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Abstract: Since populations in the developing world have been rapidly increasing, accurately
determining the population distribution is becoming more critical for many countries. One of the
most widely used population density estimation methods is dasymetric mapping. This can be defined
as a precise method for areal interpolation between different spatial units. In most applications
of dasymetric mapping, land use and land cover data have been considered as ancillary data for
the areal disaggregation process. This research presents an alternative dasymetric approach using
area specific ancillary data for hilly area population mapping in a GIS environment. Specifically,
we propose a Hilly Area Dasymetric Mapping (HDM) technique by combining topographic variables
and land use to better disaggregate hilly area population distribution at fine-grain division of ancillary
units. Empirical results for Sri Lanka’s highest mountain range show that the combined dasymetric
approach estimates hilly area population most accurately because of the significant association that
is found to exist between topographic variables and population distribution within this setting.
This research is expected to have significant implications for national and regional planning by
providing useful information about actual population distributions in environmentally hazardous
and sparsely populated areas.

Keywords: Hilly area Dasymetric Mapping (HDM); population estimation; area specific ancillary
data; topographic variables; GIS and cartographic application

1. Introduction

Accurate mapping of population distribution has become very important in a variety of
applications, such as urban and regional planning, disaster management, resources and facility
allocation, risk-assessment, and socioeconomic development policy [1–12]. This is particularly true
for developing countries with a rapid population growth and inaccurate or unavailable census data.
Sri Lanka is one of the South Asian countries that are experiencing explosive population growth,
with unbalanced geographic concentrations in several specific cities. More reliable estimation of
population distribution is therefore continuously needed in Sri Lanka for national land planning [13,14].
With the rapid expansion of population, the ‘land-human ratio’ of Sri Lanka has declined and the
number of people living in environmentally risky and unstable areas, such as areas with the potential
for landslides and mass erosion, has been increasing. One of the main reasons for this sprawling
may be unplanned and very fast urbanization elsewhere in the country. Many negative impacts
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of rapid urbanization in Sri Lanka have been observed and studied, for example, land use-cover
changes [15], rapid removal of vegetation cover, rapid increment of land surface temperature and
formation of urban heat islands [16–19], degradation of residential conditions, and environmental
pollution [20,21]. Due to these rapid nationwide changes, people seek alternative areas for housing,
even in environmentally sensitive areas. Specifically, hilly areas that comprise a large portion of Sri
Lanka land, have gradually become occupied by residents. However, the population of these hilly
areas has never been systematically investigated. Investigation of the population distribution of such
unsafe but obviously populated areas is an important task for federal government and local authorities
for national land planning and taxation. On the other hand, from the perspective of management for
national forest preservation, it would also be important to look over ongoing deforesting and land
development for planting and housing in mountainous areas of Sri Lanka.

This paper focuses on examining the population distribution of hilly areas in Sri Lanka using a
scientific estimation method. To achieve this, we propose an alternative dasymetric mapping approach,
which has been one of the most widely used population estimation methods for several decades.
Dasymetric mapping is a method of representing more realistic distribution of population by depicting
finer density than aggregated statistical units (e.g., census unit) [22], thus is conceived as a way of areal
interpolation, which is a transformation of attribute data between enumeration units with different
spatial resolution [23]. In most applications of population estimation based on dasymetric mapping,
land use and land cover data have been considered as ancillary data for the areal disaggregation
process. However, this research combines new ancillary sources such as slope angle and altitude of land,
which are highly relevant to a hilly areas population for classical land use and land cover dasymetric
mapping. Our approach of estimating hilly areas population is expected to also be significant in the
application contexts of many developing countries where the number of people living in such hilly
areas is continuously increasing. It is also significant because these applications are not found in the
case of Sri Lanka’s highest mountain range. Also, this research may have a significant implication in
terms of regional planning, nature preservation practices, settlement management, and emergency
management by providing useful information about actual population distributions in environmentally
risky areas.

This paper is structured as follows. First, the population estimation and mapping methods are
critically reviewed. The study then shows the empirical application of hilly areas dasymetric mapping,
utilizing all ancillary data, including slope angle, altitude, and land use/cover. The resulting outcomes
are discussed by comparing other results with different datasets for the estimation. Finally, summary
and conclusions are provided.

2. Population Estimation and Mapping

For population mapping, census enumeration units and relevant population data for areas of
interest are usually needed. These data are varied among regional geographical entities, particularly
between countries. In general, population statistics are hierarchically structured as spatial units with
different resolutions; such statistical systems significantly differ among countries [23]. This variability
regarding population mapping can also be acknowledged in the existing body of literature. A number
of studies have been introduced for population estimation and mapping in different geographic levels
using various data sources such as remote sensing imagery and road network, as well as GIS derived
data [3,5,24–32]. Meanwhile, it is noted that many studies have deployed a dasymetric approach as
one of main techniques for estimating population distribution. A dasymetric map provides much
finer details of population distribution than a traditional choropleth map using areas with known
population information [23]. Also, a dasymetric map depicts areal data with relatively homogeneous
boundaries showing underlying statistical surface [33]. Thus, the main advantage of a dasymetric
mapping technique is that it estimates population characteristics of small areas that do not correspond
to census enumeration boundaries [34]. To disaggregate the existing census units into fine-grain
homogeneity statistical units in a meaningful way, all dasymetric methods have employed ancillary



ISPRS Int. J. Geo-Inf. 2019, 8, 166 3 of 17

data as additional information in the disaggregation process. Although this information can vary
in terms of data availability and cartographer’s knowledge of the area [33], from a seminal work of
Wright [22], a large number of studies have utilized land use and land cover as basic ancillary data.
Nevertheless, it is obvious that the availability of relevant ancillary data is essential for enhancing
the accuracy of population maps [35]. The use of most appropriate ancillary data for particular
areas with certain geographic characteristics is crucial for the accurate estimation of population by
dasymetric approaches.

In this context, there have been many other approaches that have employed alternative ancillary
data sources other than conventional land use and cover data (e.g., imperviousness of roads,
road network density, and nighttime lights by Zandbergen and Ignizio [36]; addresses, points,
and parcel locations by Zandbergen [34]; lobster traps and PGIS by Brehme et al. [37]). Examining
unexplored ancillary data is obviously important for more accurate dasymetric estimation [36] because
it might provide more significant information about true population distribution than that derived
from land use/cover data alone. Unexplored ancillary data can also show the variation of population
distribution in terms of different geographic settings, such as coastal areas or hilly areas. In this
sense, this study proposes an alternative dasymetric mapping method named a Hilly area Dasymetric
Mapping (HDM) using a combined ancillary dataset for hilly areas population mapping. Specifically,
we utilize topographic information as area-specific ancillary data, including the slope angle and
altitude of the land, which are relevant to hilly areas populations, as well as traditional land use/cover
data. This approach makes sense because the correlation between land use and population density
in hilly areas may be less pronounced, while slope angle and altitude are recognized as potentially
influential factors for habitation density [38]. Also, this study adds to the existing body of literature by
examining the case for the use of topographic variables in population estimation in hilly terrain. In fact,
slope angle and/or altitude have only been addressed in a few studies [1,26,31,38–40]. Furthermore,
to the best of our knowledge, no studies have been carried out that deal with slope angle, altitude,
and land use/cover together. Moreover, there is a lack of research addressing dasymetric applications
in rural and mountainous areas as well as in developing countries.

3. Empirical Application for Hilly Area Dasymetric Mapping

3.1. Study Area

The study area of this research is the upper mountain range of Nuwara Eliya District Secretariat
Division (DSD), which is within the highest mountain area of Sri Lanka that ranges from 1300 m to
3001 m in altitude (according to the DEM). Also, this area covers twenty-five Grama Niladari Divisions
(GNDs) in the Nuwara Eliya DSD, which is a unit at the bottom level of the administration hierarchy
in Sri Lanka. This is the entire area that we will estimate more detailed population by disaggregating
sub area population (GNDs). One of the GNDs is Piduruthalagala, which is located on Mount Pedro,
the tallest summit (at 2524 m or 8281 ft) in Sri Lanka (Figure 1). The study area comprises a highly
rough terrain profile consisting of diverse sloped patterns. The main cultivation practice of the selected
areas is tea, while scrub and forest land use categories are dominant.

The total population of the study area is 62,981 and the minimum and maximum populations are
1093 and 4463 in the Kalukele (535B) and Park (534G) GNDs, respectively [7]. The significant aspect
of this area is that a large portion of the population lives on very steep slopes and in very rugged
topological structures and landforms. For example, 3316 people live within the Pedro GND, which is
located at the highest topographical region of Sri Lanka. Other GNDs nearby the Pedro GND represent
similar situations (Figure 2).
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3.2. Hilly Area Population Estimation

In this section, the Hilly area Dasymetric Mapping method (HDM) is discussed for more accurate
estimation of population distribution in hilly areas. In particular, this study utilizes the regional
characteristics of highly mountainous areas, such as height, slope, and land use as well as land cover
ancillary data for fine grain population distribution mapping. Visual observation of Figures 2–4 indicate
that the population and topographic characteristics of the study area appear to be spatially correlated.
Hence, using slope angle and altitude data may be appropriate for accurate population estimation
in hilly mountainous areas, while also utilizing conventional land use data. A hilly area dasymetric
process is conducted in the multi-layer, multi-class dasymetric framework introduced by Su et al. [41],
which disaggregates the aggregated population data with several relevant information for detailed
true population density; for example, land cover, land value, and traffic networks. Each variable or
layer related to true population distribution has a number of classes of different population densities
and weighting factors based on relative population density are assigned to each class. Accordingly,
the first step of hilly area dasymetric process is to classify an ancillary variable and then weight
factors for population density are assigned to each class. Total population is then redistributed to
each weighted class based on a simple areal weighting method. This process is repeated to combine
other ancillary variables using the same areal weighting method to reveal detailed spatial patterns of
population distribution.ISPRS Int. J. Geo-Inf. 2019, 8, 166 6 of 19 
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Figure 3. Slope distribution of the study area.

For the preparation of topographic ancillary data, this study considers the contours surface at a
scale of 1:50,000 [42], as a base source to derive both slope angle (Figure 3) and altitude classes using
a Digital Elevation Model (DEM) (Figure 4). The spatial resolution of raster DEM is 25 m and the
vertical resolution of input data is 20 m contour interval. In the process of generating DEM in a GIS
environment, which is based upon a contour layer, elevation values of all considered points (derived
from contour heights) are interpolated to produce a continuous raster. In addition, land use data (2010)
are obtained from the Department of Surveying of Sri Lanka [43] at a scale of 1:50,000 (Figure 5).
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No unilateral solution exits for data classification method, or the number of classes. So, in this
paper we reviewed the data distribution first and then determined the classification method and the
number of classes. Each ancillary data is classified based on Jenks algorithm [44] because we wish to
utilize the classes representing data distribution very well. Jenks classification is useful to represent
data distribution with natural groups inherent in the data by minimizing the variance within classes and
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maximizing the between-class variance. Then, various weight factors for the population disaggregation
are assigned to each of the ancillary data classes, similar to the classical dasymetric methods [22,33].
However, this study simulates several weighing schemes for each ancillary variable and calculates
the performances of the schemes using Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE), in order to avoid subjective choices of weights for classes and to identify the best performing
scheme for hilly area population estimation. In addition, this paper considers some significant findings
from the previous works for appropriate weight factors of classes. Lin et al. [26] revealed empirically
the influences of topographic and climate variables on population distribution in East and Southeast
Asia. According to their results, population density tends to increase with lower values of topographic
altitude and slope, but a terrain with the steepest slopes and highest elevations are usually unsuitable
for living because of poor land stability and difficulties in transportation. Therefore, zero or a much
lower value of weight might be assigned to the steep and high elevated classes.

As mentioned previously, measures of both RMSE and MAE are utilized for quantifying errors
from the models; RMSE and MAE have been widely utilized in many applications of population
estimation, e.g., [27,28,45–48]. The RMSE and MAE of the model are calculated according to the
following general equations:

RMSE =

√
1
n

n∑
i=1

(yi − ŷi)
2 (1)

where RMSE is the error of source zone, yi depicts the actual population of GNDs, ŷi represents the
estimated population of GNDs, and n refers to the number of observation units (GNDs) considered.

MAE =
1
n

n∑
i=1

(yi − ŷi) (2)

Table 1 shows the predefined categories of each ancillary variable and the performances of
estimation with different weight schemes. For the slope angle classes, the lowest group range is
0–6, while the steepest group range is 58–85. The first two groups (0–6 and 7–13) are considered to
be areas where the population is likely to be highly scattered. Actually, the total area of these two
categories is 28.83 km2 (i.e., 34.31% of study area). Weight factors of 80% and 15% are assigned to these
two slope angle categories from the simulation results in Table 1. From a preliminary observation,
it is easy to understand the close association between slope angle categories and population density
distribution. For the third category (14–20), 5% is assigned. The other three slope angle classes
are considered as ‘uninhabited’ due to their significant steepness, relatively similar to the classes in
Lin et al. [26]. A similar approach is used to allocate the weights for the altitude categories based
on performance results. Weights of 75%, 17%, 5%, and 3% are assigned to elevation classes from
‘1300–1513’ to ‘1881–1980’. Also, the elevation classes such as ‘1981–2106’, ‘2107–2260’, ‘2261–2566’,
and ‘2567–3001’ are considered to be uninhabited areas, which concur with the results by Lin et al. [19].
In fact, zero population assignment for both slope angle and altitude classes belongs to the upper
quartile (above 75% when the data is in order). Wright [22] and Eicher and Brewer [33] applied a
similar process to land use categories that are usually based on previous classical works for population
mapping with land use data. Moreover, unique land use and cover in the hilly areas of Sri Lanka
should be considered as home gardens and tea or rubber plantations. Weights of 80%, 15%, 4%, and 1%
are assigned for the land-use categories of ‘Home Gardens’, ‘Other Plantation’, ‘Tea’, and ‘Rubber’,
respectively. This categorization reflects the suitability of home gardens and other plantations for
residential environments. These land-use categories are therefore dominant in the landscape for highly
populated hilly areas. Meanwhile, forest, paddy lands, all water body categories, rocky land, and all
road categories are obviously considered as uninhabited areas. Based on the weights for each of the
above variables, individual dasymetric maps derived from slope angle, altitude, and land use/cover
layer are generated.
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Table 1. Performance in terms of different weighting schemes for ancillary classes.

Ancillary Classes % of Area Weighting 1 (%) Weighting 2 (%) Weighting 3 (%)

Slope

0–6 31.16 70 75 80
7–13 3.15 20 17 15

14–20 15.36 10 8 5
21–31 36.59 0 0 0
32–57 11.79 0 0 0
58–85 1.95 0 0 0
RMSE - 624 611 551
MAE - 480 420 353

Elevation

1300–1513 7.27 70 75 65
1514–1733 8.64 20 17 18
1734–1880 20.83 8 5 10
1881–1980 32.81 2 3 7
1981–2106 18.12 0 0 0
2107–2260 7.50 0 0 0
2261–2566 4.71 0 0 0
2567–3001 0.12 0 0 0

RMSE - 991 913 1042
MAE - 682 667 730

Land use and land
cover

Home Gardens 11.14 70 80 75
Other Plantations 4.11 20 15 17

Tea 32.07 8 4 5
Rubber 0.58 2 1 3

Ela (Stream) 0.48 0 0 0
Lake 0.54 0 0 0

Tank (working) 0.005 0 0 0
Water Bodies 0.08 0 0 0

Jeep or Cart Tracks 6.60 0 0 0
Main Roads (A) 1.06 0 0 0
Main Roads (B) 1.12 0 0 0

Minor Roads 0.73 0 0 0
Rock 0.21 0 0 0

Paddy 0.67 0 0 0
Forest 35.00 0 0 0
Scrubs 5.604 0 0 0
RMSE - 875 809 842
MAE - 527 491 509

As a final step of hilly areas dasymetric mapping, all of the individual dasymetric maps are
overlaid within the multi-layer multi-class dasymetric framework [41] for better disaggregation of the
aggregated population data and to determine the true population distribution patterns according to
several parameters (in this study, land use/cover, slope angle, and altitude) correlated with population
density. Here, a slope-based dasymetric map is considered as the base layer (as it reports less
error), while land use/cover and altitude based dasymetric maps are used as second and third layers,
respectively, for the further disaggregation phase of the population density of slope angle classes.
For example, if a polygon with an 80% weighted slope angle (0–6) is located inside a water body,
that polygon slope angle is considered to represent an uninhabited area. The same procedure is applied
for all disaggregation processes to generate the final result of hilly areas population using dasymetric
mapping based on combined variables.
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Dasymetric mapping operates by employing weights that capture both the relative areas of the
target spatial units and the relative population densities of the different nominal ancillary classes.
In this study, the areal weighting disaggregation formulation [41,49–51] is applied for the population
density calculations in a GIS environment as follows:

EPDi j =
Pi ∗

(
Ai jW j

)
∑n

j=1 Ai jW j
(3)

where EPDij ensures the estimated population density of the target zones, Pi is the total population of
area unit i, Aij represents the total area of subclass j in unit i, n represents the number of subclasses,
and Wj denotes the weight for subclass j. It is noted that the calibration of the Wj parameters becomes
a major problem in the application of general multi-class dasymetric models [41].

4. Results for Hilly Area Dasymetric Mapping

Figure 6 presents the resultant map of the study according to slope. In this figure, areas where
the population density is equal to zero represent the areas where people have been incorrectly placed.
Table 2 shows the results of the study with various ancillary data. The number of people incorrectly
placed is based on the sum of the absolute values of the difference between estimated and known
population counts for the target area [36].
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Figure 6. Population estimation using the slope angle-based dasymetric mapping.

Proportionally, areas where the number of incorrectly placed people is small are considered to
be well disaggregated regional GNDs (census enumeration units) and vice versa. The distribution
of the estimated population density represents a strongly negative association with the layers’ slope
angles categories and altitude, as revealed through a visual inspection. In contrast, high density areas
are significantly correlated with the distribution of the areas of low slopes categories, particularly
the group of 0–6. Also, this study assists in disaggregating the GND census enumeration units into
very fine-grain levels by showing the exact population density distribution at a considerably accurate
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level (Table 2). The areas of the west, north, northeast, and southeast represent a relatively higher
altitude than other areas of the region. Hence, these areas are estimated as having the lowest density
of population distribution. However, several small areas located near the top of the mountains (e.g.,
Pedro) represent a high population density (e.g., 243–596 per km2) due to the presence of low slope
angle categories. The actual number of people living in the Pedro GND is 3316, which is a relatively
large number. The population estimations according to the ancillary data of land use (Figure 7) and
altitude (Figure 8) appear to show relatively different outcomes. It is difficult to identify a rigorous
association between land use categories (except ‘Home Gardens’ and ‘Other Plantation’) and inhabited
areas in hilly areas.

Table 2. Results of the HDM with various ancillary data.

No. Name of GND
Total

Population
Area
(km2)

Population
Density

Incorrectly Placed People

Altitude % of
Total

Land
Use

% of
Total Slope % of

Total Combined % of
Total

1 Bambarakele 3143 1.6060 1957 2011 64 901 29 1950 62 1115 35
2 Bangalahatha 3333 9.3361 357 935 28 940 28 2058 62 1620 49
3 Bulu Ela 1751 2.0408 858 941 54 901 51 510 29 451 26
4 Galpalama 1222 2.7095 451 638 52 710 58 411 34 391 32
5 Hawaeliya East 2273 0.5024 4524 998 44 1094 48 1001 44 987 43
6 Hawaeliya North 2216 0.4663 4752 991 45 1001 45 1027 46 1051 47
7 Hawaeliya West 2072 0.6671 3106 1131 55 950 46 811 39 751 36
8 Kalapura 3465 8.9075 389 1169 34 809 23 1850 53 1771 51
9 Kalukele 1093 0.4545 2405 548 50 610 56 508 46 464 42
10 Kandapola 1426 1.1500 1240 748 52 790 55 470 33 466 33
11 Kandapola Central 2853 1.2502 2282 1235 43 1101 39 780 27 687 24
12 Kelegala 1829 0.3666 4989 721 39 1010 55 560 31 556 30
13 Kirimetiya 3967 5.9209 670 1301 33 950 24 1480 37 1220 31
14 Magastota 1408 0.5050 2788 571 41 710 50 440 31 315 22
15 Nanuoya 3860 3.4744 1111 938 24 1191 31 2010 52 1109 29
16 Nuwaraeliya 1290 1.2034 1072 679 53 886 69 85 07 68 5
17 Nuwaraeliya Central 4292 3.1306 1371 861 20 1792 42 430 10 387 9
18 Nuwaraeliya West 2481 2.0555 1207 1008 41 816 33 1150 46 1035 42
19 Park 4463 6.1559 725 2875 64 2058 46 1915 43 1939 43
20 Pedro 3316 15.9423 208 2471 75 2080 63 1964 59 1940 59
21 Sandathenna 2816 4.7090 598 948 34 1968 70 612 22 514 18
22 Seethaeliya 1815 3.2940 551 859 47 1066 59 710 39 629 35
23 Shanthipura 1408 0.6205 2269 962 68 797 57 545 39 448 32
24 Summerset 3522 5.2567 670 1178 33 1162 33 1910 54 1687 48
25 Windicorner 1667 2.2930 727 962 58 661 40 985 59 791 47

Total 62,981 84.06 - 27,679 44 26,954 43 26,172 42 22,392 36ISPRS Int. J. Geo-Inf. 2019, 8, 166 11 of 19 
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Figure 9 shows the use of three combined ancillary variables that appear to provide a better
disaggregation result of source observation units (GNDs) into fine-grain divisions of target units.
The estimated population density map appears to have a more scattered pattern than other population
maps that use a single ancillary variable. This is because a large number of classes from all the
layers can be mixed and considered to judge the population distribution through the disaggregation
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process within the multi-layer multi-class approach (6, 8, 16 classes for slope, altitude, and land use,
respectively). Also, it should be noted that this dasymetric mapping represents the fine-grain division
of hilly area population disaggregation by preserving the pycnophylactic property of population
mapping [52], which maintains the same total population in each source zone.

Table 2 shows the results of the different ancillary data approaches based on the number of
incorrectly placed people, which represents the errors counted for each observation unit (GNDs).
For errors by slope angle ancillary data, the total number of incorrectly placed people is 26,172.
The GNDs such as Bangalahatha (2058, 62%), Bambarakele (1950, 62%), Pedro (1964, 59%), Windicorner
(985, 59%), Summerset (1910, 54%) and Kalapura (1850, 53%) show a large number of incorrectly placed
people, compared to the other GNDs, because these GNDs are located in very steep areas. Meanwhile,
several GNDs such as Nuwaraeliya (85, 7%), Nuwaraeliya Central (430, 10%), and Sandathenna
(612, 22%) show fewer errors. A similar pattern is revealed in the altitude ancillary data application.
For example, the Pedro (2471, 75%), Shanthipura (962, 68%), Park (2875, 64%), and Bambarakele
(2011, 64%) GNDs are identified as areas with relatively high numbers of incorrectly placed people.
The dasymetric mapping by land use/cover data shows that the Sandathenna (1968, 70%), Nuwaraeliya
(886, 69%), Pedro (2080, 63%), and Seethaeliya (1066, 59%) GNDs are areas with the largest number
of incorrectly placed people. This finding somewhat differs to the result from the slope angle-based
estimation. On the other hand, in the combined dasymetric mapping using slope angle, altitude,
and land use/cover, Pedro (1940, 59%), Kalapura (1771, 51%), Bangalahatha (1620, 49%), and Summerset
(1687, 48%) are identified as areas with large numbers of incorrectly placed people, while Nuwaraeliya
(68, 5%), Nuwaraeliya Central (387, 9%), and Sandathenna (514, 18%) show fewer errors of estimation.
The total errors of altitude, land use/cover, slope angle, and combined approaches are 27,679 (44%),
26,954 (43%), 26,172 (42%), and 22,392 (36%), respectively. Among these total errors, the combined
dasymetric mapping represents relatively fewer overall errors in terms of incorrectly placed people.
This might be because the error of dasymetric mapping tends to be reduced by improving the fine-grain
disaggregation layers with many subclasses. Slope and land use/cover-based dasymetric mapping
also performed well compared to the combined approach. According to the results revealed, the land
extent of the areas where inhabitants accurately assigned is about 60% of the study area (that is similar
to 50.42 km2).

In addition, the RMSE and MAE of population estimation confirm that the combined dasymetric
mapping shows the best performance with least errors (Table 3). As per the table, both the RMSE
and MAE are comparatively high in altitude, land use, and slope angle approaches as compared to
the combined approach. Also, slope angle approach performed better than the rest of land use and
altitude in terms of statistical error parameters.

Table 3. RMSE summary statistics for different dasymetric approaches.

Errors
Dasymetric Approaches

Combined Slope Angle Land Use Altitude

RMSE 442.26 551.21 809.00 913.11
MAE 294.54 352.78 590.57 666.57

Standard deviation 393.61 501.61 728.10 834.89
Standard error 11.01 14.54 21.30 24.07

Figure 10 graphically shows the spatial distribution patterns of incorrectly placed population
in terms of different dasymetric approaches. The areas with a large number of incorrectly placed
people imply environmentally risky and physiologically difficult areas for living and human activities,
while lower values of incorrectly placed people indicate fewer errors of estimation of hilly area
population. As each distribution of incorrectly placed people presents different levels of disaggregation
by its ancillary data resolution, the bottom right map of the combined dasymetric mapping appears to
have more disaggregated units, and thus a finer level of population estimation than the other maps.



ISPRS Int. J. Geo-Inf. 2019, 8, 166 13 of 17
ISPRS Int. J. Geo-Inf. 2019, 8, 166 14 of 19 

 

 

 

Figure 10. Incorrectly placed people by different dasymetric approaches: upper left for altitude-based; upper right for land use-based; bottom left for slope-based; 

bottom right for a combined dasymetric approach. 

Figure 10. Incorrectly placed people by different dasymetric approaches: upper left for altitude-based; upper right for land use-based; bottom left for slope-based;
bottom right for a combined dasymetric approach.



ISPRS Int. J. Geo-Inf. 2019, 8, 166 14 of 17

5. Discussion

According to the revealed results, GND source zones are appropriately disaggregated by fine-grain
slopes, land use and altitude categories. Therefore, slopes angle, altitude, and land use can be considered
as significant exponents of population density mapping in hilly areas. However, for further fine-grain
disaggregation of hilly area population, rigorous high-resolution spatial data are needed. For example,
address points of dwelling units, remotely sensed data, as well as aerial photographic imagery are
potential materials for high-resolution disaggregation. Building blocks may also be important if the
living units are clearly clarified. Thus, in order to improve the reliability of the results of this study,
high-quality data may be required too. In fact, it is difficult to find a consensus yet on hilly area
population mapping, except the trade-offs of slopes and elevation with population distribution. All the
possible alternative approaches on population mapping may be latent in the developing world due to
data scarcity. Future applications on hilly area population mapping may continue with the application
of more unobserved ancillary data, which is related to mountainous topographies.

In the weighting schemas for relevant factors for the population, higher slope classes, higher
elevation classes, and some of land use/cover variables such as water bodies, roads categories, forested
areas, paddy lands, etc. are obviously considered as uninhabited (zero population) entities. Therefore,
these entities received zero weights in the calculation process. Also, it is noted that topographic
ancillary classes and corresponding weights are obtained based on a statistical method from our own
data distribution, as well as prior knowledge of the authors for study area. In fact, the determination
of weights for the dasymetric mapping is still controversial and more empirical studies and discussion
are needed (Su, et al. [41]). This is why many studies have adopted domain knowledge and subjective
assignments for weights (Eicher and Brewer [33]). Therefore, different weighting approaches may need
to be broadly examined for hilly area populations with various environments for more generalization.
Also, future studies can appropriate the validation of results through field observations and verifications.

Despite some drawbacks, our method is very significant because it could mitigate the limitation
of low-resolution data for typical hilly areas. Although population data is a fundamental component
for policy-making and disaster response [1], estimating populated hilly areas is a difficult task because
it is usually based on available census enumeration units. Alternatively, ancillary data relevant to hilly
areas population, such as land use, slopes angle, and altitude are empirically considered for the model
in order to disaggregate low-resolution area population into more detailed distribution. In future
studies, this methodology can easily be applied to accurately calculate the prospective population of
mountainous areas.

6. Concluding Remarks

With rapid expansion of the world’s population, particularly in developing countries, the exact
counting or estimation of population distribution is important for national and regional planning.
In particular, estimating a more accurate and detailed level of population distribution for inaccessible
and unavailable areas, such as mountainous areas, is challenging. In this context, this study introduced
an alternative method of estimating such unmanageable area populations by utilizing dasymetric
mapping approaches that incorporate the ancillary variables of regional characteristics. From the
empirical results, area-specific ancillary data, including slope angle, altitude, and land use are very
significant in plotting hilly areas’ population. Also, it is shown that an explicit and strong correlation
exists between the population density distribution and slope, and altitude distribution of land.
Among several applications, the dasymetric mapping with the combined ancillary data of slope angle,
altitude, and land use/cover shows the best performance for estimating a population in hilly areas.
Accordingly, the GNDs source zones were appropriately disaggregated by fine-grain slope angle,
land use, and altitude categories. Despite this result, much higher resolution spatial data are needed
for further fine-grain disaggregation of hilly area populations. However, in most developing nations,
these data are usually unavailable in census and often inaccurate, even in official statistics. Alternatively,
the address points of dwelling units or available remotely sensed data such as aerial photographic



ISPRS Int. J. Geo-Inf. 2019, 8, 166 15 of 17

imagery could be considered for more detailed information of population distribution. It is expected
that the proposed method will provide a viable option for estimating more accurate population density,
particularly in geographically challenging areas, and will function as a methodological extension to
classical dasymetric mapping. On the other hand, some significant findings were revealed from this
work. Under the situation of a rapidly growing population and decline of available land, people are
often provoked to settle down in environmentally uninhabitable areas. In particular, the high altitude
areas in this study, such as Pedro and Park GNDs, are highly vulnerable for inhabitation. Since the
number and size of such vulnerable residential areas are increasing in many developing countries,
additional population studies about various geographic environments and empirical clarifications
will be needed in the future. Further, various ancillary sources need to be explored to support more
accurate dasymetric mapping techniques for population estimation.

One weakness of this study is the application of low spatial resolution data for the analysis.
This is because up-to-date high resolution data are not available in Sri Lanka. Therefore, the revealed
results could be improved with the application of up-to-date high resolution data. Nevertheless,
some studies can be found with coarse resolution data applications, e.g., Song et al. [53]. Although
our research is certainly worth presenting how to combine area specific variables which are useful
for deriving detailed population of hilly areas on an empirical basis, our case study is limited to the
population distribution in Sri Lanka’s highest mountain range. According to our practical knowledge
and experiences on the study area, the identified variables such as slope angle, altitude, land use/cover
(particularly topographic variables) are highly correlated with hilly area population distributions,
and the resulting estimation is well performed to disaggregate the population distribution. However,
it is noted that these variables and their weight factors may vary among different regions of interest.
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