymetric mapping 

approach, which has been one of the most widely used population estimation methods for several 

decades. Dasymetric mapping is a method of representing more realistic distribution of population 

by depicting finer density than aggregated statistical units (e.g., census unit) [22], thus is conceived 

as a way of areal interpolation, which is a transformation of attribute data between enumeration units 

with different spatial resolution [23]. In most applications of population estimation based on 

dasymetric mapping, land use and land cover data have been considered as ancillary data for the 

areal disaggregation process. However, this research combines new ancillary sources such as slope 

angle and altitude of land, which are highly relevant to a hilly areas population for classical land use 

and land cover dasymetric mapping. Our approach of estimating hilly areas population is expected 

to also be significant in the application contexts of many developing countries where the number of 

people living in such hilly areas is continuously increasing. It is also significant because these 

applications are not found in the case of Sri Lanka’s highest mountain range. Also, this research may 

have a significant implication in terms of regional planning, nature preservation practices, settlement 

management, and emergency management by providing useful information about actual population 

distributions in environmentally risky areas. 

This paper is structured as follows. First, the population estimation and mapping methods are 

critically reviewed. The study then shows the empirical application of hilly areas dasymetric 

mapping, utilizing all ancillary data, including slope angle, altitude, and land use/cover. The 

resulting outcomes are discussed by comparing other results with different datasets for the 

estimation. Finally, summary and conclusions are provided. 

2. Population Estimation and Mapping 

For population mapping, census enumeration units and relevant population data for areas of 

interest are usually needed. These data are varied among regional geographical entities, particularly 

between countries. In general, population statistics are hierarchically structured as spatial units with 

different resolutions; such statistical systems significantly differ among countries [23]. This variability 

regarding population mapping can also be acknowledged in the existing body of literature. A number 

of studies have been introduced for population estimation and mapping in different geographic 

levels using various data sources such as remote sensing imagery and road network, as well as GIS 

derived data [3,5,24–31,32]. Meanwhile, it is noted that many studies have deployed a dasymetric 

approach as one of main techniques for estimating population distribution. A dasymetric map 

provides much finer details of population distribution than a traditional choropleth map using areas 

with known population information [23]. Also, a dasymetric map depicts areal data with relatively 

homogeneous boundaries showing underlying statistical surface [33]. Thus, the main advantage of a 

dasymetric mapping technique is that it estimates population characteristics of small areas that do 

not correspond to census enumeration boundaries [34]. To disaggregate the existing census units into 

fine-grain homogeneity statistical units in a meaningful way, all dasymetric methods have employed 

ancillary data as additional information in the disaggregation process. Although this information can 
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vary in terms of data availability and cartographer's knowledge of the area [33], from a seminal work 

of Wright [22], a large number of studies have utilized land use and land cover as basic ancillary data. 

Nevertheless, it is obvious that the availability of relevant ancillary data is essential for enhancing the 

accuracy of population maps [35]. The use of most appropriate ancillary data for particular areas with 

certain geographic characteristics is crucial for the accurate estimation of population by dasymetric 

approaches. 

In this context, there have been many other approaches that have employed alternative ancillary 

data sources other than conventional land use and cover data (e.g., imperviousness of roads, road 

network density, and nighttime lights by Zandbergen and Ignizio [36]; addresses, points, and parcel 

locations by Zandbergen [34]; lobster traps and PGIS by Brehme et al. [37]). Examining unexplored 

ancillary data is obviously important for more accurate dasymetric estimation [36] because it might 

provide more significant information about true population distribution than that derived from land 

use/cover data alone. Unexplored ancillary data can also show the variation of population 

distribution in terms of different geographic settings, such as coastal areas or hilly areas. In this sense, 

this study proposes an alternative dasymetric mapping method named a Hilly area Dasymetric 

Mapping (HDM) using a combined ancillary dataset for hilly areas population mapping. Specifically, 

we utilize topographic information as area-specific ancillary data, including the slope angle and 

altitude of the land, which are relevant to hilly areas populations, as well as traditional land use/cover 

data. This approach makes sense because the correlation between land use and population density in 

hilly areas may be less pronounced, while slope angle and altitude are recognized as potentially 

influential factors for habitation density [38]. Also, this study adds to the existing body of literature 

by examining the case for the use of topographic variables in population estimation in hilly terrain. 

In fact, slope angle and/or altitude have only been addressed in a few studies [1,26,31,38–40]. 

Furthermore, to the best of our knowledge, no studies have been carried out that deal with slope 

angle, altitude, and land use/cover together. Moreover, there is a lack of research addressing 

dasymetric applications in rural and mountainous areas as well as in developing countries. 

3. Empirical Application for Hilly Area Dasymetric Mapping 

3.1. Study Area 

The study area of this research is the upper mountain range of Nuwara Eliya District Secretariat 

Division (DSD), which is within the highest mountain area of Sri Lanka that ranges from 1,300 m to 

3,001 m in altitude (according to the DEM). Also, this area covers twenty-five Grama Niladari 

Divisions (GNDs) in the Nuwara Eliya DSD, which is a unit at the bottom level of the administration 

hierarchy in Sri Lanka. This is the entire area that we will estimate more detailed population by 

disaggregating sub area population (GNDs). One of the GNDs is Piduruthalagala, which is located 

on Mount Pedro, the tallest summit (at 2,524 m or 8,281 ft) in Sri Lanka (Figure 1). The study area 

comprises a highly rough terrain profile consisting of diverse sloped patterns. The main cultivation 

practice of the selected areas is tea, while scrub and forest land use categories are dominant. 
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Figure 1. Upper part of Nuwara Eliya DSD and administrative divisions. 

The total population of the study area is 62,981 and the minimum and maximum populations 

are 1,093 and 4,463 in the Kalukele (535B) and Park (534G) GNDs, respectively [7]. The significant 

aspect of this area is that a large portion of the population lives on very steep slopes and in very 

rugged topological structures and landforms. For example, 3316 people live within the Pedro GND, 

which is located at the highest topographical region of Sri Lanka. Other GNDs nearby the Pedro GND 

represent similar situations (Figure 2). 
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Figure 2. Population density of the study area. 

3.2. Hilly Area Population Estimation  

In this section, the Hilly area Dasymetric Mapping method (HDM) is discussed for more 

accurate estimation of population distribution in hilly areas. In particular, this study utilizes the 

regional characteristics of highly mountainous areas, such as height, slope, and land use as well as 

land cover ancillary data for fine grain population distribution mapping. Visual observation of 

Figures 2–4 indicate that the population and topographic characteristics of the study area appear to 

be spatially correlated. Hence, using slope angle and altitude data may be appropriate for accurate 

population estimation in hilly mountainous areas, while also utilizing conventional land use data. A 

hilly area dasymetric process is conducted in the multi-layer, multi-class dasymetric framework 

introduced by Su et al. [41], which disaggregates the aggregated population data with several 

relevant information for detailed true population density; for example, land cover, land value, and 

traffic networks. Each variable or layer related to true population distribution has a number of classes 

of different population densities and weighting factors based on relative population density are 

assigned to each class. Accordingly, the first step of hilly area dasymetric process is to classify an 

ancillary variable and then weight factors for population density are assigned to each class. Total 

population is then redistributed to each weighted class based on a simple areal weighting method. 

This process is repeated to combine other ancillary variables using the same areal weighting method 

to reveal detailed spatial patterns of population distribution. 
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Figure 3. Slope distribution of the study area. 

 

Figure 4. Elevation distribution of the study area. 
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For the preparation of topographic ancillary data, this study considers the contours surface at a 

scale of 1:50,000 [42], as a base source to derive both slope angle (Figure 3) and altitude classes using 

a Digital Elevation Model (DEM) (Figure 4). The spatial resolution of raster DEM is 25 m and the 

vertical resolution of input data is 20 m contour interval. In the process of generating DEM in a GIS 

environment, which is based upon a contour layer, elevation values of all considered points (derived 

from contour heights) are interpolated to produce a continuous raster. In addition, land use data 

(2010) are obtained from the Department of Surveying of Sri Lanka [43] at a scale of 1:50,000 (Figure 5). 

Figure 5. Land use/cover of the study area. 

No unilateral solution exits for data classification method, or the number of classes. So, in this 

paper we reviewed the data distribution first and then determined the classification method and the 

number of classes. Each ancillary data is classified based on Jenks algorithm [44] because we wish to 

utilize the classes representing data distribution very well. Jenks classification is useful to represent 

data distribution with natural groups inherent in the data by minimizing the variance within classes 

and maximizing the between-class variance. Then, various weight factors for the population 

disaggregation are assigned to each of the ancillary data classes, similar to the classical dasymetric 

methods [22,33]. However, this study simulates several weighing schemes for each ancillary variable 

and calculates the performances of the schemes using Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE), in order to avoid subjective choices of weights for classes and to identify the 

best performing scheme for hilly area population estimation. In addition, this paper considers some 

significant findings from the previous works for appropriate weight factors of classes. Lin et al. [26] 

revealed empirically the influences of topographic and climate variables on population distribution 

in East and Southeast Asia. According to their results, population density tends to increase with lower 

values of topographic altitude and slope, but a terrain with the steepest slopes and highest elevations 

are usually unsuitable for living because of poor land stability and difficulties in transportation. 

Therefore, zero or a much lower value of weight might be assigned to the steep and high elevated 

classes. 

As mentioned previously, measures of both RMSE and MAE are utilized for quantifying errors 

from the models; RMSE and MAE have been widely utilized in many applications of population 
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estimation, e.g., [27,28,45–48]. The RMSE and MAE of the model are calculated according to the 

following general equations: 
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 (1) 

where RMSE is the error of source zone, yi depicts the actual population of GNDs, ���  represents the 

estimated population of GNDs, and n refers to the number of observation units (GNDs) considered. 
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Table 1. Performance in terms of different weighting schemes for ancillary classes. 

Ancillary Classes % of Area  Weighting 1 (%) Weighting 2 (%) Weighting 3 (%) 

Slope     

0–6 31.16 70 75 80 

7–13 3.15 20 17 15 

14–20 15.36 10 8 5  

21–31 36.59 0 0 0 

32–57 11.79 0 0 0 

58–85 1.95 0 0 0 

RMSE - 624 611 551 

MAE - 480 420 353 

Elevation     

1,300–1,513 7.27 70 75 65 

1,514–1,733 8.64 20 17 18 

1,734–1,880 20.83 8 5 10 

1,881–1,980  32.81 2 3 7 

1,981–2,106 18.12 0 0 0 

2,107–2,260 7.50 0 0 0 

2,261–2,566 4.71 0 0 0 

2,567–3,001 0.12 0 0 0 

RMSE - 991 913 1,042 

MAE - 682 667 730 

Land use and land cover      

Home Gardens  11.14 70 80 75 

Other Plantations  4.11 20 15 17 

Tea  32.07 8 4 5 

Rubber  0.58 2 1 3 

Ela (Stream)  0.48 0 0 0 

Lake  0.54 0 0 0 

Tank (working) 0.005 0 0 0 

Water Bodies  0.08 0 0 0 

Jeep or Cart Tracks  6.60 0 0 0 

Main Roads (A) 1.06 0 0 0 

Main Roads (B)  1.12 0 0 0 

Minor Roads  0.73 0 0 0 

Rock  0.21 0 0 0 

Paddy 0.67 0 0 0 

Forest  35.00 0 0 0 

Scrubs  5.604 0 0 0 

RMSE - 875  809 842 

MAE - 527 491 509 

Table 1 shows the predefined categories of each ancillary variable and the performances of 

estimation with different weight schemes. For the slope angle classes, the lowest group range is 0–6, 
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while the steepest group range is 58–85. The first two groups (0–6 and 7–13) are considered to be 

areas where the population is likely to be highly scattered. Actually, the total area of these two 

categories is 28.83 km2 (i.e., 34.31% of study area). Weight factors of 80% and 15% are assigned to 

these two slope angle categories from the simulation results in Table 1. From a preliminary 

observation, it is easy to understand the close association between slope angle categories and 

population density distribution. For the third category (14–20), 5% is assigned. The other three slope 

angle classes are considered as ‘uninhabited’ due to their significant steepness, relatively similar to 

the classes in Lin et al. [26]. A similar approach is used to allocate the weights for the altitude 

categories based on performance results. Weights of 75%, 17%, 5%, and 3% are assigned to elevation 

classes from ‘1,300–1,513’ to ‘1,881–1,980’. Also, the elevation classes such as ‘1,981–2,106’, ‘2,107–

2,260’, ‘2,261–2,566’, and ‘2,567–3,001’ are considered to be uninhabited areas, which concur with the 

results by Lin et al. [19]. In fact, zero population assignment for both slope angle and altitude classes 

belongs to the upper quartile (above 75% when the data is in order). Wright [22] and Eicher and 

Brewer [33] applied a similar process to land use categories that are usually based on previous 

classical works for population mapping with land use data. Moreover, unique land use and cover in 

the hilly areas of Sri Lanka should be considered as home gardens and tea or rubber plantations. 

Weights of 80%, 15%, 4%, and 1% are assigned for the land-use categories of ‘Home Gardens’, ‘Other 

Plantation’, ‘Tea’, and ‘Rubber’, respectively. This categorization reflects the suitability of home 

gardens and other plantations for residential environments. These land-use categories are therefore 

dominant in the landscape for highly populated hilly areas. Meanwhile, forest, paddy lands, all water 

body categories, rocky land, and all road categories are obviously considered as uninhabited areas. 

Based on the weights for each of the above variables, individual dasymetric maps derived from slope 

angle, altitude, and land use/cover layer are generated. 

As a final step of hilly areas dasymetric mapping, all of the individual dasymetric maps are 

overlaid within the multi-layer multi-class dasymetric framework [41] for better disaggregation of 

the aggregated population data and to determine the true population distribution patterns according 

to several parameters (in this study, land use/cover, slope angle, and altitude) correlated with 

population density. Here, a slope-based dasymetric map is considered as the base layer (as it reports 

less error), while land use/cover and altitude based dasymetric maps are used as second and third 

layers, respectively, for the further disaggregation phase of the population density of slope angle 

classes. For example, if a polygon with an 80% weighted slope angle (0–6) is located inside a water 

body, that polygon slope angle is considered to represent an uninhabited area. The same procedure 

is applied for all disaggregation processes to generate the final result of hilly areas population using 

dasymetric mapping based on combined variables. 

Dasymetric mapping operates by employing weights that capture both the relative areas of the 

target spatial units and the relative population densities of the different nominal ancillary classes. In 

this study, the areal weighting disaggregation formulation [41,49–51] is applied for the population 

density calculations in a GIS environment as follows: 

����� =  
�� ∗ �������

∑ �����
�
���

 (3) 

where EPD ij ensures the estimated population density of the target zones, Pi is the total population of 

area unit i, Aij represents the total area of subclass j in unit i, n represents the number of subclasses, and 

Wj denotes the weight for subclass j. It is noted that the calibration of the Wj parameters becomes a major 

problem in the application of general multi-class dasymetric models [41]. 
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4. Results for Hilly Area Dasymetric Mapping  

 

Figure 6. Population estimation using the slope angle-based dasymetric mapping. 

Figure 6 presents the resultant map of the study according to slope. In this figure, areas where 

the population density is equal to zero represent the areas where people have been incorrectly placed. 

Table 2 shows the results of the study with various ancillary data. The number of people incorrectly 

placed is based on the sum of the absolute values of the difference between estimated and known 

population counts for the target area [36]. 

Proportionally, areas where the number of incorrectly placed people is small are considered to 

be well disaggregated regional GNDs (census enumeration units) and vice versa. The distribution of 

the estimated population density represents a strongly negative association with the layers’ slope 

angles categories and altitude, as revealed through a visual inspection. In contrast, high density areas 

are significantly correlated with the distribution of the areas of low slopes categories, particularly the 

group of 0–6. Also, this study assists in disaggregating the GND census enumeration units into very 

fine-grain levels by showing the exact population density distribution at a considerably accurate level 

(Table 2). The areas of the west, north, northeast, and southeast represent a relatively higher altitude 

than other areas of the region. Hence, these areas are estimated as having the lowest density of 

population distribution. However, several small areas located near the top of the mountains (e.g., 

Pedro) represent a high population density (e.g., 243–596 per km2) due to the presence of low slope 

angle categories. The actual number of people living in the Pedro GND is 3,316, which is a relatively 

large number. The population estimations according to the ancillary data of land use (Figure 7) and 

altitude (Figure 8) appear to show relatively different outcomes. It is difficult to identify a rigorous 

association between land use categories (except ‘Home Gardens’ and ‘Other Plantation’) and 

inhabited areas in hilly areas. 
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Figure 7. Population estimation using the land use-based dasymetric mapping. 

 

Figure 8. Population estimation using the altitude-based dasymetric mapping. 
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Figure 9. Population estimation using the combined dasymetric mapping. 



ISPRS Int. J. Geo-Inf. 2019, 8, 166 13 of 19 

 

Table 2. Results of the HDM with various ancillary data. 

No. Name of GND 
Total 

Population  
Area (km2) 

Population 

Density  

Incorrectly Placed People 

Altitude 
% of 

Total 
Land Use 

% of 

Total 
Slope 

% of 

Total 
Combined 

% of 

Total 

1 Bambarakele 3,143 1.6060 1,957 2,011 64 901 29 1,950 62 1,115 35 

2 Bangalahatha  3,333 9.3361 357 935 28 940 28 2,058 62 1,620 49 

3 Bulu Ela  1,751 2.0408 858 941 54 901 51 510 29 451 26 

4 Galpalama 1,222 2.7095 451 638 52 710 58 411 34 391 32 

5 Hawaeliya East 2,273 0.5024 4,524 998 44 1,094 48 1,001 44 987 43 

6 Hawaeliya North 2,216 0.4663 4,752 991 45 1,001 45 1,027 46 1,051 47 

7 Hawaeliya West 2,072 0.6671 3,106 1,131 55 950 46 811 39 751 36 

8 Kalapura 3,465 8.9075 389 1,169 34 809 23 1,850 53 1,771 51 

9 Kalukele 1,093 0.4545 2,405 548 50 610 56 508 46 464 42 

10 Kandapola 1,426 1.1500 1,240 748 52 790 55 470 33 466 33 

11 Kandapola Central 2,853 1.2502 2,282 1,235 43 1,101 39 780 27 687 24 

12 Kelegala 1,829 0.3666 4,989 721 39 1,010 55 560 31 556 30 

13 Kirimetiya 3,967 5.9209 670 1,301 33 950 24 1,480 37 1,220 31 

14 Magastota 1,408 0.5050 2,788 571 41 710 50 440 31 315 22 

15 Nanuoya 3,860 3.4744 1,111 938 24 1,191 31 2,010 52 1,109 29 

16 Nuwaraeliya 1,290 1.2034 1,072 679 53 886 69 85 07 68 5 

17 Nuwaraeliya Central 4,292 3.1306 1,371 861 20 1,792 42 430 10 387 9 

18 Nuwaraeliya West  2,481 2.0555 1,207 1,008 41 816 33 1,150 46 1,035 42 

19 Park 4,463 6.1559 725 2,875 64 2,058 46 1,915 43 1,939 43 

20 Pedro 3,316 15.9423 208 2,471 75 2,080 63 1,964 59 1,940 59 

21 Sandathenna 2,816 4.7090 598 948 34 1,968 70 612 22 514 18 

22 Seethaeliya 1,815 3.2940 551 859 47 1,066 59 710 39 629 35 

23 Shanthipura 1,408 0.6205 2,269 962 68 797 57 545 39 448 32 

24 Summerset 3,522 5.2567 670 1,178 33 1,162 33 1,910 54 1,687 48 

25 Windicorner 1,667 2.2930 727 962 58 661 40 985 59 791 47 

 Total 62,981 84.06 - 27,679 44 26,954 43 26,172 42 22,392 36 
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Figure 10. Incorrectly placed people by different dasymetric approaches: upper left for altitude-based; upper right for land use-based; bottom left for slope-based; 

bottom right for a combined dasymetric approach. 
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Figure 9 shows the use of three combined ancillary variables that appear to provide a better 

disaggregation result of source observation units (GNDs) into fine-grain divisions of target units. The 

estimated population density map appears to have a more scattered pattern than other population 

maps that use a single ancillary variable. This is because a large number of classes from all the layers 

can be mixed and considered to judge the population distribution through the disaggregation process 

within the multi-layer multi-class approach (6, 8, 16 classes for slope, altitude, and land use, 

respectively). Also, it should be noted that this dasymetric mapping represents the fine-grain division 

of hilly area population disaggregation by preserving the pycnophylactic property of population 

mapping [52], which maintains the same total population in each source zone. 

Table 2 shows the results of the different ancillary data approaches based on the number of 

incorrectly placed people, which represents the errors counted for each observation unit (GNDs). For 

errors by slope angle ancillary data, the total number of incorrectly placed people is 26,172. The GNDs 

such as Bangalahatha (2,058, 62%), Bambarakele (1,950, 62%), Pedro (1,964, 59%), Windicorner (985, 

59%), Summerset (1,910, 54%) and Kalapura (1,850, 53%) show a large number of incorrectly placed 

people, compared to the other GNDs, because these GNDs are located in very steep areas. 

Meanwhile, several GNDs such as Nuwaraeliya (85, 7%), Nuwaraeliya Central (430, 10%), and 

Sandathenna (612, 22%) show fewer errors. A similar pattern is revealed in the altitude ancillary data 

application. For example, the Pedro (2,471, 75%), Shanthipura (962, 68%), Park (2,875, 64%), and 

Bambarakele (2,011, 64%) GNDs are identified as areas with relatively high numbers of incorrectly 

placed people. The dasymetric mapping by land use/cover data shows that the Sandathenna (1,968, 

70%), Nuwaraeliya (886, 69%), Pedro (2,080, 63%), and Seethaeliya (1,066, 59%) GNDs are areas with 

the largest number of incorrectly placed people. This finding somewhat differs to the result from the 

slope angle-based estimation. On the other hand, in the combined dasymetric mapping using slope 

angle, altitude, and land use/cover, Pedro (1,940, 59%), Kalapura (1,771, 51%), Bangalahatha (1,620, 

49%), and Summerset (1,687, 48%) are identified as areas with large numbers of incorrectly placed 

people, while Nuwaraeliya (68, 5%), Nuwaraeliya Central (387, 9%), and Sandathenna (514, 18%) 

show fewer errors of estimation. The total errors of altitude, land use/cover, slope angle, and 

combined approaches are 27,679 (44%), 26,954 (43%), 26,172 (42%), and 22,392 (36%), respectively. 

Among these total errors, the combined dasymetric mapping represents relatively fewer overall 

errors in terms of incorrectly placed people. This might be because the error of dasymetric mapping 

tends to be reduced by improving the fine-grain disaggregation layers with many subclasses. Slope 

and land use/cover-based dasymetric mapping also performed well compared to the combined 

approach. According to the results revealed, the land extent of the areas where inhabitants accurately 

assigned is about 60% of the study area (that is similar to 50.42 km2). 

Table 3. RMSE summary statistics for different dasymetric approaches. 

Errors 
Dasymetric Approaches 

Combined Slope Angle Land Use  Altitude 

RMSE  442.26 551.21 809.00 913.11 

MAE 294.54 352.78 590.57 666.57 

Standard deviation  393.61 501.61 728.10 834.89 

Standard error  11.01 14.54 21.30 24.07 

In addition, the RMSE and MAE of population estimation confirm that the combined dasymetric 

mapping shows the best performance with least errors (Table 3). As per the table, both the RMSE and 

MAE are comparatively high in altitude, land use, and slope angle approaches as compared to the 

combined approach. Also, slope angle approach performed better than the rest of land use and 

altitude in terms of statistical error parameters. 

Figure 10 graphically shows the spatial distribution patterns of incorrectly placed population in 

terms of different dasymetric approaches. The areas with a large number of incorrectly placed people 

imply environmentally risky and physiologically difficult areas for living and human activities, while 

lower values of incorrectly placed people indicate fewer errors of estimation of hilly area population. 
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As each distribution of incorrectly placed people presents different levels of disaggregation by its 

ancillary data resolution, the bottom right map of the combined dasymetric mapping appears to have 

more disaggregated units, and thus a finer level of population estimation than the other maps. 

5. Discussion 

According to the revealed results, GND source zones are appropriately disaggregated by fine-

grain slopes, land use and altitude categories. Therefore, slopes angle, altitude, and land use can be 

considered as significant exponents of population density mapping in hilly areas. However, for 

further fine-grain disaggregation of hilly area population, rigorous high-resolution spatial data are 

needed. For example, address points of dwelling units, remotely sensed data, as well as aerial 

photographic imagery are potential materials for high-resolution disaggregation. Building blocks 

may also be important if the living units are clearly clarified. Thus, in order to improve the reliability 

of the results of this study, high-quality data may be required too. In fact, it is difficult to find a 

consensus yet on hilly area population mapping, except the trade-offs of slopes and elevation with 

population distribution. All the possible alternative approaches on population mapping may be 

latent in the developing world due to data scarcity. Future applications on hilly area population 

mapping may continue with the application of more unobserved ancillary data, which is related to 

mountainous topographies. 

In the weighting schemas for relevant factors for the population, higher slope classes, higher 

elevation classes, and some of land use/cover variables such as water bodies, roads categories, 

forested areas, paddy lands, etc. are obviously considered as uninhabited (zero population) entities. 

Therefore, these entities received zero weights in the calculation process. Also, it is noted that 

topographic ancillary classes and corresponding weights are obtained based on a statistical method 

from our own data distribution, as well as prior knowledge of the authors for study area. In fact, the 

determination of weights for the dasymetric mapping is still controversial and more empirical studies 

and discussion are needed (Su, et al. [41]). This is why many studies have adopted domain knowledge 

and subjective assignments for weights (Eicher and Brewer [33]). Therefore, different weighting 

approaches may need to be broadly examined for hilly area populations with various environments 

for more generalization. Also, future studies can appropriate the validation of results through field 

observations and verifications. 

Despite some drawbacks, our method is very significant because it could mitigate the limitation 

of low-resolution data for typical hilly areas. Although population data is a fundamental component 

for policy-making and disaster response [1], estimating populated hilly areas is a difficult task 

because it is usually based on available census enumeration units. Alternatively, ancillary data 

relevant to hilly areas population, such as land use, slopes angle, and altitude are empirically 

considered for the model in order to disaggregate low-resolution area population into more detailed 

distribution. In future studies, this methodology can easily be applied to accurately calculate the 

prospective population of mountainous areas. 

6. Concluding Remarks 

With rapid expansion of the world’s population, particularly in developing countries, the exact 

counting or estimation of population distribution is important for national and regional planning. In 

particular, estimating a more accurate and detailed level of population distribution for inaccessible 

and unavailable areas, such as mountainous areas, is challenging. In this context, this study 

introduced an alternative method of estimating such unmanageable area populations by utilizing 

dasymetric mapping approaches that incorporate the ancillary variables of regional characteristics. 

From the empirical results, area-specific ancillary data, including slope angle, altitude, and land use 

are very significant in plotting hilly areas’ population. Also, it is shown that an explicit and strong 

correlation exists between the population density distribution and slope, and altitude distribution of 

land. Among several applications, the dasymetric mapping with the combined ancillary data of slope 

angle, altitude, and land use/cover shows the best performance for estimating a population in hilly 

areas. Accordingly, the GNDs source zones were appropriately disaggregated by fine-grain slope 
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angle, land use, and altitude categories. Despite this result, much higher resolution spatial data are 

needed for further fine-grain disaggregation of hilly area populations. However, in most developing 

nations, these data are usually unavailable in census and often inaccurate, even in official statistics. 

Alternatively, the address points of dwelling units or available remotely sensed data such as aerial 

photographic imagery could be considered for more detailed information of population distribution. 

It is expected that the proposed method will provide a viable option for estimating more accurate 

population density, particularly in geographically challenging areas, and will function as a 

methodological extension to classical dasymetric mapping. On the other hand, some significant 

findings were revealed from this work. Under the situation of a rapidly growing population and 

decline of available land, people are often provoked to settle down in environmentally uninhabitable 

areas. In particular, the high altitude areas in this study, such as Pedro and Park GNDs, are highly 

vulnerable for inhabitation. Since the number and size of such vulnerable residential areas are 

increasing in many developing countries, additional population studies about various geographic 

environments and empirical clarifications will be needed in the future. Further, various ancillary 

sources need to be explored to support more accurate dasymetric mapping techniques for population 

estimation. 

One weakness of this study is the application of low spatial resolution data for the analysis. This 

is because up-to-date high resolution data are not available in Sri Lanka. Therefore, the revealed 

results could be improved with the application of up-to-date high resolution data. Nevertheless, 

some studies can be found with coarse resolution data applications, e.g., Song et al. [53]. Although 

our research is certainly worth presenting how to combine area specific variables which are useful 

for deriving detailed population of hilly areas on an empirical basis, our case study is limited to the 

population distribution in Sri Lanka’s highest mountain range. According to our practical knowledge 

and experiences on the study area, the identified variables such as slope angle, altitude, land 

use/cover (particularly topographic variables) are highly correlated with hilly area population 

distributions, and the resulting estimation is well performed to disaggregate the population 

distribution. However, it is noted that these variables and their weight factors may vary among 

different regions of interest. 
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