
 International Journal of

Geo-Information

Article

Tree Species Classification Using Hyperion and
Sentinel-2 Data with Machine Learning in South
Korea and China

Joongbin Lim 1 , Kyoung-Min Kim 1,* and Ri Jin 2

1 Inter-Korean Forest Research Team, Division of Global Forestry, Department of Forest Policy and Economics,
National Institute of Forest Science, Seoul 02455, Korea; jlim@korea.kr

2 Department of Geography, Yanbian University, Yanji 133002, China; jinri0322@ybu.edu.cn
* Correspondence: greenann@korea.kr; Tel.: +82-2-961-2891

Received: 29 January 2019; Accepted: 15 March 2019; Published: 20 March 2019
����������
�������

Abstract: Remote sensing (RS) has been used to monitor inaccessible regions. It is considered a useful
technique for deriving important environmental information from inaccessible regions, especially
North Korea. In this study, we aim to develop a tree species classification model based on RS and
machine learning techniques, which can be utilized for classification in North Korea. Two study sites
were chosen, the Korea National Arboretum (KNA) in South Korea and Mt. Baekdu (MTB; a.k.a.,
Mt. Changbai in Chinese) in China, located in the border area between North Korea and China,
and tree species classifications were examined in both regions. As a preliminary step in developing
a classification algorithm that can be applied in North Korea, common coniferous species at both
study sites, Korean pine (Pinus koraiensis) and Japanese larch (Larix kaempferi), were chosen as targets
for investigation. Hyperion data have been used for tree species classification due to the abundant
spectral information acquired from across more than 200 spectral bands (i.e., hyperspectral satellite
data). However, it is impossible to acquire recent Hyperion data because the satellite ceased operation
in 2017. Recently, Sentinel-2 satellite multispectral imagery has been used in tree species classification.
Thus, it is necessary to compare these two kinds of satellite data to determine the possibility of
reliably classifying species. Therefore, Hyperion and Sentinel-2 data were employed, along with
machine learning techniques, such as random forests (RFs) and support vector machines (SVMs),
to classify tree species. Three questions were answered, showing that: (1) RF and SVM are well
established in the hyperspectral imagery for tree species classification, (2) Sentinel-2 data can be used
to classify tree species with RF and SVM algorithms instead of Hyperion data, and (3) training data
that were built in the KNA cannot be used for the tree classification of MTB. Random forests and
SVMs showed overall accuracies of 0.60 and 0.51 and kappa values of 0.20 and 0.00, respectively.
Moreover, combined training data from the KNA and MTB showed high classification accuracies in
both regions; RF and SVM values exhibited accuracies of 0.99 and 0.97 and kappa values of 0.98 and
0.95, respectively.

Keywords: hyperspectral image; random forest; support vector machine; texture feature; image
spectroscopy

1. Introduction

North Korea is suffering from extreme forest degradation due to food and energy shortages [1–3].
Degraded and deforested lands are vulnerable to natural disasters, such as landslides and floods,
which not only cause environmental damage, but also destroy agricultural infrastructure [1–3]. This
results in a vicious cycle of degradation in the forest by woodcutting to address food and fuel shortages.
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Additionally, deforestation causes habitat fragmentation, which decreases the size and increases the
isolation of habitat patches, causing changes in biodiversity and community structure [4,5]. Natural
forests also function as carbon sinks, and can be key in reducing emissions from deforestation and
forest degradation (REDD). Although the degradation of forests in North Korea has been reported as
the primary national problem, it is noteworthy that 7.64 million ha of intact forests remain in North
Korea [6].

Among them, 953,500 ha have been managed as protected forests [6]. North Korea has also
established environmentally protected areas, of which there are nine categories: biosphere reserve,
nature park, nature reserve, animal reserve, plant reserve, seabird reserve, wetland reserve, coastal
resource reserve, and landscape reserve [7]. Furthermore, five tree species were reported as the
dominant varieties in North Korea; these were: oak, larch, pine, deodar (cedar), and Korean pine.
These species occupy 29.5% (oak), 17.5% (larch), 12.7% (pine), 8.2% (deodar), and 5.8% (Korean pine)
of the total forest cover [6].

While the protected forested areas and dominant tree species of North Korea have been
documented in previous studies, their spatial distributions have not yet been reported. The species-level
information of forests, such as their composition and distribution, is essential for sustainable forest
management [8,9]. Even though forest resource assessments are important, it has been impossible
to perform forest surveys in North Korea due to its inaccessibility. In this case, remote sensing (RS)
can play a key role in the surveying of forest resources in North Korea. Many research groups have
attempted to determine the spatial variation of species using RS worldwide [8–20].

There are several classification methods in RS, such as spectral angle mapping [8,16,17], linear
discriminant analysis [16,21], decision tree classification [22,23], artificial neural networks [24,25],
convolutional neural networks [26,27], recurrent neural networks [28,29], support vector machines
(SVMs) [8,18–20,30], and random forests (RFs) [13,20,31]. Among them, SVM and RF have shown very
high degrees of reliability and classification accuracies in RS applications, and have been widely used
in the forestry community [13,19,20]. Several groups have tried to classify plant species using RFs and
SVMs [8,13,14,32,33]. In the discrimination of tropical wetland plant species in Jamaica, RFs showed
accuracies of 91.8% and 84.8% for importance-ranked spectral indices and in situ reflectance spectra,
respectively [33]. Additionally, RFs showed an 87.6% overall accuracy for eight savanna tree species
using Compact Airborne Spectrographic Imager (CASI-1500, Itres Research Ltd., Ontario, Canada) data
and waveform Light Detection and Ranging (LiDAR) data [13]. In the western Himalayas, an SVM
with Hyperion data showed 82.2% accuracy and 69.62% accuracy with Landsat Thematic Mapper (TM)
data. This study confirmed the potential utility of narrow spectral bands of Hyperion data in classifying
tree species on hilly terrain [8]. The results of these three studies also demonstrated the classification
capability of RFs and SVMs with hyperspectral data and Hyperion data. Thus, SVMs and RFs were
applied in this study because a primary goal of this study was to develop a tree species classification
model that can be used for the classification of trees in North Korea, where field observations for
validation remain impossible.

Support vector machines with spectral features, textural features, and hyperspectral vegetation
indices have shown an accuracy of 82.3% in classifying mangrove species of Qi’ao Island in China.
Additionally, when the tree height information was supplemented in the classification, the accuracy
was increased to 88.6% [32]. In the case of forest tree species classification using CASI data with textural
features at the Liangshui National Natural Reserve area in China, an SVM showed 85.9% accuracy,
and it was confirmed that combining spectral and spatial information can improve the accuracy of tree
species classifications [14]. Therefore, topographic data and textural data were used in this study to
increase the predictive ability of the models.

The aims of this study were to develop a tree species classification model based on RS and machine
learning techniques that can be utilized for classification in North Korea. Two study sites were chosen
in South Korea (the Korea National Arboretum (KNA)) and China (Mt. Baekdu (MTB), a.k.a., Mt.
Changbai in Chinese) and examined to classify tree species in both regions; the latter of these sites
occupies the border area between North Korea and China. As a preliminary step in developing a
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classification algorithm that can be applied in North Korea, we selected two common coniferous species
for investigation at both study sites: Korean pine (Pinus koraiensis, Siebold & Zucc.) and Japanese larch
(Larix kaempferi (Lamb.) Carriere). It is meaningful to analyze the distribution of these two species as
they are the forest species that North Korea considers economically essential [34].

Hyperion data, which are hyperspectral satellite data, have been used to classify tree species
due to the abundance of spectral information acquired from more than 200 spectral bands. However,
no new Hyperion data are available because the satellite has not been operated since 2017. Recently,
Sentinel-2 satellite multispectral imagery has been used in tree species classification. Therefore, it is
necessary to compare the two kinds of satellite data from Hyperion and Sentinel-2 to determine the
possibility of species classification using the lower spectral resolution satellite. In order to achieve this
goal, the following questions were posed:

1. Can Hyperion data with machine learning algorithms, such as RFs and SVMs, be adopted for
tree classification?

2. Can Sentinel-2 data be used for tree species classification with RF and SVM algorithms instead of
Hyperion data?

3. Can training data that were built in the KNA be used for the tree classification of MTB?

2. Materials and Methods

2.1. Study Areas

The study was conducted throughout the area of the KNA in South Korea (37◦45′ N, 127◦10′ E) and
the MTB region in China (42◦16′ N, 127◦59′ E) (Figure 1). Due to the inaccessibility of North Korea, MTB
was selected to identify the possibility of species classification in North Korea because it is a national
boundary region between China and North Korea. China owns the northern part of MTB, named Mt.
Changbai in Chinese, while North Korea owns the southern part of MTB, named Mt. Baekdu in Korean.
Both countries have similar topographic and climate conditions in this region [35,36].ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 4 of 21 
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the possibility of tree species classification using satellite data. Sentinel-2 data were used for tree 
species classification in both study regions. Additionally, PlanetScope Level 3B data were used to 
produce textural feature bands. A digital forest map of South Korea provided by NIFoS was used to 
derive training and validation data. Based on this forest map, 3000 training and 315 validation data 
points were randomly generated. The validation sampling number was set based on international 
standards [39]. Researchers at Yanbian University built training and validation data of MTB and 
performed the classification validation of MTB. Finally, Shuttle Radar Topography Mission (SRTM) 
1-arc second digital elevation model (DEM) data, which were obtained from the USGS website, were 
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Figure 1. Study area: (a) Mt. Baekdu (MTB) region in China; (b) Korea National Arboretum (KNA) in
South Korea.

The KNA is located in Gwangneung Forest. Gwangneung Forest was a royal forest, and houses
the mausoleum of King Sejo of the Joseon Dynasty. Thus, it has been strictly managed to minimize
human disturbance over the last 500 years. The Gwangneung Arboretum was established in 1987
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in affiliation with the National Institute of Forest Science (NIFoS), controlled by the Korea Forest
Service (KFS), and has been open to the public since then. It became known as the KNA on 24 May
1999. The KNA contains 1120 ha of natural forest, 100 ha of specialized gardens, a forest museum, the
Korea National Herbarium, a temperate house, and the Tropical Plant Resource Center. The KNA was
designated as one of the United Nations Educational, Scientific and Cultural Organization (UNESCO)
biosphere reserve in June of 2010 [37].

Mt. Baekdu is the highest mountain on the Korean peninsula. The administrative area is bordered
by North Korea’s Yanggang Province and China’s Jilin Province, with a total area of 8000 km2.
The climate is a typical alpine climate and experiences severe climatic changes. The average annual
temperature is 6–8 ◦C, the maximum temperature is 18–20 ◦C, the January average temperature is
−23 ◦C (lowest −47 ◦C), and the average daily temperature in July is 4.8 ◦C. The annual average
humidity is 74%, and is the highest during the summer and low in winter [38]. The flora of MTB include
330 species, 47 families, and 162 genera [38]. It is called a “three-dimensional botanical garden” because
it is composed of primeval forests (mixed coniferous and broadleaf forests and coniferous forests). Due
to the influences of climate and topography, the temperature gradually decreases according to the
altitude above sea level. The vertical distribution of plants in MTB is that of temperate broadleaf
forests below 720 m above sea level, mixed forests of polar and temperate coniferous and broadleaf
forests at altitudes of 720–1100 m, sub-polar coniferous forests from 1100–1700 m, polar and sub-alpine
forests from 1700–2000 m, and between 2000 m and 2700 m are alpine and mossy plains. This apparent
vertical distribution is unique worldwide. Mt. Baekdu was designated by North Korea as a protected
vegetation area. It was registered as an International Biosphere Reserve in 1989 with an area of
~14,000 ha. In China, MTB was designated as a nature reserve in 1906 [38].

2.2. Data

In this study, EO-1 Hyperion and Sentinel-2 data were used to classify Korean pine and Japanese
larch. Hyperion level 1R and 1T data and Sentinel-2 level lC data were obtained from the official
website of the United States Geological Survey (USGS) (http://earthexplorer.usgs.gov/) (Table 1).
There was only one scene of Hyperion data in the KNA region, which was obtained on 7 September
2010. The scene has period gap with Sentinel-2 data; however, this did not influence the study results
because Hyperion data were used to establish the classification algorithm procedure and to confirm
the possibility of tree species classification using satellite data. Sentinel-2 data were used for tree
species classification in both study regions. Additionally, PlanetScope Level 3B data were used to
produce textural feature bands. A digital forest map of South Korea provided by NIFoS was used to
derive training and validation data. Based on this forest map, 3000 training and 315 validation data
points were randomly generated. The validation sampling number was set based on international
standards [39]. Researchers at Yanbian University built training and validation data of MTB and
performed the classification validation of MTB. Finally, Shuttle Radar Topography Mission (SRTM)
1-arc second digital elevation model (DEM) data, which were obtained from the USGS website, were
used to generate elevation, slope, and aspect maps.

Table 1. Hyperion, Sentinel-2, and PlanetScope data information for the KNA and MTB.

Hyperion Sentinel-2 PlanetScope

KNA KNA MTB KNA MTB

Acquisition date 7 September 2010

28 April 2018
23 May 2018
2 June 2018
7 July 2018

1 August 2018
25 September 2018

30 October 2018

18 April 2018
23 May 2018
2 June 2018
22 June 2018

26 August 2016
20 September 2018

5 October 2018

12 April 2018
16 September 2017

4 April 2018
31 August 2017

Path/Row 116/34 52SCG 52TDN
Level 1R/1T 1C 3B

http://earthexplorer.usgs.gov/
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2.3. Methodology

The study procedure is shown in the flowchart of Figure 2. As a first step, image preprocessing,
including topographic correction and atmospheric correction, was performed and then, the spectral
separability between endmembers of Korean pine and Japanese larch selected from Hyperion data
was investigated. The spectral similarity between endmembers of the KNA selected from Hyperion
data and Sentinel-2 data was also investigated to confirm the applicability of Sentinel-2 data for
classification. Hyperion bands corresponding to the Sentinel-2 wavelength were extracted and used to
analyze the spectral similarity with Sentinel-2 data. The spectral similarity between endmembers of
the KNA and MTB selected from multi-seasonal Sentinel-2 data (April–October) was then assessed
for selecting the best seasonal Sentinel-2 image of the KNA and MTB for classification. Additionally,
textural information was extracted by using the gray-level co-occurrence matrix (GLCM) [40] from
PlanetScope data. Elevation, slope, and aspect maps were then generated from SRTM DEM data.
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Figure 2. Flowchart of the tree species classification procedure. Abbreviations: GLCM, gray-level
co-occurrence matrix.

In the second step, tree species classification using Hyperion data in the KNA was performed.
During classification, additional attribute data, such as elevation, slope, aspect, and texture, were
added step-by-step. Classification 1 was performed only with Hyperion data. Classification 2 used both
Hyperion and topographic data (e.g., elevation, slope, and aspect). Classification 3 was accomplished
with Hyperion data, topographic data, and texture data.

In the third step, Wilk’s lambda test was conducted to reduce the dimensionality of Hyperion
data to decrease analytical costs, and to confirm the possibility of classification using dimensionally
reduced Hyperion data. The fourth step involved classifying tree species using Hyperion data with
Sentinel-2 band information, as well as original Sentinel-2 data. The final step was to classify tree
species on MTB using Sentinel-2 data with a training set from the KNA, MTB, and both combined.
Training sets from the KNA and MTB were built using a data frame in the R statistical package ver.
3.5.1. Thus, both datasets were combined by rows using the ‘rbind()’ command in R.

2.4. Preprocessing

Hyperion data contained 242 bands, and many of them were found unsuitable for the analyses in
this study due to the low signal-to-noise ratio. Thus, 147 bands were selected for analysis based on
previous studies [8,10,41]. All bands were separately visualized, and bands that were not calibrated
or had very high noise were eliminated following visual inspection. Atmospheric correction was
performed using the Environment for Visualizing Images ver. 5.0 (ENVI) fast line-of-sight atmospheric
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analysis of spectral hyper-cubes (FLAASH) algorithm. The Level 1R image was georeferenced using
the Level 1T image. Hyperion data were projected onto the Universal Transverse Mercator (UTM)
projection, World Geodetic System (WGS) 84 datum, and zone 52N.

Sentinel-2 level 1C data were orthoimages in UTM/WGS84 projection, and provided in
top-of-atmosphere (TOA) reflectance. Thus, an atmospheric correction was needed to calculate the
surface reflectance. In order to calculate surface reflectance, a Sen2Cor algorithm [42] was used; it
was developed by the European Space Agency (ESA), which also develops, manages, and distributes
Sentinel-2 data.

2.5. Texture Analysis

Textural features can help to improve the accuracy of tree species classifications [14]. The GLCM
is one of most well-known texture analysis algorithms, and has been widely adopted by the RS
community [43–51]. The GLCM represents the distance and angular relationship over a sub-area
of an image of a specified size. It measures the spatial frequency of co-occurrences of gray pixel
levels in a user-defined moving kernel to quantify texture and to form the co-occurrences of pixels
in the kernel. Consideration of the window size that captures the target class should be given while
calculating the GLCM texture scale. The optimal window size should be determined by the spatial
resolution of the image and the size of the tree canopy [14]. In this study, the angular second moment
(ASM), contrast (CON), dissimilarity (DIS), entropy (ENT), homogeneity (HOM), mean (MEAN), and
variance (VARIANCE) were used. A series of GLCM texture measures were calculated according to
the following equations [40]:

ASM = ∑ quantk
i=0 ∑ quantk

j=0 hc(i, j)2; (1)

CON = ∑ quantk
i=0 ∑ quantk

j=0 (i− j)2 × hc(i, j)2; (2)

DIS = ∑ quantk
i=0 ∑ quantk

j=0 hc(i, j)2|i− j|; (3)

ENT = ∑ quantk
i=0 ∑ quantk

j=0 hc(i, j)× log[hc(i, j)]; (4)

HOM = ∑ quantk
i=0 ∑ quantk

j=0
1

1 + (i− j)2 · hc(i, j); (5)

MEAN = ∑ quantk
i=0 ∑ quantk

j=0 i× hc(i, j); (6)

VARIANCE = ∑ quantk
i=0 ∑ quantk

j=0 (i− µ)2hc(i, j), (7)

where quantk is the quantization level of band k (e.g., 28 = 0 to 255) and hc(i,j) is the (i,j)th entry in one
of the angular brightness value spatial-dependency matrices. Textural feature analysis was performed
using the ‘glcm’ package in R.

2.6. Spectral Separability and Similarity Analysis

In order to investigate the spectral separability between Korean pine and Japanese larch, the
Jeffries-Matusita (JM) distance was applied to the endmembers selected from Hyperion and Sentinel-2
data. Jeffries-Matusita distance values range from 0 (i.e., identical distributions) to 1.414 (i.e., complete
dissimilarity), and it is generally implemented to quantify the degree of separation [8,40]. The spectral
similarity between endmembers from the KNA and MTB was also assessed to investigate whether
it is possible to use a training dataset of the KNA for the classification of trees in the MTB area.
For the similarity test, a spectral angle mapper (SAM) algorithm, which is also commonly applied to
assess spectral similarity by RS user group [8,40], was used. The SAM results range from 0 (i.e., lower
similarity) to 1 (i.e., higher similarity) [52].
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2.7. Classification Algorithms

2.7.1. Random Forest

The RF was developed by Leo Breiman and Adele Cutler [53]. It generates many decision trees
(e.g., 500 trees) to define unclassified pixels, with its associated attributes, such as spectral reflectance,
elevation, and slope, into a class. Each decision tree classifies the pixel into one class, and it votes for
that class. The forest classifies the pixel to the class having the most votes from all of the trees in the
forest [13,40,53–55].

Each of the individual decision trees is grown as follows [53]:

1. N samples are randomly selected with replacement from the entire training data. These N samples
are used as training data in each decision tree model to generate trees. In general, approximately
70% of the total sample is extracted and used as training data in each tree model, and the
remaining 30% is termed “out-of-bag” (OOB) and not used during training;

2. If there are M input variables, a number m of input variables of M is randomly selected with
replacement at each node of the decision trees, and then the best node variables are determined
among the m variables. The value of m is constant in an RF, and usually the square root of M,
which is the total number of input variables, is used;

3. Each decision tree is created to the maximum possible size without pruning.

Each class can be weighted with a priori facts. Random forests are efficient for extensive datasets,
which is an advantageous feature for analyzing sizeable RS data [40]. They also provide information
on which variables are important for classification. If there were random interchange in the data for
particular predictors, the variable importance would be calculated based on the degradation of the
prediction [13,56]. It helps to understand which predictor(s) are driving the differences in accuracy
between different classifications [57].

The variable importance can be measured using the mean decrease in Gini (MDG). The MDG
measures how much a variable reduces the Gini impurity metric in a particular class [54,58].
Additionally, RFs provide OOB estimates of error rates, which are measured by counting the number of
misclassifications and dividing this number by the total number of observations. Error rates can be used
to choose the best fitting model [31,59,60]. In numerous studies, classifications have been performed
using RFs and their superiority over other classification techniques has been demonstrated [13,59,61–64].

2.7.2. Support Vector Machine

Support vector machines were suggested by Vapnik [65]. They are advanced and useful classifiers,
which can manage classification problems in hyperspectral data and have been widely used for tree
species classification [14]. Support vector machines use training data to find the optimal hyperplane
between classes [66,67]. At this time, it finds the optimal hyperplane between two classes that
maximizes the margin between the closest training samples of the classes. The points at the boundary
are called support vectors, and the middle of the margin is the optimal hyperplane separating the
classes [68]. Training points located on the opposite side of the separating hyperplane have negative
weights to reduce their effects. If it is not feasible to determine a linear hyperplane, a kernel function is
used to convert the original data into a higher dimensional space to find a suitable hyperplane [68].
The equation is as follows [40]:

minw,b,ς

(
wT · w

2
+ C

λ

∑
i=1

ςi

)
, such that (8)

yi

(
wT ·Φ(xi) + b

)
≥ 1− ςi, (ςi ≥ 0),
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where ςi denotes positive slack variables used to allow some of the samples to fall on the wrong
side of the hyperplane, C ∑ ςi is a term used to penalize solutions for which ςi are very large, and
wT ·Φ(xi) + b is a hyperplane in a higher dimensional feature space [11,40]. The basic SVM approach
may be extended to optimize the nonlinear surface using the following decision function [40]:

f(x) = ∑ λ
i=1aiyiK(x, xi) + b, (9)

where ai are nonnegative Lagrange multipliers used to search the optimal separating hyperplane, and
K(x, xi) is a kernel function, which replaces the inner product (x·xi) in order to solve computational
problems in a higher dimensional space [40,69]. For SVM classification, the radial basis function kernel
type was used with optimal gamma and cost values that were determined by a commonly used grid
search approach [8,70].

Random forest and SVM classifications were performed using the ‘randomForest’ and ‘e1071’
packages in R. Accuracy assessments were performed with ‘confusionMatrix’ in the ‘caret’ package of
R using validation data. The confusion matrix provides the overall accuracy, kappa statistic value, user
accuracy, and producer accuracy [40]. Additionally, a receiver operating characteristic (ROC) curve
was used to evaluate the predictive capability of the models. The ROC curve was produced by plotting
the true positive rate against the false positive rate at various threshold settings. If a model had an
area under the curve (AUC) closer to 1 and was higher than 0.5, this meant that the model had a good
predictive capability [71].

2.8. Data Dimensionality Reduction

Hyperion data have 242 bands. Generally, the dimensionality is reduced before classification
to decrease the processing cost and to use only the optimal bands. In addition to classification, the
purpose of this study was also to investigate the applicability of Sentinel-2 data for tree species
classification. The applicability of dimensionality reduction was investigated in order to determine
whether dimensionally reduced Hyperion data can be used for tree species classification and if it is
possible, if it is feasible to classify tree species using selected Hyperion data corresponding to Sentinel-2
band information. To reduce the dimensionality of Hyperion data, a stepwise discriminant analysis
procedure based on Wilk’s lambda test statistic, which has been used for Hyperion data preprocessing
by several research groups [8,15,72], was performed.

Wilk’s lambda (Λ) was given by Green and Carroll [73] as:

Λ =
|W|
|T| =

|W|
|W + B| . (10)

In Equation (10), W is the within-groups sum of squares and cross-product matrix, B is the
between-groups sum of squares and cross-product matrix, and T is the total sum of squares and
cross-products matrix, such that:

T = ∑ g
i=1 ∑ ni

j=1

(
Xij − X

)(
Xij − X

)
′; (11)

W = ∑ g
i=1 ∑ ni

j=1

(
Xij − Xi

)(
Xij − Xi

)
′; (12)

B = ∑ g
i=1ni

(
Xi − X

)(
Xi − X

)
′, (13)

where g is the number of groups, ni is the number of observations in the ith group, Xi is the mean vector
of the ith group, X is the mean vector of the all observations, and Xij = the jth multivariate observation
in the ith group. Wilk’s lambda ranges from 0 to 1; the values close to 0 mean that the groups are
well separated, while the values close to 1 mean that the groups are poorly separated. The stepwise
discriminant analysis was performed using the ‘greedy.wilks’ function of the ‘klaR’ package in R.
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3. Results and Discussion

3.1. Spectral Separability and Similarity

Table 2 shows the spectral separability between Korean pine and Japanese larch selected from the
Hyperion and Sentinel-2 data of the KNA and MTB. Each spectrum represents the mean spectra of each
species in each dataset. The JM distance value of the KNA from Hyperion data was 0.027, and those of
the KNA and MTB from Sentinel-2 data were 0.009 to 0.275, respectively. It seems from Table 2 that
there was no separability between the reflectance spectra of Korean pine and Japanese larch. However,
as shown in Figure 3, the reflectance spectra of Korean pine were slightly different from those of
Japanese larch. According to previous studies, coniferous needles have slightly lower visible (VIS)
reflectances and higher near infrared (NIR) reflectances than broad leaves [24,26]. Moreover, Larix sp.
have similarity spectra to broad leaves [74]. Thus, it is reasonable that Korean pine exhibited a higher
NIR reflectance and lower shortwave infrared (SWIR) reflectance than Japanese larch, as Pinus sp. have
exhibited higher NIR reflectances and lower SWIR reflectances than Larix sp. in previous studies [74].

Table 2. Jefrries-Matusita (JM) distance values for Hyperion and Sentinel-2 image training samples of
the KNA and MTB.

Data Region April May June July August September October

Hyperion KNA 0.027
Sentinel-2 KNA 0.051 0.072 0.074 0.086 0.009 0.057 0.091
Sentinel-2 MTB 0.275 0.107 0.094 0.075 0.093 0.120 0.025
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Table 3 shows the spectral similarity between endmember spectra derived using Sentinel-2
reflectance images of the KNA and MTB. As shown in the table, all season spectra exhibited very high
SAM scores, which means that they were highly similar. Among them, spectra for May at the KNA
had the highest similarity (SAM = 1) to spectra for June at MTB. Meanwhile, late May and early June
are the best months for tree classification at MTB [75]; therefore, images from May at the KNA and
June at MTB were chosen for classification.
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Table 3. Spectral similarity values between endmember spectra of the KNA and MTB from Sentinel-2 images.

Korean Pine
MTB

18 April 2018 23 May 2018 2 June 2018 22 June 2018 26 August 2016 20 September 2018 5 October 2018

KNA

28 April 2018 0.966 0.995 0.994 0.991 0.992 0.996 0.988
23 May 2018 0.945 0.999 1.000 0.999 0.999 0.997 0.980
2 June 2018 0.948 0.999 0.999 0.998 0.998 0.997 0.981
7 July 2018 0.919 0.956 0.955 0.953 0.953 0.954 0.943

1 August 2018 0.942 0.998 0.999 0.999 0.998 0.996 0.978
25 September 2018 0.937 0.999 1.000 1.000 0.999 0.996 0.975

30 October 2018 0.944 0.999 0.999 0.999 0.998 0.997 0.980

Japanese larch MTB

18 April 2018 23 May 2018 2 June 2018 22 June 2018 26 August 2016 20 September 2018 5 October 2018

KNA

28 April 2018 0.934 0.995 0.993 0.991 0.990 0.996 0.987
23 May 2018 0.899 1.000 1.000 0.999 0.998 0.998 0.973
2 June 2018 0.905 0.999 0.999 0.999 0.998 0.998 0.975
7 July 2018 0.880 0.954 0.953 0.952 0.951 0.953 0.935

1 August 2018 0.906 0.998 0.999 0.999 0.999 0.998 0.975
25 September 2018 0.905 0.999 0.999 0.999 0.999 0.999 0.976

30 October 2018 0.917 0.999 0.998 0.996 0.996 0.999 0.983
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3.2. Classification with Hyperion Data of the Korea National Arboretum

Table 4 shows the accuracy of RF and SVM classifications using Hyperion data. In RF classification
using Hyperion data, the overall accuracy of 0.82 (kappa statistic = 0.64) was achieved. The producer
accuracy of Korean pine and Japanese larch in RF classifications were 0.85 and 0.80, respectively.
Additionally, the user accuracy of Korean pine and Japanese larch in RF classifications were 0.78 and
0.86, respectively. The species classification performance using an SVM classifier on Hyperion data
was better (overall accuracy = 85%, kappa statistic = 0.71) than RF classification. The producer accuracy
of Korean pine and Japanese larch in SVM classification were 0.86 and 0.84, respectively, while the user
accuracy of Korean pine and Japanese larch were 0.84 and 0.87, respectively. The producer accuracy
and user accuracy increased for both species.

The distribution of species can vary depending upon geographical characteristics, and spectral
reflectances can be affected by the terrain aspect. In order to consider such geographical effects,
elevation, slope, and aspect maps were also utilized in this study. Table 4 shows that topographical
analysis was more accurate than non-topographic analysis. The overall accuracy and kappa statistics
of RF and SVM classifications were 0.83 and 0.65, and 0.86 and 0.73, respectively. Overall RFs and
SVMs with topographical analyses yielded higher producer accuracies (>0.81 and >0.86, respectively)
and user accuracies (>0.80 and >0.85, respectively).

Japanese larches shed their leaves in the fall and remain leafless throughout the winter period,
while Korean pine is an evergreen. Thus, there is a difference in the tree canopies between Korean pine
and Japanese larch, and in the timing of the first leaf buds and first autumn foliage. In order to reflect
these properties, textural analysis results of both April and September images using GLCM were used
as textural image bands. Table 4 shows the effects of textural image application. The overall accuracy
and kappa statistics of RF and SVM classifications improved from 0.83 and 0.65, and 0.86 and 0.73,
respectively, to 0.88 (RF) and 0.75 (SVM), and 0.90 (RF) and 0.81 (SVM). Overall RF and SVM gave
higher producer accuracies (>0.86, >0.90) and user accuracies (>0.86, >0.90).

Table 5 shows the variable importance derived from the RF of classification 3. It shows the top
20 crucial variables within 147 bands, topographic data, and textural data. As can be seen in the table,
several textural features occupy the top ranks. Topographical data (aspect) and vegetation-related bands,
which are related to chlorophyll, nitrogen, and protein, were also found to be significant. The textural
information and topographical factors were added stepwise in classification 2 and classification 3,
and the accuracy increased as each factor was added. Additionally, the OOB estimate of the error
rate decreased from 18.2% in classification 1 to 17.4% in classification 2, and to 14.1 in classification 3.
Moreover, the AUC increased from 0.82, 0.85 in classification 1 to 0.83, 0.86 in classification 2, and to
0.88, 0.90 in classification 3. Therefore, topographical data and textural data were able to increase the
classification accuracy of tree species.
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Table 4. Species classification results using Hyperion data. Abbreviations: PA, producer accuracy; RF, random forests; SVM, support vector machine; UA, user accuracy.

RF SVM

Classification 1 Korean Pine Japanese Larch Total UA Korean Pine Japanese Larch Total UA

Korean pine 232 66 298 0.78 249 49 298 0.84
Japanese larch 42 257 299 0.86 39 260 299 0.87

Total 274 323 597 288 309 597
PA 0.85 0.80 0.86 0.84

Overall accuracy 0.82 kappa statistics 0.64 Overall accuracy 0.85 kappa statistics 0.71

Classification 2

Korean pine 214 54 268 0.80 229 39 268 0.85
Japanese larch 40 232 272 0.85 35 237 272 0.87

Total 254 286 540 264 276 540
PA 0.84 0.81 0.87 0.86

Overall accuracy 0.83 kappa statistics 0.65 Overall accuracy 0.86 kappa statistics 0.73

Classification 3

Korean pine 220 25 245 0.90 222 23 245 0.91
Japanese larch 36 213 249 0.86 24 225 249 0.90

Total 256 238 494 246 248 494
PA 0.86 0.89 0.90 0.91

Overall accuracy 0.88 kappa statistics 0.75 Overall accuracy 0.90 kappa statistics 0.81
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Table 5. Variable importance of Classification 3. Abbreviations: MDG, mean decrease in Gini.

Band MDG Remarks Reference

GLCM_mean_4 186.0
GLCM_variance_4 171.2
GLCM_contrast_4 54.0

GLCM_dissimilarity_4 50.7
B6 (477.7 nm) 48.2 Chlorophyll b [76]

GLCM_homogeneity_4 47.2
B8 (498.0 nm) 45.8 Senescing, carotenoid, browning, soil background effects [77]

GLCM_entropy_4 41.7
B9 (508.2 nm) 39.0 Nitrogen [8]

GLCM_second_moment_4 34.9
B7 (487.9 nm) 34.5 Nitrogen [17,78]

B10 (518.4 nm) 29.9
B125 (1749.8 nm) 23.5 Protein [8]

ASPECT 23.1
B11 (528.6 nm) 22.4
B12 (538.7 nm) 19.6

B118 (1689.3 nm) 19.5 Lignin, starch, protein [79]
B123 (1739.7 nm) 18.9

B5 (467.5 nm) 18.2 Chlorophyll b [79]
B120 (1709.5 nm) 18.2

3.3. Wilk’s Lambda Result of the Korea National Arboretum

Based on the Wilk’s Lambda test, 55 bands were selected as optimal bands in the 437–2335 nm
wavelength region (Table 6). Among them, 15 bands were from VIS, 15 bands from NIR, and 25 bands
from SWIR regions. Usually, interspecies differences increase near longer wavelengths and are
prevalent in SWIR regions [74,80]. The selected bands were related to chlorophyll in VIS, leaf and
canopy structure in NIR, and water content, nitrogen, cellulose, starch, and sugar in SWIR (Table 6).

Table 6. Wilk’s lambda result and importance for vegetation of selected bands.

No. of
Variables

Wavelength
(nm)

Wilk’s
Lambda F Statistics Remarks Reference

1 478 0.92 501.75 Chlorophyll b [76]
2 2143 0.81 639.25
3 773 0.76 580.96

4 1659 0.70 605.46 Lignin, biomass, starch, most useful to
discriminate different kinds of leaves [77]

5 722 0.68 528.05 Vegetation stress and dynamics [77]
6 457 0.66 478.66 Chlorophyll b [79,81]
7 681 0.64 446.96 Biomass, LAI [77]
8 651 0.63 407.37 Chlorophyll a, b [9]

9 498 0.62 377.42 Senescing, carotenoid, browning,
soil background effects [77]

10 1044 0.62 349.30
11 1215 0.60 337.88 Moisture absorption [77]
12 2133 0.60 317.32
13 600 0.59 299.05
14 1074 0.58 283.67
15 1195 0.58 271.26 Water, cellulose, starch, lignin [79]
16 488 0.58 257.28 Nitrogen [17,78]
17 1094 0.57 244.71 Biomass, LAI [77]
18 1175 0.57 232.93
19 1508 0.57 222.74 Plant moisture [77]
20 2063 0.57 213.61
21 630 0.57 204.77 Chlorophyll b [17,79]
22 508 0.56 196.82 Nitrogen [8]
23 691 0.56 189.45 Biomass, LAI [77]
24 610 0.56 182.55 Biomass, LAI [77]
25 1023 0.56 176.17 Protein [79]
26 468 0.56 170.27 Chlorophyll b [79]
27 1276 0.56 164.66 Moisture absorption, starch [9]
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Table 6. Cont.

No. of
Variables

Wavelength
(nm)

Wilk’s
Lambda F Statistics Remarks Reference

28 2335 0.56 159.46 Cellulose [79]
29 2163 0.55 154.51 Ligning, sugar, protein [9]
30 2214 0.55 149.90
31 993 0.55 145.41
32 1064 0.55 141.22 Plant moisture [77]
33 963 0.55 137.25 Water, starch [79]
34 1558 0.55 133.48
35 1568 0.55 130.08
36 1679 0.55 126.80 Lignin, tannin, starch, cellulose [9]
37 923 0.55 123.64
38 641 0.55 120.62 Chlorophyll b [79]
39 1165 0.55 117.74
40 1185 0.55 115.02
41 1699 0.55 112.42 Lignin, starch, protein [79]
42 1649 0.55 109.98 Lignin, tannin, starch, cellulose [9]
43 864 0.55 107.61 Chlorophyll, biomass, LAI, protein [77]
44 895 0.54 105.67
45 803 0.54 103.62
46 702 0.54 101.61
47 2285 0.54 99.57
48 2244 0.54 97.61
49 2254 0.54 95.78
50 671 0.54 93.98 Chlorophyll(Red 2) [82]
51 437 0.54 92.24 Chlorophyll a [79]
52 1326 0.54 90.55
53 712 0.54 88.93
54 1669 0.54 87.38 Lignin, tannin, starch, cellulose [9]
55 1740 0.54 85.88

Table 7 shows the accuracy of RF and SVM classifications using 55 bands of Hyperion data. The
overall accuracies of RF and SVM classifications were 0.82 and 0.84, respectively, with corresponding
kappa statistics of 0.65 and 0.69. Overall RF and SVM yielded high producer accuracies (>0.81 and
>0.86) and user accuracies (>0.80 and >0.82). In classification 2, with 55 bands of Hyperion data, the
overall accuracy and kappa statistics of RF and SVM classifications improved from 0.82 and 0.65, and
0.84 and 0.69 to 0.84 and 0.68, and 0.87 and 0.74, respectively. Overall RF and SVM yielded higher
producer accuracies (>0.84 and >0.87) and user accuracies (>0.83 and >0.87). In classification 3, with
55 bands of Hyperion data, the overall accuracy and kappa statistics of classifications improved from
0.84 (RF) and 0.68 (SVM), and 0.87 (RF) and 0.74 (SVM) to 0.88 and 0.75, and 0.90 and 0.80 for RFs and
SVMs, respectively.

The classified map using 55 band images matched with the 147 band image classification results
as 0.96 and 0.92 for RFs and SVMs in classification 1, respectively. In classification 2, RFs and SVMs
matched 0.96 and 0.93, respectively, and in classification 3, RFs and SVMs matched 0.97 and 0.94,
respectively (Table 8). As a result, it was confirmed that the selection of bands can provide cost-effective
results for tree species classification, and there was less of a reduction in the accuracy of RFs than SVMs.

In order to confirm the possibility of applying Sentinel-2 data for tree species classification,
Hyperion bands corresponding with Sentinel-2 wavelengths were selected and applied to classification.
Random forest and SVM classifications exhibited overall accuracies of 0.86 and 0.89 (kappa statistics
0.72 and 0.79), respectively (Table 7). Overall, RF and SVM yielded high producer accuracies (>0.84
and >0.89) and user accuracies (>0.84 and >0.89). As a result, the classification results showed a high
degree accuracy; thus, the possibility of applying Sentinel-2 data for tree species classification was
confirmed, and Sentinel-2 data were applied for classifying the tree species of the KNA and MTB.
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Table 7. Species classification results of 55 bands and Sentinel-2 band combination from Hyperion data.

RF SVM

Classification 1 Korean Pine Japanese larch Total UA Korean Pine Japanese Larch Total UA

Korean pine 237 61 298 0.80 244 54 298 0.82
Japanese larch 44 255 299 0.85 40 259 299 0.87

Total 281 316 597 284 313 597
PA 0.84 0.81 0.86 0.83

Overall accuracy 0.82 kappa statistics 0.65 Overall accuracy 0.84 kappa statistics 0.69

Classification 2

Korean pine 223 45 268 0.83 232 36 268 0.87
Japanese larch 41 231 272 0.85 35 237 272 0.87

Total 264 276 540 267 273 540
PA 0.84 0.84 0.87 0.87

Overall accuracy 0.84 kappa statistics 0.68 Overall accuracy 0.87 kappa statistics 0.74

Classification 3

Korean pine 215 30 245 0.88 219 26 245 0.89
Japanese larch 31 218 249 0.88 24 225 249 0.90

Total 246 248 494 243 251 494
PA 0.87 0.88 0.90 0.90

Overall accuracy 0.88 kappa statistics 0.75 Overall accuracy 0.90 kappa statistics 0.80

Sentinel-2 band combination from Hyperion data

Korean pine 217 28 245 0.89 220 25 245 0.90
Japanese larch 40 209 249 0.84 28 221 249 0.89

Total 257 237 494 248 246 494
PA 0.84 0.88 0.89 0.90

Overall accuracy 0.86 kappa statistics 0.72 Overall accuracy 0.89 kappa statistics 0.79
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Table 8. Comparison of the results of 147 versus 55 bands using RF and SVM.

147 versus 55 Using
Random Forest

147 versus 55 Using
Support Vector Machine

Classification 1 0.96 0.92
Classification 2 0.96 0.93
Classification 3 0.97 0.94

3.4. Sentinel-2 Analysis

Tree species classification was performed with Sentinel-2 data in the KNA. In RF and SVM
classification using Sentinel-2 data, the overall accuracies of 0.89 and 0.86, with kappa statistics of 0.77
and 0.72, respectively, were achieved (Table 9). Overall, RFs and SVMs yielded high producer accuracies
(>0.86 and >0.83, respectively) and user accuracies (>0.86 and >0.84, respectively) (Table 9). While
SVMs were more accurate than RFs in classifications using Hyperion data, RFs were more accurate in
classifications using Sentinel-2 data. Figure 4 shows the visual comparison of the forest map versus tree
species classification maps derived from Hyperion data and Sentinel-2 data in the KNA. As shown in
this figure, the shapes of the forest map, Hyperion results, and Sentinel-2 results are quite similar.

Table 9. Species classification results of the KNA using Sentinel-2 data.

RF SVM

Classification Korean Pine Japanese Larch Total UA Korean Pine Japanese Larch Total UA

Korean pine 173 28 201 0.86 169 33 202 0.84
Japanese larch 16 167 183 0.91 20 162 182 0.89

Total 189 195 384 189 195 384
PA 0.92 0.86 0.89 0.83

Overall accuracy 0.89 kappa statistics 0.77 Overall accuracy 0.86 kappa statistics 0.72
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3.5. Classification of Mt. Baekdu

In order to investigate the possibility of using the training dataset of the KNA for tree species
classification of MTB, RFs and SVMs were utilized and showed overall accuracies of 0.60 and 0.51 and
kappa values of 0.20 and 0.00, respectively (Table 10). The producer accuracies of Korean pine and
Japanese larch were 0.97 and 0.23, respectively, while the user accuracies of these species were 0.56
(Korean pine) and 0.87 (Japanese larch). Using the KNA data, the model classified most Japanese larch
as Korean pine. It was assumed that spatial differences cause the spectral variation between the KNA
and MTB, even though the same tree species are observed [12]. As shown in Figure 5, the NIR spectra
of MTB are higher than those of the KNA. According to the results of previous studies (Table 6), NIR is
related to leaf and canopy structures, such as vegetation stress and dynamics, the leaf area index (LAI),
and starch. It was also assumed that trees in the KNA have more vegetation stress and lower LAIs
than those in the MTB region. To support this hypothesis, the normalized difference vegetation index
(NDVI), which is highly correlated with LAI and vegetation conditions [40], was used to compare the
KNA and MTB. The mean NDVI of MTB (0.864) was higher than that of the KNA (0.836). Thus, it
was assumed that the forest density or conditions caused spectral differences and classification errors.
Additionally, a spectrum of Korean pine was smaller than that of Japanese larch, unlike the previously
reported general patterning [74].
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The NDVI of Korean pine in the KNA (0.823) was lower than that of Japanese larch in the KNA
(0.849). In line with the comparison data between the KNA and MTB, it was assumed that Korean
pines in the KNA had lower LAIs or exhibited abnormal vegetation conditions in May. The difference
between the mean spectra of Korean pine and Japanese larch was small, while the variation in the two
spectra overlapped in various ranges. This information could be used to classify tree species reasonably
well within the same geographic location. However, it could not be adopted among different geographic
locations, as has been similarly shown in previous studies [12].

In order to increase the predictive ability of the model, the training data of the KNA were combined
with training data of MTB, which showed a high classification accuracy (i.e., >0.98 overall accuracy and
>0.97 kappa statistics) (Table 10). The overall accuracy and kappa statistics of RF and SVM classifications
were improved from 0.60 and 0.20, and 0.51 and 0.00 to 0.99 and 0.97, and 0.98 and 0.95, respectively.
Overall, RFs and SVMs yielded higher producer accuracies (>0.98 and >0.97) and user accuracies (>0.98
and >0.97) (Table 10). Additionally, the combined training data model showed good performance in
KNA classifications, with high overall accuracy (>0.88) and kappa statistic (>0.76).
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Table 10. Classification results of MTB with Sentinel-2 data and results of the combined training data model in the MTB region and the KNA, where MTB KNA means
classification of MTB species with the training data of the KNA; MTB means classification of MTB species using its own training data; MTB CM means classification of
MTB species with the combined training data; KNA CM means classification of KNA species with the combined training data.

RF SVM

MTB KNA Korean Pine Japanese Larch Total UA Korean Pine Japanese Larch Total UA

Korean pine 325 253 578 0.56 336 328 664 0.51
Japanese larch 11 75 86 0.87 0 0 0 0

Total 336 328 664 336 328 664
PA 0.97 0.23 1.00 0.00

Overall accuracy 0.60 kappa statistics 0.20 Overall accuracy 0.51 kappa statistics 0.00

MTB

Korean pine 335 9 344 0.97 333 8 341 0.98
Japanese larch 1 319 320 1.00 3 320 323 0.99

Total 336 328 664 336 328 664
PA 1.00 0.97 0.99 0.98

Overall accuracy 0.98 kappa statistics 0.97 Overall accuracy 0.98 kappa statistics 0.97

MTB CM

Korean pine 335 8 343 0.98 330 10 340 0.97
Japanese larch 1 320 321 1.00 6 318 324 0.98

Total 336 328 664 336 328 664
PA 1.00 0.98 0.98 0.97

Overall accuracy 0.98 kappa statistics 0.97 Overall accuracy 0.98 kappa statistics 0.97

KNA CM

Korean pine 171 28 199 0.86 169 25 194 0.87
Japanese larch 18 167 185 0.90 20 170 190 0.89

Total 189 195 384 189 195 384
PA 0.90 0.86 0.89 0.87

Overall accuracy 0.88 kappa statistics 0.76 Overall accuracy 0.88 kappa statistics 0.77
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Figure 6 shows the visual comparison of the forest map versus tree species classification maps
derived from Sentinel-2 data in the MTB region. As shown in the figure, the shapes of the forest map
and the combined training data model results are quite similar. This demonstrates that the combined
training data models were accurate enough for use in predicting Korean pine and Japanese larch in
both regions. Based on this result, it is assumed that Korean pine and Japanese larch in North Korea
can be predicted using the developed model, as North Korea is geographically located between the
KNA and MTB.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 17 of 21 
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4. Conclusions

In this study, a tree species classification model was developed by combining training data from
South Korea with those from China in order to predict the distribution of tree species in North Korea.
From the study results, three research questions were answered:

1. Hyperion data with machine learning algorithms, such as RF and SVM, can be adopted for
tree classification;

2. Sentinel-2 data may be used for tree species classification with RF and SVM algorithms
corresponding Hyperion data;

3. A training dataset that was built in the KNA cannot be used for tree classification of MTB.
However, combined training data from the KNA and MTB showed high classification accuracies
in both regions.

The results showed that the developed model had enough reliability to predict Korean pine and
Japanese larch in the Mt. Baekdu region with an accuracy of >98%. The model developed in this study
is able to classify tree species in inaccessible regions, such as North Korea. In order to improve the
model, more tree species sampling on the Korean peninsula and across Northeast Asia should be
performed in the future.
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