
 International Journal of

Geo-Information

Article

Finding Visible kNN Objects in the Presence of
Obstacles within the User’s View Field †

I-Fang Su 1, Ding-Li Chen 2, Chiang Lee 3 and Yu-Chi Chung 4,*
1 NCTU Office of Research and Development, National Chiao Tung University, Hsinchu 300, Taiwan;

ifang.su@gmail.com
2 MediaTek Inc., Hsinchu 300, Taiwan; s10027224@gmail.com
3 Department of Computer Science and Information Engineering, National Cheng Kung University,

Tainan City 701, Taiwan; leec@mail.ncku.edu.tw
4 Department of Industrial Engineering and Management, National Kaohsiung University of Science

and Technology, Kaohsiung City 807, Taiwan
* Correspondence: ycchung@nkust.edu.tw; Tel.: +886-07-3814526
† The manuscript is an extended version of our previous report. We will explain the differences between this

paper and the previous version in more detail on page 3.

Received: 8 February 2019; Accepted: 15 March 2019; Published: 20 March 2019
����������
�������

Abstract: In many spatial applications, users are only interested in data objects that are visible to them.
Hence, finding visible data objects is an important operation in these real-world spatial applications.
This study addressed a new type of spatial query, the View field-aware Visible k Nearest Neighbor
(V2-kNN) query. Given the location of a user and his/her view field, a V2-kNN query finds data
object p so that p is the nearest neighbor of and visible to the user, where visible means the data object
is (1) not hidden by obstacles and (2) inside the view field of the user. Previous works on visible NN
queries considered only one of these two factors, but not both. To the best of our knowledge, this
work is the first to consider both the effect of obstacles and the restriction of the view field in finding
the solutions. To support efficient processing of V2-kNN queries, a grid structure is used to index
data objects and obstacles. Pruning heuristics are also designed so that only data objects and obstacles
relevant to the final query result are accessed. A comprehensive experimental evaluation using both
real and synthetic datasets is performed to verify the effectiveness of the proposed algorithms.

Keywords: view field; visible k nearest neighbor queries; index design; spatial databases; query
processing algorithm

1. Introduction

The k nearest neighbor (kNN) query is an important spatial query type that has been studied
extensively during the past decade [1,2]. Given a set of data objects and a query point q, a kNN query
reports k data objects that are close to q. This kind of queries is useful in many real-world applications.
For example, a tourist uses Google Maps to explore the restaurants that are closest to his/her location
or a taxi driver utilizes the kNN query to find customers who are close to the taxi.

However, most existing works do not take the visibility of data objects into consideration, which
makes their algorithms infeasible in many spatial applications; for example, interactive 2D online
games, military simulation systems, and tourist recommendation systems.

Interactive 2D online games: In an interactive 2D online game, the overview map provides the
enemy locations that can be seen from a player’s location. The player is interested in the map as the
visible enemies are the main threat. Thus, the player should keep track of his/her nearest visible game
objects so that he/she can attack or avoid them.
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Military simulation systems: In a battle field, the command center wants to find one location to
serve as the assembling point. Obviously, the assembling point should be clearly seen by the command
center (i.e., it is not blocked by obstacles such as civilian buildings or vehicles), and the Euclidean
distance from the command center to the assembling point should be minimized.

Tourist recommendation: A tourist information system provides k closest visible scenes for a given
tourist. In this scenario, the scenes cannot be hidden by buildings or mountains so that the tourist can
clearly see them in order to decide which one is his/her next visit point.

Conventional kNN query processing algorithms are inefficient for supporting current real-world
applications as they do not take the visibility of data objects into consideration. This issue is illustrated
in Figure 1, where q is the query point, O = {o1, o2} are the obstacles (denoted by straight lines), and
P = {p1, p2, p3, p4, p5} is a set of data objects. The fan-shaped area is the view field of query point q.
Note that in this study, the visibility of a data object is affected by (1) the view field of a user and (2) the
obstacles in the data space. The same as in [3], the view field defined in this paper is a 2D area that is
the extent of the scene seen by a user; data objects are invisible to a user if they are outside his/her
view field. Physical obstacles (e.g., building, trees, and hills) can block data objects so that they are
invisible to the user [4].

p3

p1

q

p5

o1

p4

p2

o2

The view 

field of q

An obstacle

Figure 1. Example of finding k visible nearest data objects in the view field of q (k = 2).

Suppose k = 2; the two visible nearest data objects of q are p4 and p5. Note that p2 is the
closest data objects for q in the conventional kNN retrieval. However, it is neglected in visible kNN
applications as it is not within q’s view field. Furthermore, although p1 is closer to q than p5, it is not
in the result set as p1 is invisible to q owing to obstacle o1.

To process such kinds of queries, an intuitive thought is to utilize the conventional kNN algorithms
to find the solutions. Hence, a simple approach is to set a very large m value (m > k) so as to make
sure that the “real answers” are included in the result set. However, a serious problem is that it is
very difficult to decide on a proper m value. If m is too small, k visible NNs may not be identified;
in this case, a new m′ value (m′ > m) has to be chosen, and the search is repeated. This can result in
redundant computations as many data objects are re-evaluated during the execution iterations. On the
other hand, if m is too large, time is wasted in checking data objects that are not included in the final
answer, leading to expensive I/O costs and computational overhead. Hence, a completely new method
has to be devised to address this v2-kNN problem.

Related work of this research will be discussed in Section 2. Major challenges in processing
the View field-aware Visible k Nearest Neighbor (V2-kNN) queries are (1) how to efficiently identify
data objects and obstacles inside a given view field and (2) how to determine the visibility of a data
object as fast as possible. If every data object p is accessed and compared with all the obstacles to
determine whether p is inside the given view field, the I/O cost, as well as the computation time must
be extremely high.

To address this problem, we propose an efficient algorithm to retrieve the visible data objects in a
given view field. The algorithm checks the data objects from near to far (according to their distance
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from the query point), because nearer data objects are more likely to be included in the result set.
In addition, we also develop a set of pruning heuristics so that only the obstacles highly relevant to
the query result are accessed when the visibility check is performed. Finally, we conducted extensive
experiments using both real and synthetic datasets to verify the effectiveness of our algorithms.

The manuscript is an extended version of our previous report [5], in which we introduced the
V2-kNN problem and outlined the idea of our basic method. Here, we substantially extend the basic
method to a much more sophisticated algorithm, which includes three smart pruning techniques
and efficient techniques to further enhance the performance of the algorithm (see Sections 4.2–4.4).
Other augmentations are include in Section 2, and we give a quite thorough review of related work to
make the paper self-contained. In Section 3, we add several examples to explain the meaning of the
notations. Furthermore, we conduct a comprehensive performance evaluation in Section 5.

The rest of the work is organized as follows. In Section 2, we review some related studies.
We formalize the V2-kNN problem and introduce our index scheme in Section 3. In Section 4, we
give the detailed description of the proposed algorithm. We also introduce the pruning techniques in
the section. Results of our experimental study are reported in Section 5. Finally, Section 6 gives the
conclusions and future research directions.

2. Related Work

kNN query processing is a hot research topic in the database community [1,2,4,6–27].
Numerous algorithms and data structures (e.g., B-tree [26], grid structure [27], or R-tree [28]) have
been proposed for kNN query processing. Only a few of them are capable of processing “visible” kNN
queries [4,14,15,18–25]. We can classify these works into two types: (1) visible kNN queries with the
obstacle constraint and (2) visible kNN queries with the view field constraint. We will briefly review
each of them in the following. Note that as we have mentioned in the previous section, none of these
works consider the effect of obstacles and the view field at the same time.

2.1. Visible kNN Queries with the Obstacle Constraint

The VkNN query as proposed by Nutanong et al. [14,15]. A VkNN query retrieves k visible objects
with the smallest distance to a query point q. Figure 2 shows an example of a VkNN query. In the
figure, there are five data objects (i.e., a, b, · · · e) and a query point q. The VkNN of q is {b, d} (in order
of their distance to q). Note that although a is the closest data object to q, it is not a qualifying answer.
The reason is that a is hidden by an obstacle, and thus, it is invisible to q.

q

a
b

c d

e

query point
visible data object
invisible data object
obstacle

Figure 2. The VkNN query.

In [14,15], all data objects were indexed in an R-tree [28]. Nutanong et al. proposed two algorithms,
POSTPRUNING and PREPRUNING , for processing VkNN queries. The difference between these two
algorithms is the pruning strategies. The two algorithms are based on the observation that to check the
visibility between q and data object p, we only need to compare p with the obstacles that are nearer to
q than p.

Gao et al. in [4] studied the problem of continuously reporting visible k nearest neighbors to a
query point moving along a line segment, whereas all the data objects are static. The algorithm utilizes
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R-tees to index the dataset and the obstacle set and uses a branch-and-bound technique to process
the query. Gao et al. also proposed several pruning heuristics to improve the query performance.
Another work that focused on continuously determining visible k nearest neighbors was proposed by
Wang et al. [20]. They proposed a filtering-and-refinement framework to process the query efficiently.
In the filtering stage, the authors proposed two pruning strategies to reduce the search space. Then,
in the refinement stage, the algorithm examines the exact positions of the unfiltered data objects and
finds the final result.

In [29], Wang et al. introduced All-k-Nearest-Neighbor (AkNN) search. Given a set of data objects
P and a query set Q, an AkNN query finds for each query q ∈ Q its k visible nearest neighbor in P.
A naive method to tackle the problem is to perform the VkNN search for each query in Q. However,
the method is inefficient as it needs to access the data objects in P many times, leading to high I/O
and CPU costs. Wang et al. developed two algorithms to efficiently process AkNN queries. They also
designed several pruning techniques to improve the query performance.

The Group Nearest Neighbor (GNN) query [16,17] is a novel form of NN search, which returns a
data object with the minimum aggregate distance to all query points. For example, a group of friends,
located at different places in a city, wants to find a restaurant for a meeting. The location of the
restaurant should minimize the total travel distance to all the members in the group. The authors
in [18,19] extended the idea of the GNN query by taking obstacles into account. Both of the works
developed efficient pruning methods to prune unnecessarily accessed obstacles so as to enhance the
query processing performance. The algorithms proposed in [18] can only handle the SUMaggregate
function. However, in [19], the algorithm works for SUM, MIN, and MAXaggregate functions.

Gao et al. [30,31] introduced the Visible Reverse k Nearest Neighbor (VRkNN) query, which considers
the obstacle influence on the visibility of data objects. They proposed the Visible Region Computation
(VRC) algorithm to efficiently retrieve obstacles that affect the visibility of the query point. The VRkNN
query processing algorithm utilizes the VRC algorithm to prune the search space and enhance
the performance.

2.2. Visible kNN Queries with the View Field Constraint

The Nearest Surrounder (NS) query was proposed by Lee et al. [21,22]. An NS query retrieves the
nearest neighbor objects for all orientations around the query point q. For example, in Figure 3a, data
objects O1, O2, · · · , O6 (i.e., the white rectangles) are the nearest surrounder objects of q. Note that
O7, O8, and O9 (i.e., the gray rectangles) are not included in the answer set as they are hidden by other
data objects.

q

O1

O2
O3

O4

O5

O6

O7

O8

O9

(a)

q

O1

O2
O3

O4

O5

O6

O7

O8

O9

(b)

Figure 3. (a) Nearest surrounder query and (b) Angle-constrained Nearest Surrounder (ANS) query.

For many applications, the data objects inside a certain view field are needed. The authors further
proposed an NS query variant, named the Angle-constrained NS (ANS) query, which retrieves NS objects
residing in a specified view field. In Figure 3b, an ANS query issued at q returns {O3, O5}. The major
difference between (A)NS and V2-kNN is that the (A)NS query retrieves “all visible” data objects in
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the view field. However, on the other hand, the number of visible data objects returned by the V2-kNN
query is specified by the k value.

Yi et al. [23,24] introduced the View Field Nearest Neighbor (VFNN) query that can retrieve the
closest visible data object residing in a user’s view field. In [23], the authors used R*-tree [32] to index
data objects and develop a branch-and-bound search algorithm to traverse the R*-tree to find the
results. They also designed a pruning technology that can efficiently filter the R*-tree nodes that do
not overlap with the given view field to enhance the search performance. In [24], Yi et al. designed
a new algorithm to process the VFNN query. The new algorithm proposed in [24] uses a grid-based
index to maintain data objects. The main difference between our approach and that of Yi et al. is that
they did not take the effect of obstacles into consideration.

In [25], Yi et al. introduced the Reverse View Field Nearest Neighbor (RVFNN) query, which returns
the nearest object (according to a query point) from among the data objects whose view fields contain
the query point. The authors first proposed an algorithm that runs on R*-tree to process the RVFNN
query. Then, they introduced a new type of spatial data index structure called the view field R-tree for
RVFNN searches to overcome the limitations of R*-tree.

The hidden-surface determination problem [33] studied in the area of computer graphics shares
some similarity to our problem. The hidden-surface determination is a process used to determine
which surfaces and parts of surfaces are not visible from a certain viewpoint. Z-buffering [34] is one of
algorithms that can address the problem.

When rendering a data object, z-buffering scans each pixel of the data object and projects it on a
projection plane that faces a query point. Thus, only the pixels on the projection plane are visible to the
user. For instance, in Figure 4, Point A is not projected on the projection plane since it is hidden by
Point B. However, Point C is visible to the user.

Y

X
Z

A

B

Projection Plane

C

p1
p2

Figure 4. Z-buffering.

Our problem and image rendering are conceptually and functionally different. Our work aims
to design efficient mechanisms for finding visible objects from a very large set of data objects. Thus,
how to design the index that facilitates faster data retrieval and how to develop pruning strategies that
reduce the search space are the main concerns of the work. One the other hand, the image-rendering
algorithm assumes that the data objects inside the view field are known in advance. The main jobs of the
image rendering are how to improve the result accuracy and how to reduce the memory consumption.
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3. Preliminary

In this section, we define several terms that are used in the work. We also formulate the V2-kNN
search and present our index scheme for the processing of V2-kNN queries. We summarize the symbols
used in the following discussion in Table 1.

Table 1. Summary of symbols.

Symbols Meanings

(l, r, θ) The location, the maximum visible distance, and the view field angle of q
θ`q The starting angle of q based on the positive x-axis
θaq The ending angle of q based on the positive x-axis

dist(p, q) The Euclidean distance between q and p
θq,o.min The minimum angle between q and o
θq,o.max The maximum angle between q and o

MinDist(q, o) The minimum distance between o and q
MaxDist(q, o) The maximum distance between o and q

Vd The visible distance
C A grid cell

MinAngle(q, C) The minimum angle between query q and cell C
MaxAngle(q, C) The maximum angle between query q and cell C

H A min-heap that sorts accessed cells according their minimum possible distance to q
RL A min-heap that maintains candidate query results
OL A min-heap that retains already accessed obstacles

best_dist The current visible distance of the kth visible data object of q
Ccur The current cell
VCL A visited cells list

θS A splitting angle
θIRLB The splitting angle in the Invisible Regions Lookup Buffer (IRLB)

Regioni The ith region, which is split in IRLB

3.1. Problem Definition

In a two-dimensional Euclidean space, there are a set of data objects P = {p1, p2, p3, ...pi} and a set
of obstacles O = {o1, o2, o3, ...oj}. In this paper, we assume each obstacle is a line segment. Although an
obstacle o may be an arbitrary convex polygon (e.g., triangle), we assume o is a line to simplify our
discussion. The proposed algorithms can work with o of an irregular shape by treating o as a set of line
segments.

Definition 1. Query point and its view field
A query point q is represented as a triplet (l, r, θ), where l = (x, y) denotes the location of q, r denotes the

maximum visible distance of a user, and θ is the view field angle of q. Note that θ = (θ`q , θaq ) is a combination of
two angles θ`q and θaq , where θ`q and θaq are the values of the starting and ending angles based on the positive
x-axis (see Figure 5a) (the definitions of starting and ending angles were adopted from [24]).

Also note that θ`q and θaq must be in a continuous range between [0◦ - 360◦], i.e., 0◦ ≤ θ`q ≤ θaq ≤ 360◦.
If θ`q is bigger than θaq , it must be a view field crossing from the first quadrant to the fourth quadrant of
the coordinate space. For example, Figure 5b depicts a view field with θ`q = 300◦ and θaq = 20◦. In this
case, we will separate this view field into two parts. In Figure 5b, q1 is split into q1,1 and q1,2 where
θ`q1,1

= 0◦, θaq1,1
= 20◦, θ`q1,2

= 300◦, and θaq1,2
= 360◦. When processing q1, our algorithm will separately

evaluate q1,1 and q1,2 and then merge the results. Thus, in Figure 5b, our algorithm returns {p2, p1} to
the user after it merges the results of q1,1 (i.e., {p1, p4}) and q1,2 (i.e., {p2, p3}).
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Figure 5. The view field.

Now, we explain how to determine whether a data object or an obstacle is inside a view field
or not. Given a data object p, we define dist(p, q) to be the Euclidean distance between q and p and
θp,q to be the angle between the positive x-axis and the vector −→pq. Then, p is inside q’s view field if
(1) θ`q ≤ θq,p ≤ θaq and (2) dist(q, p) ≤ r [24]. In Figure 6, p1 is not inside the view field as θq,p1 > θ`q .
For p3, it is outside the view field because dist(q, p3) > r.

q q

q
⊣

⊢

r

dist(q, p
3
)

p
1

p
2

p
3

Figure 6. p2 is inside the view field, but p1 and p3 are not.

To explain how to evaluate whether an obstacle o is inside the view field, we first define some
terms. We use (θq,o.min, θq,o.max) to represent the angular bound of o’s line segment w.r.t. q, where θq,o.min
denotes the minimum angle and θq,o.max denotes the maximum angle [31]. We also use MinDist(q, o)
and MaxDist(q, o) to denote the minimum and maximum distance between o and q, respectively. An
illustration of θq,o.min, θq,o.max, MinDist(q, o), and MaxDist(q, o) is shown in Figure 7.

q,o.min

q,o.max

q

MinDist(q, o)

MaxDist(q, o)

o

Figure 7. Angular and distance bounds of an obstacle.
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Given an obstacle o and a query object q, if o resides in q’s view field, then o satisfies (1) the
minimum distance between q and o must be less than or equal to r (i.e., MinDist(q, o) ≤ r), and (2) the
relationship among θ`q , θaq , θq,o.min and θq,o.max meets one of the following conditions:

1. θ`q ≤ θq,o.min ≤ θaq and θq,o.max > θaq (Case 1 in Figure 8),

2. θ`q ≤ θq,o.max ≤ θaq and θq,o.min < θ`q (Case 2 in Figure 8),

3. θ`q ≤ θq,o.max ≤ θaq and θ`q ≤ θq,o.min ≤ θaq (Case 3 in Figure 8),

4. θq,o.max > θaq and θq,o.min < θ`q (Case 4 in Figure 8).

q q q qq,o.min

q,o.max

q,o.min

q,o.max

q,o.min

q,o.max

q,o.min

q,o.max

case 1 case 2 case 3 case 4

⊣
q

⊣
q

⊣
q

⊣
q

⊢
q

⊢
q

⊢
q

⊢
q

Figure 8. The four possible cases where an obstacle is inside a view field.

In Figure 9, o2 is inside the view field (i.e., Case 4). On the other hand, o1 is not in the view
field because MinDist(q, o1) > r. o3 is also outside the view field as θq,o3.min > θaq and θq,o3.max > θaq .
Similar to the view field, the obstacle o1 is split into two obstacles o1,1 and o1,2 if o crosses the first and
the fourth quadrants in the coordinate space.

q
q,o3.max

q,o3.min

r

MinDist(q, o1)

o1

o2o3

Figure 9. o2 is inside the view field, but o1 and o3 are not.

Now, we formally define the visibility of data objects.

Definition 2. Visibility of data objects
Given a query q(l, r, θ), a set of data objects P = {p1, p2, · · · , pi}, and a set of obstacles O =

{o1, o2, · · · , oj}, a data object p ∈ P is visible to q if all the following conditions are satisfied: (1) p is
inside q’s view field. (2) There is no obstacle o ∈ O between the straight line connecting q and p (denoted as qp).

In addition, to represent the distance between two objects, taking visibility into consideration, we
define the visible distance Vd as follows:

Definition 3. Visible distance [20]



ISPRS Int. J. Geo-Inf. 2019, 8, 151 9 of 32

Given a query q and a data object p, if p is visible to q, the visible distance between q and p (denoted
as Vd(q, p)) is the minimum Euclidean distance between them (i.e., dist(q, p)). Otherwise, Vd(q, p) is set as
infinite. That is,

Vd(q, p) =

{
dist(q, p) if p is visible to q,
∞ otherwise.

(1)

After giving the definitions of the view field, visibility, and the visible distance, we can formally
define our problem:

Definition 4. View-Field-aware Visible k Nearest Neighbor (V2-kNN) search problem
Given a query q(l, r, θ), a set of data objects P = {p1, p2, · · · , pi}, and a set of obstacles O =

{o1, o2, · · · , oj}, a view-field-aware visible k nearest neighbor query retrieves a subset of P, denoted by
V2-kNN(q), such that:

1. |V2-kNN(q)| = k;
2. ∀p ∈ V2-kNN(q), p is visible to q;
3. ∀p ∈ V2-kNN(q) and p′ ∈ P\V2-kNN(q), Vd(q, p) ≤ Vd(q, p′).

Figure 10 illustrates an example of V2-kNN(q) with q(l, r, θ), P = {p1, p2, p3, p4, p5}, and
O = {o1, o2}. We assume that k = 2. In Figure 10, we can find that the p1, p3, p4, p5 are the candidate
data objects that are in the view field of q. Although p1, p3 are the closest objects compared to p5 w.r.t
to q, they are not visible to q. Therefore, they are not the solutions to V2-kNN. The data objects meet
all of the requirements in Definition 4 V2-kNN(q) = {p4, p5} ordered by their distance w.r.t q.

p3

p1

q

p5
o1

p4

p2

o2

Figure 10. Example of V2-kNN(q), where k = 2.

3.2. Indexing Scheme

To enhance the query processing performance, we use a grid index to collect data objects and
obstacles in the data space. We adopt the grid index as it is known as an efficient method [35] for
spatial queries. Figure 11 illustrates an example of our index. We divide the data space using grid cells
sized m×m, where m is a system parameter that defines the cell size of the grid. Each cell stores the
position information of data objects and obstacles inside it. For example, cell C2,3 stores the position
information of data object p2 and obstacle o2. Note that, if an obstacle o is located in several cells at the
same time (e.g., o1), the position information of the obstacle must be stored in every cell with which it
has an intersection. For example, the location information of o1 is stored in C2,2 and C3,2.
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Figure 11. Grid cell indexing.

To check whether a view field covers a cell C, we first define the following three terms:
MinDist(q, C), MinAngle, and MaxAngle.

Definition 5. Minimum distance between a query q and a cell C, MinDist(q, C)
If query q is inside the cell, then MinDist(q, C) is zero. Otherwise, the MinDist(q, C) is the Euclidean

distance between q and the closest edge of C.

Definition 6. MinAngle and MaxAngle [24]
Let {m1, m2, m3, m4} be the four vertices of a cell C. We use θq,mi (i = 1, 2, · · · , 4) to denote the angle

between qmi and the positive x-axis. The min angle and max angle between q and C are defined as follows:

1. MinAngle(q, C) = Min(θq,m1 , θq,m2 , θq,m3 , θq,m4).
2. MaxAngle(q, C) = Max(θq,m1 , θq,m2 , θq,m3 , θq,m4).

Figure 12 shows an example of MinAngle(q, C) and MaxAngle(q, C).

Cell

q

MinAngle

m1 m2

m3m4

MaxAngle

q,m1

q,m1

q,m2

q,m3 q,m4

=

q,m3=

Figure 12. MinAngle and MaxAngle.

Given a query q(l, r, θ) and a grid cell C, if q’s view field covers C, then (1) the minimum distance
between q and C must be less than or equal to r (i.e., MinDist(q, C) ≤ r) and (2) the relationship among
θ`q , θaq , MinAngle(q, C) and MaxAngle(q, C) must satisfy one of the following four cases [24]:

1. MinAngle ≤ θ`q ≤ MaxAngle, and MaxAngle ≤ θaq (see Case 1 in Figure 13)

2. θ`q ≤ MinAngle, and MinAngle ≤ θaq ≤ MaxAngle (see Case 2 in Figure 13)

3. MinAngle ≤ θ`q ≤ MaxAngle, and MinAngle ≤ θaq ≤ MaxAngle (see Case 3 in Figure 13)

4. θ`q ≤ MinAngle, and MaxAngle ≤ θaq (see Case 4 in Figure 13)
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Figure 13. Relationships between a query view field and a cell.

4. V2-kNN Query Processing

4.1. The Baseline Algorithm

Given a V2-kNN query q(l, r, θ), a set of data objects P, and a set of obstacles O, we assume P
and O are indexed by the grid index proposed in Section 3.2. The intuitive approach to process q is to
access all the cells covered by q’s view field. Then, we retrieve all the data objects and obstacles in the
covering cells. Finally, we check the visibility of all the retrieved data objects and return the k visible
nearest data objects to the user as the answer.

Our first algorithm, the baseline algorithm, is designed based on the aforementioned idea.
The baseline algorithm is extended from the Fan-shaped Exploration (FE) algorithm [24], which is
the most well-known and efficient algorithm that can retrieve nearest data objects in a view field.
The difference between ours and the FE algorithm is that the FE algorithm does not consider the
obstacles that exist in many real-life scenarios.

The overall procedure of the baseline algorithm is presented in Algorithm 1. The baseline
algorithm first initializes two empty min-heaps H and RL, as well as an empty set OL. H sorts accessed
cells according to their minimum possible distance to q (see Definition 5); RL maintains candidate
data objects that may eventually become query results; and OL retains already accessed obstacles.
The variable best_dist is defined as the visible distance of the kth visible data object of q, and it is set
to ∞ at the beginning of the algorithm. Initially, the algorithm pushes the cells containing q into H
(Lines 5–6). Each time, the algorithm pops out the top element of H and puts it in a variable Ccur (i.e.,
the current cell). Then, the baseline algorithm calls the VC algorithm (Visibility Check algorithm; see
Algorithm 2) to check the visibility of data objects residing in Ccur. After that, the CAC algorithm
(Check Adjacent Cells algorithm; see Algorithm 3) is called to insert four adjacent cells of Ccur into H.



ISPRS Int. J. Geo-Inf. 2019, 8, 151 12 of 32

Algorithm 1. The baseline algorithm.
GIVEN: A set of data objects P, a set of obstacles O, a query q(l, n, θ), and an integer k
FIND : The result list RL
Create an empty min-Heap H;1
Create an empty min-Heap RL;2
/* OL keeps the obstacles that we have seen so far. */
Create an empty set OL;3
best_dist← ∞ ;4
Ccur ← the cell that contains q ;5
Insert Ccur into H ;6
while H is not empty do7

Ccur ← pop up the first element from H ;8
if MinDist(q, Ccur) > best_dist then break;9
/* Call Algorithm 2 to check the visibility of data objects inside Ccur . */
Call VC(q, Ccur , RL, best_dist, k, OL) ;10
/* See Algorithm 3 */
Call CAC(q, Ccur , best_dist, H);11

return RL;12

The VC algorithm (see Algorithm 2) first puts all the obstacles in Ccur into set OL (Lines 1–2).
Then, it examines the visibility of each data object p in Ccur (Lines 4–9). If p is invisible to q, then we
discard it. Otherwise, the VC algorithm pushes p into RL as it may become the final result (Line 11).
In addition, the VC algorithm updates best_dist if there are more than k elements in RL (Line 12).

Algorithm 2. Visibility Check (VC) algorithm.
GIVEN: A query q(l, r, θ), a cell Ccur , a result list RL, best_dist, k, and an obstacle list OL
FIND : RL and OL
foreach obstacle o in Ccur do1

if o is inside q’s view field then Push o into OL;2

foreach data object p in Ccur do3
if p is inside q’s view field then4

Vp ← True;5
foreach obstacle o in OL do6

/* Test if p is blocked by any obstacle. */
if p is blocked by o then7

Vp ← False;8
break;9

if Vp is True then10
if Vd(q, p) ≤ best_dist then Push p into RL;11
if |RL| ≥ k then best_dist← the visible distance between the kth element of RL and q;12

return RL, OL;13

Algorithm 3. Check Adjacent Cells (CAC) algorithm.
GIVEN: A query q(l, r, θ), best_dist, a cell Ccur and H
FIND : H
foreach neighboring cell C in four directions of Ccur do1

if C has not yet been explored and2
C is inside q’s view field and3
MinDist(q, C) ≤ best_dist4
then5

Push C into H;6

return H;7
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Given a current cell Ccur, the CAC algorithm inserts each of Ccur’s adjacent cells C into H if C
satisfies the following conditions: (1) C is a non-visited cell (Line 2); (2) C overlaps with q’s view field
(Line 3); and (3) the minimum possible distance between q and C is less than or equal to best_dist
(line 4). Condition (3) indicates that the cell C may contain data objects with a distance smaller than
best_dist. Thus, we should keep it for further examination.

The baseline algorithm terminates in two cases. Case 1: Heap H is empty (Line 7 of Algorithm 1).
This means that the baseline algorithm has explored all the cells that overlap with the view field.
Case 2: The current cell Ccur has MinDist(q, Ccur) > best_dist (Line 9 of Algorithm 1); that is, all
the data objects contained in the remaining cells in H whose distances to q are larger than best_dist.
Therefore, they cannot become part of the final result.

We use Figure 14 to explain how the baseline algorithm works. In this example, k is two. Table 2
shows the content of each data structure when the baseline algorithm is running. We start form the
cell in which q is located (i.e., C1,2). First, we call the VC algorithm (i.e., Algorithm 2) to check the
visibility of data objects in C1,2. The VC algorithm first puts obstacle o1 into OL as it falls in the view
field. Then, the VC algorithm checks the visibility of p7 by comparing p7 with all the obstacles in
OL. p7 is discard as it is blocked by o1. After that, we call the CAC algorithm (i.e., Algorithm 3) to
check C1,2’s neighboring (i.e., above, below, left, right) cells to see if they overlap the view field of q.
The CAC algorithm puts these overlapping cells (i.e., C2,2 and C1,3) into heap H. The second row of
Table 2 shows the content of each data structure after visiting C1,2. Note that although C1,1 and C0,2 are
the adjacent cells of C1,2, they are not put into H as they are outside the view field.

Then, we repeat the previous procedures to visit C2,2 and C1,3. When visiting C2,3, we find the
first visible data object p5 and insert it into RL. The best_dist is still ∞ as k = 2, and we only find one
candidate. Again, we repeat the same procedure to visit cells C3,2, C1,4, C3,3, and C2,4. After visiting
C2,4, we find the second visible data object p6. We update best_dist as dist(q, p6). At this time, we
find that the top element of H is C3,4, and we observe that MinDist(q, C3,4) > best_dist = dist(q, p6).
This means that distances of all the unseen data objects (i.e., p9 and p12 in Figure 14) to q are larger
than dist(q, p6). Therefore, we can terminate the baseline algorithm.
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Figure 14. An example of the baseline algorithm.
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Table 2. The example steps of the baseline algorithm.

Round Visited Cell Heap H Obstacles to Be Checked Visited Data Object(s) RL best_dist

1 C1,2 C2,2, C1,3 o1 p7 φ ∞
2 C2,2 C1,2, C2,3, C3,2 o1, o3, o4 p3 φ ∞
3 C1,3 C2,3, C3,2, C1,4 φ φ φ ∞
4 C2,3 C3,2, C1,4, C3,3, C2,4 o1, o3, o4, o5, o6 p5 p5 ∞
5 C3,2 C1,4, C3,3, C2,4, C4,2 o1, o3, o4, o5, o6 p2 p5 ∞
6 C1,4 C3,3, C2,4, C4,2 o1, o3, o4, o5, o6, o7 p4 p5 ∞
7 C3,3 C2,4, C3,4, C4,2, C4,3 o1, o2, o3, o4, o5, o6, o7 p1 p5 ∞
8 C2,4 C3,4, C4,2, C4,3 o1, o2, o3, o4, o5, o6, o7 p6 p5, p6 dist(q, p6)

4.2. The Influential Cells Algorithm

The baseline algorithm is simple in design and easy to implement. The main drawback of the
baseline algorithm is that it requires the comparison between a data object p and all accessed obstacles
when performing the visibility check. We take p6 in Figure 14 as an example. To check whether p6

is visible to q, the baseline algorithm lets p6 be examined with seven obstacles (i.e., o1, o2, o3, o4, o5,
o6, o7). However, we find that the cells C2,2 and C3,3 have no intersection with the line segment p6q.
This means that all of the obstacles located in cells C2,2 and C3,3 (i.e., o2, o3, and o4), have no influence
on the visibility of p6. Thus, it is unnecessary to examine p6 with o2, o3 and o4 when performing the
visibility check.

Base on this observation, we design a new algorithm, named the influential cells algorithm, which
can improve the performance of the baseline algorithm by reducing the number of obstacles to be
checked when checking the visibility of a data object. Before we explain the design of the algorithm,
we first introduce the notation of the influential cells.

Definition 7. Influential cells
Given a query q(l, r, θ) and a data object pi, the influential cells of pi (denoted as IC(pi)) represent a set of

cells that intersect with the line segment piq. That is, IC(pi) ∩ piq 6= φ.

In Figure 15, given a data object p and a query q, the influential cells of p (i.e., IC(p)) are cells
C1,0, C1,1, C2,1, and C2,2, which are highlighted in gray.

1

2

o2

o1

20

0

1

q

p

Influential Cells

Figure 15. Influential cells IC(p).

Theorem 1 tells us that we can improve the performance of the visibility check by ignoring those
obstacles that are not inside the influential cells of a data object.

Theorem 1. Given a query q(l, r, θ), a data object p, and a set of obstacles O, let o ∈ O be an obstacle that is
not located in the influential cells of p (i.e., IC(p)), then it is impossible for o to affect the visibility of p.

Proof. (By contradiction) Assume that o makes p invisible to q and p is not located in IC(p). Then, o
must intersect with the line segment qp. Let o intersect with qp on a point x. We know that x must lie
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on the line segment qp. Thus, x is located in at least one of the influential cells of p, which contradicts
the assumption that p is not located in IC(p).

We extend the visibility check algorithm (i.e., Algorithm 2) to use Theorem 1 to enhance the
performance. The pseudocode of the extended version is shown as follows Algorithm 4.

Algorithm 4. Visibility Check Ver. 2 (VC2) algorithm (visibility check algorithm based on Theorem 1).
GIVEN: q, Ccur , RL, best_dist, k, and a visited cell list VCL
FIND : RL and OL
foreach obstacle o in Ccur do1

if o is inside q’s view field then Push o into OL;2

foreach data object p in Ccur do3
if p is inside q’s view field then4

/* VCL contains a list of cells that are visited by Algorithm 1 */
IC(p)← call FindIC(q, p, VCL);5
Vp ← True;6
foreach C in IC(p) do7

foreach o in C do8
if p is blocked by o then9

Vp ← False;10
break;11

if Vp is False then break ;12

if Vp is True then13
if Vd(q, p) ≤ best_dist then Push p into RL;14
if |RL| ≥ k then best_dist← the visible distance between the kth element of RL and q;15

return RL, OL;16

To find the influential cells of a given data object p, Algorithm 5 checks each cell C in VCL to
determine if C intersects with pq (Lines 3–4). Note that VCL is a list containing cells that are visited by
Algorithm 1.

Algorithm 5. Find Influential Cells (FindIC) algorithm.
Input : q, p, and VCL
Output: The influential cells of p(i.e., IC(p))
begin1

IC(p)← φ ;2
foreach C in VCL do3

if C intersects with pq then IC(p)← C ;4

return IC(p) ;5

end6

We use the same example in Figure 14 to show the process of Algorithm 4 (i.e., the VC2 algorithm).
The result is shown in Table 3. The forth column illustrates the number of obstacles verified by the VC2
algorithm. Note that the underlined obstacles are ignored by the VC2 algorithm. For example, when
checking the visibility of p4 (see the seventh row), the VC algorithm examines six obstacles, while
the VC2 algorithm only tests three obstacles. From the above example, we find that the idea of the
influential cells reduces the number of obstacles, which are necessary to be checked, thus improving
the efficiency of queries. Furthermore, as the view field becomes larger, the number of obstacles inside
the view field also increases, leading to a higher computational cost for the visibility check. The idea of
the influential cells can identify unqualified obstacles, which improves the performance of the search
algorithm even when the view fields are large.



ISPRS Int. J. Geo-Inf. 2019, 8, 151 16 of 32

Table 3. The example steps of the baseline algorithm when calling the Visibility Check Ver. 2 (VC2)
algorithm for visibility checking. Note that the “underlined” obstacles are checked in the VC algorithm
but are not verified in the VC2 algorithm.

Round Visited Cell Heap H Obstacles to Be Checked Visited Data Object(s) RL best_dist

1 C1,2 C2,2, C1,3 o1 p7 φ ∞
2 C2,2 C1,2, C2,3, C3,2 o1, o3, o4 p3 φ ∞
3 C1,3 C2,3, C3,2, C1,4 φ φ φ ∞
4 C2,3 C3,2, C1,4, C3,3, C2,4 o1, o3, o4, o6, o5 p5 p5 ∞
5 C3,2 C1,4, C3,3, C2,4, C4,2 o1, o3, o4, o5, o6 p2 p5 ∞
6 C1,4 C3,3, C2,4, C4,2 o1, o5, o7, o3, o4, o6 p4 p5 ∞
7 C3,3 C2,4, C3,4, C4,2, C4,3 o1, o2, o3, o4, o6, o5, o7 p1 p5 ∞
8 C2,4 C3,4, C4,2, C4,3 o1, o5, o6, o2, o3, o4, o7 p6 p5, p6 dist(q, p6)

4.3. Direction Index

The idea of the influential cells can greatly reduce the number of obstacles to be checked by
the baseline algorithm and thus enhance the search performance. However, there is room to further
speedup the search performance. In this subsection, we will introduce the Direction Index (DI) method,
which builds an index to index the obstacles. When performing the visibility check, the DI method
uses the index to further exclude the obstacles that cannot affect the visibility of the data object even if
the obstacles are inside the influential cells. We first use an example to illustrate the concept of the
direction index.

When checking the visibility of p2, in Figure 16a, the IC technique needs to examine nine obstacles
(i.e., o2, o3, o4, o5, o6, o8, o10, o16, and o17). However, we find that o5, o2, o4, o8, o10, and o17 have no
influence on the visibility of p2 as they are “far from” the line segment p2q. The search performance
can be improved if we can exclude these obstacles from the visibility test. A question here is how can
we identify those obstacles that are far from the line segment?
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Figure 16. (a) A coarse granularity grid. (b) A fine granularity grid.

One solution is to adjust the size of the grid cell. Figure 16b illustrates a fine granularity grid.
Compared with Figure 16a, we only need to check three obstacles (i.e., o3, o6 and o16). However, the fine
granularity reduces the number of checked obstacles, and it also leads to low search performance as
the algorithm needs to access more grid cells. In addition, a fine granularity may make more obstacles
be located in several cells at the same time. This means that there would be more repetitive obstacle
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data stored in each cell. The algorithm must increase the effort to retrieve and filter the repetitive
obstacle data. Therefore, it is obvious that adjusting the size of the grid cell still cannot improve the
efficiency of the overall execution effectively.

Another solution is to take the “direction of the obstacle” into consideration. More specifically,
when checking the visibility of data objects, we can retrieve the obstacles that may influence the
visibility of the data object based on the relative angle between query point and the obstacles. Based on this
idea, we propose the Direction Index (DI) method.

4.3.1. The Design Rationale of the Direction Index

The main idea of the direction index is as follows. Given a splitting angle θS (which is a system
parameter), we can split the 2D space into d 360◦

θS
e sections equally based on q. The ids of the sections are

numbered 0, 1, · · · , d 360◦
θS
e − 1. The ith section, Sectioni, represents the angle range [i× θS , (i+ 1)× θS ).

In Figure 17, θS is 20◦, and the 2D space is split into 360◦
20◦ = 18 sections. Section0 represents [0◦, 20◦);

Section1 represents [20◦, 40◦), · · · , and so on.
From Figure 17, we observe that all the obstacles that are not located in the section where p resides

cannot affect the visibility of p. For example, o4 and o5 cannot influence the visibility of p as they
do not reside in Section2 (i.e., the section where p resides). The observation can be validated by the
following theorem.
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Figure 17. Split the 2D space into d 360◦
20◦ e sections (i.e., θS = 20◦). The gray area is q’s view field.

Note that the data space that covers 180–360◦ is omitted here.

Theorem 2. Let p and o be a data object and an obstacle, respectively. p is located in Sectioni, and o resides in
Sectionj, where i 6= j. o cannot affect the visibility of p.

Proof. The proof is omitted as it is trivial.

Given an obstacle o and a query point q, we can derive the sections where o is located by
using θq,o.min and θq,o.max; that is, the sections where o is located ranging from Section

b
θq,o.min

θS
c

to

Section
b θq,o.max

θS
c
. We take Figure 18 as an example. b θq,o.min

θS
c = b 24◦

20◦ c = 1 and b θq,o.min
θS
c = b 56◦

20◦ c = 2.

Thus, o resides in Section1 and Section2.
We use a hash table to record the obstacle information in every section. The hash table is named

the Direction Index (DI). The section id is used as a hash key, and DI[id] represents a hash value. DI[id]
is a queue that stores the obstacles (1) residing in Sectionid and (2) located in the view field. The queue
is sorted in ascending order based on the obstacle’s minimum distance (see Section 3.1) to the query
point. Figure 19 shows the content of the DI for Figure 17. Note that only the obstacles residing in
Section1, Section2, and Section3 are kept in DI as q’s view field overlaps with the three sections. Also
note that since o1 falls in Section1 and Section2, we store o1 in DI[1], as well as DI[2].
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Figure 19. The content of the Direction Index (DI) for Figure 17.

4.3.2. Using DI for Query Processing

We construct the direction index on-the-fly when processing a query q. Each time the Baseline
algorithm visits a cell C, we retrieve the obstacles in C and insert them into a direction index DI
(Line 3 in Algorithm 6). To check the visibility of a data object p, we first calculate the section id of
the section where p resides (Line 6). Assume that the section id is id, then we compare p with all the
obstacles in DI[id]. Note that the obstacle in DI[id] with MinDist(q, o) is greater than dist(q, p), which
are discard as they cannot affect the visibility of p (Line 12). Thus, we can safely exclude them and
save computational cost.

Algorithm 7 shows the details of inserting an obstacle into the direction index. Lines 1–2 calculate
the section id(s). Then, we simply insert the obstacle into the corresponding slots of DI.

We use Figure 20 as an example to explain how the direction index works. In the example, k is
one, θS is 20◦, and the gray area is the view field. Since p2 falls in Section2, we compare p2 with all
the obstacles in Section2 (i.e., DI[2]) to check its visibility. The obstacles in DI[2] are (o3, o8, o6) (sorted
according to the MinDist). We find that p2 is a visible nearest neighbor of q as o3 and o8 cannot block
it. Note that the checking process is terminated when we meet o6 as MinDist(q, o6) is greater than
dist(q, p2), and all the unchecked obstacles ordered after o6 cannot affect p2’s visibility.

In summary, the direction index can reduce unnecessary examinations of obstacles with a smaller
value of θS , as it finds a more precise section, which may influence the visibility of data objects.
However, a smaller θS means that more obstacles might be located in the different sections at the same
time, increasing the storage overhead of the direction index. In the experiment section, we will find
the suitable θS through simulations.
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Algorithm 6. Visibility Check ver. 3 (VC3) algorithm (visibility check algorithm based on Theorem 1).
GIVEN: q, Ccur , RL, best_dist, k, and a direction index DI
FIND : RL and OL
foreach obstacle o in Ccur do1

if o is inside q’s view field then2
/* Insert o into the direction index (See Algorithm 7). */
InsertToDI(o, DI);3

foreach data object p in Ccur do4
if p is inside q’s view field then5

id← θq,p
θS

;6

Vp ← True;7
foreach obstacle o in DI[id] do8

if p is blocked by o then9
Vp ← False;10
break;11

if MinDist(q, o) > dist(q, p) then break;12

if Vp is True then13
if Vd(q, p) ≤ best_dist then Push p into RL;14
if |RL| ≥ k then best_dist← the visible distance between the kth element of RL and q;15

return RL, OL;16

Algorithm 7. Insert an obstacle into a direction index (InsertToDI) algorithm.
GIVEN: The obstacle o, the direction index DI, and the splitting angle θS
FIND : The direction index DI
start← b θq,o.min

θS
c ;1

end← b θq,o.max
θS
c ;2

for i← start to end do Push o into DI[i];3
return DI;4
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Figure 20. An example of the direction index (θS = 20◦).
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4.4. The Invisible Regions Lookup Buffer

4.4.1. Motivation

The DI method finds a more precise region that contains visible influential obstacles, improving
the efficiency of the visibility check. However, there is still room for further improvement. We use the
following example to explain it. In Figure 20, p5 is blocked by o10. However, to check its visibility, the
DI method not only compares p5 with o10, but also examines p5 with o5, o16, and o17. The same thing
happens in the visibility checking of p1 and p3. Obviously, the more obstacles we compare with, the
higher processing time the visibility check algorithm consumes. Thus, if we can reduce the number of
data-obstacle comparisons, then we can speed-up the process of V2-kNN queries.

To achieve this goal, we propose an effective and light-weight data structure named Invisible
Regions Lookup Buffer (IRLB). The idea of IRLB is to keep the “invisible regions” in a hash table.
An invisible region is an area blocked by an obstacle. If p falls in o’s invisible region, then p is blocked
by o and is invisible to q. Figure 21a shows a view field and the invisible regions (i.e., the gray
areas) made by the two obstacles o1 and o2. Since p2 resides in o2’s invisible region, p2 is an invisible
data object.

When checking the visibility of a data object p, instead of comparing p with all the obstacles in the
same section, we first lookup IRLB to examine if p is inside an invisible region. If yes, p is immediately
discarded. Since the underlying data structure of IRLB is a hash table, the checking procedure is very
fast (i.e., O(1)). Thus, we improve the performance of the V2-kNN search.

The challenge in designing IRLB is that invisible regions are irregular shapes. The construction
and storage costs of invisible regions are very high. In addition, testing if a data object is inside
an invisible region is also time-consuming since we have to perform many geometric evaluations.
To address this problem, we sacrifice the accuracy of invisible regions for faster computation.
Our design rationale contains two strategies. We use the following figures to explain them.

First, we divide the view field into several small regions as Figure 21b shows. The advantage
of the strategy is that we can classify the relationships between an obstacle and a region into three
categories: (1) the region being “fully blocked” by obstacles (e.g., Region1 and Region4); (2) the region
that is “partially blocked” by obstacles (e.g., Region2); and (3) the region that does not contain any
obstacle (e.g., Region3).

The second strategy is to use the maximum distance between an obstacle o and the query q (i.e.,
MaxDist(q, o)) to represent the invisible region made by o. The benefits of the strategy are two-fold.
First, it reduces the storage cost of each invisible region. The reason is that for each invisible region, we
only need to keep a float point variable (i.e., MaxDist(q, o)) in the main memory. Second, the invisible
region becomes a “regular” pie shape. For example, in Figure 21c, the invisible region made by o2

in Region1 becomes a regular pie shape. Thus, checking if a data object falling in an invisible region
becomes “a piece of cake” task as we only need to compare dist(q, p) with MaxDist(q, o).

Indeed, these strategies degrade the precision of the invisible regions. For example, the invisible
region made by o1 in Figure 21c is smaller than that in Figure 21b. Furthermore, we do not record
the invisible region in Region2 as o2 only partially blocks Region2. However, the design can greatly
enhance the performance of the visibility checking. Let us use Figure 21d to explain it. We have to
compare p2 with three obstacles (i.e., o2, o3, and o4) so as to check the visibility of p2 in DI. On the other
hand, by using IRLB, we only perform one operation (i.e., test whether dist(q, p2) > MaxDist(q, o2))
and find that p2 is invisible to q. This shows that our design can reduce the number of data-obstacle
comparisons and thus enhance the performance of the visibility check. In the next section, we will
introduce the details of IRLB.
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Figure 21. (a) Irregular invisible regions. (b) Equally split the view field into several small regions.
(c) Use MaxDist(q, o) to represent an invisible region. (d) Region1 contains multiple obstacles.
(e) The IRLB of (c,d).

4.4.2. The Construction of IRLB

As we did in DI, we use an IRLB slitting Angle θIRLB to split the 2D data space into d 360◦
θIRLB
e

equal-sized regions. The ith region Regioni corresponds to angle range [i × θIRLB, (i + 1) × θIRLB),
where i = 0, 1, · · · , d 360◦

θIRLB
e − 1. Note that θIRLB is a system parameter, and we set θIRLB � θS in

practical implementations.
IRLB is a hash table to keep the information of invisible regions in each region. IRLB contains

d 360◦
θIRLB
e elements. Each element is a key-value pair. A key corresponds to the region id. The value for

key i, denoted as IRLB[i], has three possible values:

1. IRLB[i] is zero if Regioni does not contain any obstacle. For example, in Figure 21d, Region3

does not contain any obstacle. Thus, IRLB[3] is zero.
2. If Regioni is fully blocked by a set of obstacles F , then IRLB[i] is the minimum value of

all the maximum distances between a query point q and each obstacle oj ∈ F . That is,
IRLB[i] = min∀oj∈F (MaxDist(q, oj)). For the formal definition of a full block, please refer
to Definition 8. For example, in Figure 21d, Region1 is fully blocked by F = {o2, o4}. Thus,
IRLB[1] = min(MaxDist(q, o2), MaxDist(q, o4)).

3. IRLB[i] is ∞ if Regioni is only partially blocked (see Definition 9) by some obstacles.
In Figure 21d, IRLB[2] is ∞ since Region2 is partially blocked by o2.

Definition 8. (Fully blocked)
Given a query q(l, r, θ) and a region Regioni with angle range [i × θIRLB, (i + 1) × θIRLB), Regioni

is fully blocked by the obstacle o if (1) MaxDist(q, o) ≤ r and (2) θq,o.min ≤ i × θIRLB and θq,o.max ≥
(i + 1)× θIRLB.
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Definition 9. (Partially blocked)
A region Regioni is partially blocked by an obstacle o if neither Regioni is fully blocked by o nor does

Regioni contain any obstacle.

Algorithm 8 shows the pseudocode for inserting an obstacle into IRLB. Note that at the beginning,
each element in IRLB is initialized to be zero (i.e., IRLB[i] = 0 for i = 0, 1, · · · , d 360◦

θIRLB
e − 1). Given an

obstacle o, Lines 1–2 determine the ids of regions that are covered by o. For each region Regioni, if it
is fully blocked by o, then we set IRLB[i] to the minimum value of MaxDist (Lines 4–6). Otherwise,
Regioni is partially blocked by o, and IRLB[i] is set to be ∞ (Lines 7–8).

Figure 21e shows the IRLB for Figure 21d. Since there are two obstacles (i.e., o2 and o4) fully
blocking Region1, IRLB[1] = min(MaxDist(q, o2), MaxDist(q, o4)) = 12. IRLB[2] is ∞ as Region2 is
partially blocked by o2. Since Region3 does not contain any obstacle, IRLB[3] is zero. There is only one
obstacle (i.e., o1) fully blocking Region4; thus, IRLB[4] = MaxDist(q, o1) = 16.

Algorithm 8. Insert an obstacle into an Invisible Regions Lookup Buffer (InsertToIRLB) algorithm.
GIVEN: The obstacle o, IRLB, and θIRLB
FIND : IRLB
start← b θq,o.min

θIRLB
c ;1

end← b θq,o.max
θIRLB

c ;2

for i← start to end do3
/* The obstacle o fully covers the range [i× θIRLB, (i + 1)× θIRLB). */
if θq,o.min ≤ i× θIRLB and θq,o.max > (i + 1)× θIRLB then4

if IRLB[i] > MaxDist(q, o) then5
IRLB[i]← MaxDist(q, o);6

else7
/* o only partially covers the region. */
if IRLB[i] == 0 then IRLB[i] = ∞ ;8

return IRLB;9

4.4.3. DI with IRLB

In this section, we present a new V2-kNN search algorithm that leverages the IRLB and the DI
method. The algorithm is a two-phase visible kNN search algorithm. In the first phase, we use IRLB to
categorize a data object p quickly into one of two types: (1) p is a candidate data object or (2) p is an
invisible one. In the second phase, only the candidate data objects are processed by the DI method to
find the exact answer. Since IRLB is fast, we can quickly reduce the search space and thus improve
the efficiency of the DI method. The pseudocode of our search algorithm is shown in Algorithm 9.
Lines 1–4 initialize the data structures DI and IRLB. In Phase 1, given a data object p, we first calculate
the region in which p is located (Line 7). Then, we use IRLB to determine the visibility of p quickly.
We state the decision rules as follows.

• Case 1: IRLB[i] is zero. This means that p falls in a region that does not contain any obstacle.
Thus, p is visible to q (Line 9). For example, p1 in Figure 21d is visible to q.

• Case 2: IRLB[i] ≤ dist(q, p). In this case, p is blocked by at least one obstacle in Regioni. Thus,
p is invisible to q and can be directly dropped (Line 10). For example, p2 in Region1 (Figure 21d)
is blocked by o2 and o4. Therefore, p2 is invisible to q.

• Case 3: If p does not belong to the above two cases, then we call DI to check p’s visibility (i.e.,
Lines 12–17). For the details of DI, please refer to Section 4.3.2. In Figure 21d, we cannot determine
the visibility of p3 by using IRLB. Thus, we pass p3 to DI for further processing.
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Algorithm 9. Visibility Check Ver. 4 (VC4) Algorithm (visibility check algorithm based on DI
and IRLB).

GIVEN: q, Ccur , RL, best_dist, k, DI, and IRLB
FIND : RL and OL
foreach obstacle o in Ccur do1

if o is inside q’s view field then2
/* Insert o into the direction index (see Algorithm 7). */
InsertToDI(o, DI);3
/* Insert o into IRLB (see Algorithm 8). */
InsertToIRLB(o, IRLB) ;4

foreach data object p in Ccur do5
if p is inside q’s view field then6

id← θq,p
θIRLB

;7

Vp ← True;8
/* Phase 1: call IRLB to reduce the search space. */
if IRLB[id] == 0 then Vp ← True;9
else if IRLB[id] ≤ dist(q, p) then Vp ← False;10
else11

/* Phase 2: call DI to check the visibility of p. */

id← θq,p
θF

;12

foreach obstacle o in DI[id] do13
if p is blocked by o then14

Vp ← False;15
break;16

if MinDist(q, o) > dist(q, p) then break;17

if Vp is True then18
if Vd(q, p) ≤ best_dist then Push p into RL;19
if |RL| ≥ k then best_dist← the visible distance between the kth element of RL and q;20

return RL, OL;21

The correctness of Algorithm 9 is guaranteed by Theorems 3 and 4.

Theorem 3. Given a data object p inside a region Regioni, p is invisible to q if IRLB[i] 6= 0 and
dist(q, p) ≥ IRLB[i]. More precisely, if p is blocked by an obstacle o in Regioni, then Regioni is fully blocked
by o and dist(q, p) ≥ MaxDist(q, o) = IRLB[i].

Proof. o fully blocks Regioni. Since o is a “continuous” line segment, we can find a point x on o
such that θq,o.min ≤ θq,p = θq,x ≤ θq,o.max. If we can show that x lies on qp, then we prove that
p is invisible to q. Fact 1: The cross product of −→qp × −→qx = dist(q, p) ∗ dist(q, x) ∗ sin(θq,p − θq,x) =

dist(q, p) ∗ dist(q, x) ∗ 0 = 0. This means that q, x, and p are collinear. Fact 2: Since x lies on line
segment o, dist(q, x) ≤ MaxDist(q, o). Furthermore, we know that dist(q, p) ≥ MaxDist(q, o). We
have dist(q, x) ≤ dist(q, p). Thus, x lies between q and p. From Fact 1 and Fact 2, we conclude that x
lies on qp, and thus, p is blocked by o.

Theorem 4. If p is inside Regioni and Regioni does not contain any obstacle, then p is a visible data object.

Proof. We prove it by contradiction. Assume that p is invisible to q. There must be an obstacle o that
intersects with line segment qp on a point x. Since qp falls in Regioni, x also resides in Regioni. Thus, o
must be in Regioni.

4.4.4. Discussion

The effectiveness of IRLB greatly depends on θIRLB. For example, in Figure 21d, if we use a
smaller θIRLB and split the data space with a finer granularity, then p3 would fall in a region that is
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fully blocked by o2. Therefore, we can directly drop p3 without invoking DI. In our experiment, we
used θIRLB = 1◦, and we found that the visibility of over 99% of data objects was identified by IRLB.
Only 1% of data objects required further processing.

Since the design of IRLB is very simple, its storage overhead is very small. In our simulation,
the IRLB with θIRLB = 1◦ required 360◦

1◦ × 2 (float point variables)× 64 (bits) = 46,080 bits ≈ 6 KB.
Compared with modern-day computer systems that usually have more than 8 GB main memory
capacity, the storage overhead of IRLB is negligible.

5. Experimental Study

In this section, we evaluate and compare the performance of the algorithms we proposed through
extensive experiments. We first introduce our experimental environment, varying parameters and the
methods of performance evaluation, then giving detailed descriptions and analysis for each experiment.

5.1. Simulation Environments

All of the algorithms were implemented in Java, and the experiments were conducted on a
Windows 10 desktop computer with Intel(R) Core(TM) i5-4460 CPU 3.20 GHz and 8 GB RAM. Both real
and synthetic datasets were used in our experiments. To reflect the real-world situations of our
problem with the existence of obstacles, we used a real dataset that is widely used in the research of
visible nearest neighbor queries [4,18,20,30], containing 24,650 river distribution information data in
Greece [36] as our obstacle sets, and each of them is represented by a bounding rectangle. We took
the diagonals of the rectangles as the obstacles in our experiments, and the distribution is shown in
Figure 22.

Figure 22. The obstacle set of Greece.

Two types of data objects were generated, the Gaussian and the Zipfian datasets. For the Gaussian
dataset, the location of a data object was Gaussian distributed with mean equal to 1000 and variance
equal to 2000. For the Zipfian distribution, the data objects were more dense around the center of the
data space and became sparse quickly toward the outside. In the following experiments, we used
“RG” to represent the simulation being based on the Real obstacle dataset and the Gaussian distributed
dataset. Similarly, “RZ” indicates that the simulation was based on the Real obstacle dataset and the
Zipfian dataset. In our experiments, the number of data objects was varied from 10 k–1000 k. All of
the obstacles and data objects were mapped into a domain of size [0, 20,000] × [0, 20,000] and were
indexed in grid cell partitions.

The locations of the query points were also generated by the Gaussian and the Zipfian
distributions. When we generated a query point q, we uniformly selected a value from [0◦, 360◦]
as the starting angle (i.e., θ`q , please refer to Section 3.1) of the view field. The view field angle θ and
the maximum visible distance r were uniformly chosen from [60◦, 360◦] and [1, 10,000], respectively.
We ran 100 queries for each experiment, and the average performance is reported. Table 4 summarizes
the parameters used, where the “Default Value” column shows the default values.
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Table 4. Parameters and values of the experiments.

Parameter Value Range Default Value

|P| 10 k–1000 k 100 k
|O| 5000–24,650 24,650

CellSize (m) 100–2500 1000
k 10–50 20
θ 60–360◦ 120◦

r 1 half of map 4000
θS 1–60◦ 10◦

θIRLB 1–60◦ 1◦

We evaluated four algorithms in the experiments as listed below:

• Baseline: the straightforward method to process V2-kNN queries (see Section 4.1). The baseline
algorithm is extended from the Fan-shaped Exploration (FE) algorithm [24]. We can understand
the effectiveness of our design by comparing the performance of the EF algorithm and our
technique proposed in the paper.

• Influential Cells algorithm (IC algorithm): the V2-kNN query processing method that leverages
influential cells to decrease the search space (see Section 4.2).

• Direction Index algorithm (DI algorithm): this algorithm uses the direction index as the index
of in-view-field obstacles. It reduces unnecessary obstacles to perform the visibility check and
further improves the efficiency of the algorithm, with its direction and distance perspectives (see
Section 4.3).

• Invisible Regions Lookup Buffer algorithm (IRLB algorithm): The algorithm uses an efficient
data structure (i.e., IRLB) to index the invisible regions in the view field. Then, the algorithm uses
IRLB to prune invisible objects in advance, further reducing the computations in the visibility
check (see Section 4.4).

We measured the computational cost by recording the query processing time. To show the
efficiency of our pruning technique, we also considered the number of accessed obstacles. The lower
the number of accessed obstacles, the more effective the pruning method.

5.2. The Effect of Cell Granularity (m)

In this experiment, we evaluated the performance of the proposed algorithms under various cell
granularity settings. We varied the cell size m from 100–2500 and record the average execution time
of each algorithm in Figure 23a,b. We observed that with a large m value (i.e., large cell size), each
cell contained a large number of data objects and obstacles. All algorithms spent much effort to filter
out irrelevant data objects and obstacles. This incurred excessive computational cost. On the other
hand, with a small m value (i.e., small cell size), each cell contained a small number of data objects and
obstacles. Although, this results in lower CPU time, where the visibility check is performed among a
few data objects and obstacles. However, the algorithms needed to access more cells so as to find the
query result. Thus, additional computational overhead was incurred.

From Figure 23, we also find that IC, DI, and IRLB greatly outperformed the baseline algorithm.
This means that our proposed data pruning techniques can efficiently filter out unaffected data objects
or obstacles and thus decrease the computational overhead of the visibility check.

Figure 23a,b also shows that the performance of IC was strongly dependent on the cell size. In our
experiment, the efficiency of IC decreased substantially when the cell size became larger than 1000.
The reason is that the IC algorithm finds influential cells IC(p) when checking the visibility of the
data object p. When the cell size becomes larger, each cell contains more obstacles. Therefore, in the
larger size cell, IC had to check the visibility with more obstacles, making the efficiency of IC algorithm
decrease when the cell size increased over 1000. On the other hand, the pruning techniques of DI
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and IRLB did not rely heavily on the grid size. Thus, DI and IRLB performed more stably than IC as
m increased.
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Figure 23. Average execution time vs. cell size. RG, Real Gaussian; RZ, Real Zipfian.

5.3. The Effect of Number of Data Objects (|P|)

In this experiment, we studied the performance of all approaches against the data object
cardinalities (|P|: 10 k up to 1000 k). The result is depicted in Figure 24. We notice that all the
algorithms incurred a longer execution time with the increase of |P|. This is mainly because the
algorithms had to perform more visibility checks as |P| increased.

Among all the methods, Baseline performed the worst as it had to do exhaustive comparisons
between each data object and all obstacles. Meanwhile, IC, DI, and IRLB outperformed baseline as they
can avoid many comparisons. Finally, IRLB showed its superiority over others due to the following
two reasons. First, the data were pruned efficiently by checking the invisible regions lookup buffer.
We can avoid computational overhead for performing the visibility check. Second, IRLB can terminate
the search early as soon as visible data objects are identified.
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Figure 24. Average execution time vs. |P|.

5.4. The Effect of Number of Obstacles (|O|)

Figure 25a,b shows the performance results for all algorithms with the increase of the number
of obstacles. In this experiment, we varied the number of obstacles |O| by randomly sampling
the 24,650 obstacles from rivers in Greece. Figure 25 shows that the average execution time of
all the algorithms increased when |O| increased. The main reason is that when |O| increased, the
number of in-view-field obstacles may increase as well. Therefore, the examined obstacles of all the
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algorithms increased while doing visibility checking of in-view-field objects, thus leading to increasing
computational cost.

IC, DI, and IRLB performed better than baseline as they use obstacle pruning techniques to reduce
the number of obstacles that need to be compared, resulting in effective visibility check. Also note that
DI and IRLB outperformed IC. This shows that the direction-based filter can prune more irrelevant
obstacles than the cell-based filter. Finally, IRLB leveraged the invisible regions lookup buffer to
discard the invisible data objects from further examination, leading to faster query processing.
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Figure 25. Average execution time vs. |O|.

5.5. The Effect of k

This experiment was to study the influence of k for baseline, IC, DI, and IRLB, and the results
are plotted in Figure 26a,b. Note that we did not draw the curves of baseline because the average
execution time of baseline was too large. The average execution time of baseline is about 4.5-times
and eight-times higher than that of IC and IRLB, respectively. As expected, the execution times of
all algorithms increased as k grew. However, DI and IRLB remained superior over baseline and IC.
While the average execution time of all the algorithms increased linearly as k increased, the rate of
increase for DI and IRLB was slower. This is primarily because as k increased, the number of visibility
checks also increased. Therefore, the direction-based pruning technique for DI and IRLB can efficiently
decrease the number of obstacle comparisons when checking the visibility of a data object, leading to a
low search time.
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Figure 26. Average execution time vs. k.
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5.6. The Effect of r and θ

In the experiments, we analyzed how the performance was impacted by two parameters: r and θ.
The two parameters control the covering area of a view field. The larger the value of r and θ, the more
data objects and obstacles are covered by a view field. The results are reported in Figures 27 and 28.
The two figures show a very similar trend, that is the larger the size of a view field, the longer the
query execution time. Once again, the results show that our pruning techniques can discard many
unqualified obstacles so that IC, DI, and IRLB provide acceptable performance even when the view
field is large.
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Figure 27. Average execution time vs. θ.
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Figure 28. Average execution time vs. r.

5.7. The Effect of the Splitting Angle (θS )

In this experiment, we investigated the effect of θS , which determines the direction index’s angle
range of each section. Since parameter θS only affected the performance of DI and IRLB, we omit the
simulation results of baseline and IC. By observing Figure 29, we find that the average execution time
of DI increased rapidly when θS increased. This is because the larger value of θS means that a section
would cover a wider spatial region, and more obstacles would be contained in a section. Thus, DI had
to spend more time to check the visibility of data objects, incurring excessive computational cost.

Although IRLB is based on DI, it uses invisible regions lookup table to perform a two-phase
search scheme (see Section 4.4.3). Since the visibility of a large number of data objects is determined by
the lookup table (i.e., in phase one), only a few data objects are passed to DI for further processing.
This makes IRLB much less sensitive to the increases of θS .
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Figure 29. Average execution time vs. θS .

5.8. The Effect of the Slitting Angle (θIRLB)

Continuing with the previous experiment, with a fixed value of θS = 10◦, we keep investigating
the effect of θIRLB. Since θIRLB is only related to IRLB, we only plot the performance of IRLB in
Figure 30. We find that the average execution time of IRLB increased as θIRLB increased. This is mainly
because as θIRLB became larger, the probability that a region was fully blocked by obstacles became
lower. This means that less data objects can be pruned in advance and have to be further examined
by DI. With the computational cost of visibility checking increasing, the execution efficiency of IRLB
became less effective.
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Figure 30. Average execution time vs. θIRLB.

6. Conclusions and Future Work

In this paper, we proposed algorithms for processing V2-kNN queries, which retrieve k visible
data objects in the presence of obstacles within user’s view field. Two factors affect the visibility of data
objects: (1) the view field and (2) physical obstacles (e.g., buildings, or hills). This paper represents a
first attempt at considering both factors in finding the solutions. To make V2-kNN more efficient, we
utilized a grid index structure to index data objects and obstacles. Based on the index, we designed
four algorithms (i.e., baseline, IC, DI, and IRLB) to process V2-kNN queries. Baseline is the basis for the
remaining three algorithms. Baseline uses the grid index to access only cells that overlap with the view
field. The core idea of the baseline algorithm is to visit cells from near to the distant according to their
distance to q. Without having any pruning heuristics, this algorithm resulted in a quite high execution
cost. The IC algorithm extends the baseline algorithm by exploiting the fact that obstacles affecting
the visibility of p can only exist in the cells intersecting with qp (i.e., the line segment connecting q
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and p). Thus, IC only checks the cells overlapping qp. This strategy greatly reduced the number of
accessed obstacles, leading to a much more acceptable performance. In the DI algorithm, we devised
the “direction index” to index the obstacles within a view field. Based on the direction index, we
proved that for p, only obstacles falling within a certain angle may affect the visibility of p (this angle is
relative to q). In IRLB, we designed a light-weight data structure to index the invisible areas in the view
field. Data objects that fall in the invisible areas cannot be the answer. We used the index structure to
discard those invisible data objects quickly when processing a V2-kNN query. Consequently, only a
small number of data objects required further processing. Our experiments have demonstrated that
all proposed algorithms can achieve our goal, that is finding visible kNN objects in the presence of
obstacles within a user’s view field. The results also showed that IC, DI, and IRLB were better than
baseline. This proves that the pruning strategies indeed significantly reduced the number of accessed
obstacles and data objects. In addition, IRLB performed the best among all the algorithms, manifesting
that the angle-based pruning strategy and the two-phase searching scheme were effective, as expected,
in cutting down the size of the search space.

This work opens several promising directions. First, the Euclidean distance can be extended to
the road network distance, which will require our algorithm to be redesigned to meet the need of
road-network applications. Second, it would be interesting to take the dynamic environment into
consideration, meaning that data objects and the query point may move and change their direction
of movement. Third, as the obstacles are irregular in shape in the real world, we will investigate an
efficient approach to check the visibility of objects under such conditions to make the solutions better
meet the needs of real life.
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