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Abstract: High crowd mobility is a characteristic of transportation hubs such as metro/bus/bike
stations in cities worldwide. Forecasting the crowd flow for such places, known as station-level crowd
flow forecast (SLCFF) in this paper, would have many benefits, for example traffic management
and public safety. Concretely, SLCFF predicts the number of people that will arrive at or depart
from stations in a given period. However, one challenge is that the crowd flows across hundreds of
stations irregularly scattered throughout a city are affected by complicated spatio-temporal events.
Additionally, some external factors such as weather conditions or holidays may change the crowd
flow tremendously. In this paper, a spatio-temporal U-shape network model (ST-Unet) for SLCFF
is proposed. It is a neural network-based multi-output regression model, handling hundreds of
target variables, i.e., all stations’ in and out flows. ST-Unet emphasizes stations’ spatial dependence
by integrating the crowd flow information from neighboring stations and the cluster it belongs to
after hierarchical clustering. It learns the temporal dependence by modeling the temporal closeness,
period, and trend of crowd flows. With proper modifications on the network structure, ST-Unet is
easily trained and has reliable convergency. Experiments on four real-world datasets were carried
out to verify the proposed method’s performance and the results show that ST-Unet outperforms
seven baselines in terms of SLCFF.

Keywords: crowd flow forecast; irregular grid data; multi-output regression; deep neural network;
spatio-temporal analysis

1. Introduction

To be able to forecast crowd flow is of great importance for risk assessment and public safety [1,2];
there has been increased emphasis on this since accidents such as the 2014 Shanghai Stampede
occurred. Compared with doing citywide or regional forecasts, a station-level crowd flow forecast
(SLCFF) benefits public safety protection at the station-level when predicting the flow at those places
with high crowd mobility, such as metro/bus/bike stations. Stations are scattered throughout a city
and the variation of crowd flow reflects people’s daily life: work, activities, home, etc. However, SLCFF
can benefit many other applications too, such as traffic management, taxi dispatching, bike-sharing
pre-reallocation, etc. Concretely, SLCFF predicts the number of people that will arrive at or depart
from stations in a given period.

There are many stations in a city. The crowd flow in one individual station exhibits greater
fluctuation than that observed on the cluster level. The crowd flow variation in a station generally
complies to the trend at the cluster it belongs to when hierarchical clustering of geo-neighboring
stations is applied. The spatial dependence of crowd flow lies in the hierarchical structure of stations.
Moreover, the peak arrival crowd at a certain station may have come from several other stations a
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while before; and the peak departure would cause fluctuation at nearby or far away stations a while
later. Viewing crowd flow at each time slice individually would not reflect the inherent temporal
dependence. Furthermore, some external factors, such as weather conditions and events, may change
the crowd flow tremendously. All these issues integrally make it challenging to do a station-level
crowd flow forecast with high precision. The forecast performance can only be improved when the
spatio-temporal dependence and the external factors are well modeled.

Crowd flow forecast is intrinsically a regression problem. From the view of models and the
forecasting techniques adopted, the works could be categorized into two groups: one uses empirical
statistical methods [3,4] or pattern mining to identify crowd flow hot-spots or activity patterns [5,6];
the other implements machine learning techniques to forecast crowd flow. The former is used to
answer when/where/how the future hot-spots might be from a macro perspective. The latter is used
to make predictions numerically by modeling the impact factors as much as possible. This paper
focuses on the latter.

For a regression problem, from the view of how the many target variables are modeled, the
machine learning techniques can be summarized as being single-output models and multi-output
models [7]. The former trains the models for each target station individually or just one single-output
model, in which the loss function has only one target variable. The latter builds one multi-output
model to forecast many real-value target variables, which are optimized jointly in the loss function.
Here are some examples of the former type: support vector regression (SVR) methods for traffic flow
predictions [8–10], gradient boosting regression tree (GBRT) and multi-similarity-based inference
models for bike-sharing demand forecasting [11,12], ensemble framework with time-varying Poisson
models and the auto-regressive integrated moving average (ARIMA) model for taxi-passenger demand
forecasting [13]. For multi-output models, some examples include: the probabilistic graphical models
(PGM)-based hybrid framework for citywide traffic volume estimation [14], intrinsic Gaussian Markov
random field (IGMRF) model, one of the PGM models with cluster-based adjustment for cluster-level
crowd flow forecast [1], vector auto-regressive moving average (VARMA) with a spatio-temporal
correlations matrix for real-time traffic predictions [15], ν-SVR (the modified multi-output SVR
(M-SVR) method) for traffic speed predictions in large road networks [16], deep spatio-temporal
residual networks (with convolutional neural network (CNNs) as kernels) for region-level crowd flow
predictions [2], and multi-graph convolutional networks for station-level bike flow predictions [17].

Theoretically, by modeling the relationships between the target variables and optimizing
accordingly, multi-output models can guarantee a better representation and interpretability of the
real-world problems than single-output models [7], as is shown in the works enumerated. However,
many multi-output models (PGMs, M-SVR, VARMA, as mentioned above) exhibit high computational
complexity and can not handle large-scale problems (hundreds of target variables) well [7]. Because
they model the spatio-temporal dependence of targets carefully, the number of training parameters
is often k times the product of the amount of features and the amount of target variables. To reduce
complexity, target variables are grouped by cluster algorithms [16] or part of training parameters are set
according to rules (like in Reference [15]), which sacrifices some forecast performance. With abundant
designs of structures and mature training techniques to handle large-scale problems well, deep neural
networks (DNNs) are currently subject to much research (References [2,17,18], as mentioned above).
However, the geo-factors and information about the city are either lost or the forecast is only applicable
regionally, because regular grids are leveraged and spatio-temporal dependences are simplified to
enable the application of widely used neural networks (CNN, LSTM, etc.).

Inspired by the trend of leveraging DNNs on such large-scale regression problems, we forecast
station-level crowd flow with a spatio-temporal U-shape network (ST-Unet) in this paper. It is a neural
network-based multi-output regression model, handling hundreds of target variables. Its structure
is carefully designed to emphasize stations’ local-global dependence of crowd flow to improve the
forecast performance. Concretely, the contributions we make in this paper are: (1) gConv-layer
(convolutional layer) is designed to handle stations’ irregular distribution and learn the influence
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of crowd flow from neighbor stations, which is based on the idea of receptive fields and sharing
weights from CNNs; (2) the hierarchical information of the stations is integrated into the networks
by gUpsampling/gDownSampling-layers, which enhances the model’s ability to understand the
local-global information of crowd flow; (3) several modifications on the widely used Unet are made,
which improve the model’s convergency and can handle hundreds of target variables well. Experiments
on four real-world datasets were carried out to verify the proposed method’s performance. Results
show that ST-Unet outperforms seven baselines on station-level crowd forecasting.

2. Overview

As shown in Figure 1a,b, stations are irregularly scattered throughout a city. The in–out flow at
each station reflects people’s mobility level of the located region at the time. Visualized on maps and
sequenced through time, we can get a series of double-channel (in–out channels) heat maps (as shown
in Figure 1c). Thus, we model the station-level forecast problem by generating a subsequent heat
map based on the ordered series of heat maps. Ideas from CNNs and multi source data are utilized
to improve the forecast performance. In this section, the formal definition of the SLCFF problem
and some preliminaries used are first introduced, and the framework of our method is illustrated
as follows.

(a) (b)

t0 t1 tn-1 tnti

(c)

Figure 1. (a,b) Metro stations and bike-sharing stations in New York City; each station serves a region
of the city, which could be roughly calculated by Voronoi-based segmentation; (c) the in–out crowd
flow at each station aggregated along time axis can be viewed as a series of double-channel heat maps.

2.1. Preliminaries & Problem Definition

Definition 1. Stations. There are m stations in the station-level crowd flow forecast problem, Si (i∈[0, m-1]) is
the ith station.

Definition 2. Trip. A trip Tr=(So, Sd, to, td) is a record, where So, Sd denote the origin and destination station,
respectively, to and td are the timestamps when people depart from So and arrive at Sd, respectively.

Definition 3. Observing time unit. τ is the observing time unit for aggregating the in–out flow count, e.g.,
30 min or 1 h. Let T = [τ0, τ1, ..., τi, ..., τn−1] is the whole observing time period.

Definition 4. In–out flow. xout
τi

= [xS0 , xS1 , ..., xSm−1 ]τi records each station’s out-flow count during the time
period τi. Similarly, xin

τi
records the in-flow count. Let xτi = [xout

τi
|xin

τi
] ∈ N1×2m concatenate xout

τi
, xin

τi
as

one record.

Problem: The station-level crowd flow forecast problem. Given the historical observations
{xτi |i ∈ [0, 1, ..., n− 1]}, forecast x̂τn , aiming to minimize |x̂τn − xτn |, where xτn is the ground truth at τn.



ISPRS Int. J. Geo-Inf. 2019, 8, 140 4 of 16

2.2. Framework

Figure 2 shows the framework of our method. To guarantee the performance, multi-source data
are adopted, including the in–out records data at each station, locations of stations, road network,
meteorology, etc. The ST-Unet model is the forecast model. It merges three Unet branches to capture
the temporal dependence of crowd flow and one branch to integrate external factors (see Section 3.1).
Each Unet deals with the spatial dependence of crowd flow among the stations (see Section 3.2). Owing
to the stations’ irregular distribution, we redesign the receptive field of each station and bring in the
hierarchical information of the stations in the Unet.

ST-Unet

 Model
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Figure 2. The framework of the forecast model.

• k-NN (nearest neighbor) Receptive Field of Each Station. The receptive field of CNNs of each entry
in regular grid data is its 8 or 24 neighbor grids (when using 3 × 3 or 5 × 5 feature maps,
respectively). However, because the stations are scattered irregularly, the k-NN receptive field of
each station should be redefined. Inspired by graph-CNNs utilizing graph labelings to impose
an order on nodes [19], we define and figure out each station’s receptive field with its k ordered
nearest neighbor stations reachable in the road network (See Section 3.3).

• Hierarchical Structure of Stations. From the view of one individual station, the changing regularity
of in–out flow is difficult to determine because of its fluctuation, as shown in Figure 3a,b. However,
it is much more robust and regular from the view of a region with several stations, as shown in
Figure 3. Thus, we employ an agglomerative clustering algorithm to construct the hierarchical
structure of the stations, which is based on the stations’ geo-locations and historical in–out flow
data. This is used as auxiliary information to determine the ‘pools’ of downsampling/upsampling
layers in ST-Unet, which enhance the forecasting stability (See Section 3.4).

• Time-periods Segmentation. Considering the temporal heterogeneity of crowd flow, we categorize
according to seven time periods: 1. 7:00 a.m.–11:00 a.m. (morning rush hours); 2. 11:00
a.m.–4:00 p.m. (day hours); 3. 4:00 p.m.–9:00 p.m. (evening rush hours); and 4. 9:00 p.m.–7:00am
(night hours); and 5. 0:00 a.m.–9:00 a.m. (night hours); 6. 9:00 a.m.–7:00 p.m. (trip hours); and 7.
7:00 p.m.–12:00 p.m. (evening hours) on weekends/holidays. Each time slot τi is labelled with a
property field ‘hd’ indicating what kind of time periods it belongs to, i.e., τi.hd ∈ [1, 7].

• Hierarchical/Time-period In–Out proportion. According to the hierarchical structure of stations
and different time periods, the maximum likelihood estimation method is used to estimate
each station’s in–out flow proportion within its cluster. Such information is used to correct the
up-sampling operation, replacing the usual adopted method—padding (See Section 3.4).
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Except for the intermediate data above, external features should also be prepared, including
date/time properties and weather. Date/time properties include weekday/weekend, holiday, time slot,
and so on. Weather conditions affect the crowd flow in some degree, as shown in Figure 3d. Weather
features include precipitation, visibility, and so on. With these intermediate data and external data,
ST-Unet can be trained to predict each station’s crowd flow in a given period. Its architecture is
elaborated in Section 3.1.

(a) (b) (c)
Oct 26 Wed Oct 27 Thu Oct 28 Fri Oct 29 Sat

0

50

100

150

Ou
t f
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w

average rainy on Oct 27

(d)

Figure 3. (a,b) The variation in out-flow count of two stations in one day. (c) The variation in out-flow
count of a region with seven stations in one day. (d) The effect of weather on the fluctuation of crowd
flow (27 October, 2016 in New York City was a rainy day).

3. ST-Unet

3.1. Overview

Figure 4 presents the architecture of ST-Unet. It is composed of four branches: (a) Three Unet
branches respectively capture the temporal influence, crowd flow of closeness (related to the recent
time period), period (yesterday for the same time period), trend (last week during the same time
period); each branch is a modified Unet capturing the spatial dependence of crowd flow, illustrated
in Section 3.2. (b) One branch introduces external influence, which contains weather and date/time
property features in this paper.

As illustrated in Definition 4, we use only 1-d vector to present the double-channel heat map
of crowd flow in Figure 1c, i.e., the in-flow and out-flow of all stations during one time slot,
which simplifies the subsequent operations. Then, we stack specified in–out flow records of different
time slots to capture the variation along the time axis in the three colored branches:

Xc = [xT
n−l·1, ..., xT

n−1]
T

Xp = [xT
n−l·τp

, ..., xT
n−τp ]

T

Xt = [xT
n−l·τt

, ..., xT
n−τt ]

T

where l is the length of time slots chosen to stack, l ≥ 1, τp and τt are the length of one day’s and one
week’s time slots, respectively. The blue branch stacks the records of recent time slots; the green branch
stacks the records of the same time slots as yesterday; the red branch stacks the records of the same
time slots as last week. They separately model three temporal properties: closeness, period, and trend.
The bottom branch uses one layer of the fully connected neural network to introduce the external
feature vector, including weather and date/time properties. The weather features include precipitation,
wind speed, temperature, visibility, etc. The date/time property features contain workday/weekend,
holiday or not, kind of time period, etc.
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3.2. Unet Branch of ST-Unet

The Unet branch of ST-Unet is thus named because of its U-like network shape, as shown
in Figure 5. It is inspired by the widely used network Unet in the domain of medical image
processing [20]. It is usually applied in pixel-level image segmentation, i.e., to classify each pixel in an
image. The horizontal architecture of Unet performs CNNs on different hierarchical resolutions of the
image. The design emphasizes the local-global dependence of the entire image on the output.
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Figure 4. The architecture of the spatio-temporal U-shape network (ST-Unet).
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Figure 5. On the left is the architecture of a single Unet branch; on the right is the unfolded format of
the resid block with gConv as kernels.

The architecture is well-suited to SLCFF, especially when the multi-output model is adopted
and there are hundreds of stations. Local and global features both exist in crowd flow in urban
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areas. The local features are a result of the distribution of points of interest and different regions’
functionality. The global features are a consequence of different time periods of the day, weather,
or events. Combining local and global information related to crowd flows at stations enhances the
station-level forecast.

In Figure 5, gConv, gDownSampling, and gUpSampling are designed to deal with the irregular
distribution of the stations, respectively, similar to convolutional layer, downsampling layer,
upsampling layer in CNNs. They are elaborated in Sections 3.3 and 3.4. The horizontal architecture
uses convolutional operations, with two ‘bridges’ in the two shallower layers. r0, r1, r2 are the feature
channels’ count of gConv. There are two downsampling layers and two upsampling layers determined
by the hierarchical structure of the stations (see Section 3.4). mC1 and mC2 are the clusters count of the
corresponding layer in the hierarchical structure, respectively.

Different from the usage of Unet in pixel-level image segmentation, the outputs in our model are
real values, which require higher precision. For that reason, several modifications were tested before
being finally adopted. First, the depth of the hierarchical structure is shallow as the ‘pixels’ are not as
numerous as those in images (hundreds of stations compared to 572 × 572 image, as in Reference [20]).
Second, the bridges use an ‘add’ operation as a highway instead of ‘concat’. Third, the resid blocks
are immediately after the bridges. These modifications make the network more trainable and achieve
reliable convergency.

3.3. gConv

Generally, the site-selection of metro/bus/bike-sharing stations is well-designed and stations
are scattered throughout a city. Using New York City Citi Bike as an example, most stations’ 8
nearest neighbors (8-NN) are reachable within 1.0 kilometer in the road network (shown in Figure 6a).
According to Tobler’s first law of geography [21], everything is related to everything else and near
things are more related than distant things. That means the crowd flow at a station is probably related
to its neighbor stations. This is the insight of the convolutional layers in the shallower layers of the
Unet branch. Furthermore, as can be seen in Figure 6b, the distance of most trips does not exceed 5 km
and is mainly between 1.5 km and 4 km. That means when people leave an area, they do not generally
go too far. This is the insight from the convolutional layers in the deeper layers of the Unet branch.

(a) (b)

Figure 6. (a) The distance distribution of 8 nearest neighbors (8-NN) stations reachable on the road
network of each station. (b) Trip distance distribution in New York Citi Bike-sharing system.

The k-NN receptive field of each station should be redefined as they are not in regular grids.
Inspired by the works of graph-CNNs [19,22], we formalize the convolutional layer gConv in this paper
as follows.

As shown in Figure 7, a rectangular buffer is first used to roughly determine the neighbors of a
station Si. Then, the k nearest neighbors are determined and ordered, according to the road network
and using the shortest path between stations to measure the distance. These stations are the receptive
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field of station Si. The cases in the deeper layers of Unet branch are different, treating each cluster as
one station located on its centroid and using Euclidean distance between centroids as measurement.

To simplify the operations, we assume only the prediction of out-flow for a moment.
Let w = [w0, w1, ..., wk] ∈ R1×(k+1) is a feature map. As shown in Figure 7, the convolutional operation
of each station is x ·wT. For all stations, gConv can be depicted in matrix form:

gConv(xout
τi

, WK) = f (xout
τi
·WK), (1)

where f (·) is the activation function, xout
τi

records each station’s out-flow during time period τi, WK is
the result of filling k-NN matrix K’ with feature map w. The k-NN matrix

K’ = [Kij], Kij =


p + 1, Sj

pth

−→ Si
1, i = j
0, other

(2)

Sj
pth

−→ Si means station Sj is the pth nearest station to station Si. Thus, filling K’ with w to get WK,
denoted as WK=w�K’, embedding operations intrinsically:

WK = w �K’ = [wkij]m×m, wkij =

{
w[Kij − 1], Kij! = 0
0, Kij = 0.

(3)

In this paper, the crowd flow forecast includes in-flow and out-flow. The operations above are
easily extended with slight modifications. First, the feature map w should be extended as

w =

[
w00, w01

w10, w11

]
∈ R2×2(k+1) (4)

to learn both the in–out crowd flow patterns. The k-NN matrix is extended as

K =

[
K’, K’
K’, K’

]
, (5)

WK is extended as

WK =

[
w00 �K’, w01 �K’
w10 �K’, w11 �K’

]
, (6)

and
gConv(xτi , WK) = f (xτi ·WK), (7)

where xτi records each station’s in–out flow during the time period τi. The form of gConv for
multi-channels and in the deeper layers of Unet branch is similar.
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3.4. gDownSampling and gUpSampling

As depicted in Section 3.3, neighbor stations or stations in neighbor areas have highly-related
crowd flows. Furthermore, as shown in Figure 3, the periodicity and regularity of a single station’s
crowd flow seems chaotic; but it becomes distinguishable from the view of a region with several
stations. These insights inspire us to group stations by a hierarchical structure. Such hierarchical
structures can be leveraged to determine the ‘pools’ of downsampling/upsampling layers in the Unet
for enhancing the forecasting stability. As shown in Figure 8a, the bottom layer is each station itself.
The middle layer `2 and the top layer `1 are extracted using an agglomerative clustering algorithm,
which is based on the stations’ locations and historical data of stations’ in–out flow data. The historical
flow data are used to estimate the transition probability of each station’s in–out flow from/to other
stations. Then, the similarity of crowd flow patterns between stations is measured and used as the
weighted coefficient.

Definition 5. Each station’s feature vector of in–out flow transition probability. Let lSi ,hd=[lin
S0

, ..., lin
Sm−1

, lout
S0

,
..., lout

Sm−1
]hd denotes the transition probability of station Si’s in–out flow from/to other stations. ∑ lin

Si
= 1 and

∑ lout
Si

= 1.

lSi ,hd is estimated using the maximum likelihood estimation method according to each station’s
historical in–out flow records. Subscripts hd are used to distinguish different kind of time periods
(see Section 2.2).

Definition 6. Similarity of crowd flow between two stations. The cosine of two vectors cos(lSi ,hd, lSj ,hd) is
used to measure the similarity between station Si and Sj.

θ(Si, Sj) = cos(lSi ,hd, lSj ,hd) =
1
7 ∑

hd

lSi ,hd · lT
Sj ,hd

‖ lSi ,hd ‖‖ lSj ,hd ‖
(8)

Definition 7. Distance matrix. Let D = [dij]m×m be the distance matrix recording the distance of any two
station, dij is the shortest path’s length of station Si and Sj. Supposing there are mC2 clusters in the middle layer,
let D’=[d′ij]mC2×mC2 be the matrix recording the Euclidean distance of any two clusters’ centroids.

Definition 8. Stations’ proximity matrix. Let θ = [θ(Si, Sj)]m×m be the matrix measuring the similarity of
crowd flow patterns of any two stations, and is used as weighted coefficient to point-multiply distance matrix to
get stations’ proximity matrix Z:

Z = θ�D (9)

the bottom layer: stations itself

the middle layer    : mC2 clusters

the top layer    : mC1 clusters

C2

C1

 
1

 
2

(a)

...

...

...

... ...

...

...

promixity distance

(b)

Figure 8. (a) The hierarchical structure of all stations; (b) the tree result from agglomerative clustering.
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Figure 8b shows the core idea of agglomerative clustering to determine the hierarchical structure
of stations. Agglomerative clustering is a ‘bottom-up’ type hierarchical clustering: each observation
starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy [23]. Two goals
are achieved by using the stations’ proximity matrix Z. First, stations in one cluster should be close to
each other in the road network. Second, stations in the same group have similar in–out crowd flow
patterns.

As mentioned in Section 3.2, the depth of the hierarchical structure in each Unet branch is shallow.
In this paper, the output layers cut from the clustering tree are set to three as shown in Figure 8. Thus,
two constraints are used to restrict each cluster’s size on a respective layer: the distance between
any two stations in each cluster does not exceed dC1 (for the top layer, constraint C1) and dC2 (for the
middle layer, constraint C2), respectively (dC1 > dC2).

With the hierarchical structure of all stations, the ‘pool’ of the gDownSampling/gUpSampling layer
in the Unet branch can now be determined. Similarly, to simplify the operations, we assume only the
out-flow prediction first.

As shown in Figure 9a,b,

gDownSampling(xout
τi

, DC2) = f (xout
τi
·DC2), (10)

gUpSampling(hτi , UC2) = f (hτi ·UC2), (11)

where DC2 and UC2 are determined from the hierarchical structure of all stations, let hτi be the result
of gConv in the middle layer `2. Each row in DC2 and each column in UC2 correspond to a certain
station. Each column in DC2 and each row in UC2 correspond to a certain cluster in the middle layer `2.
Concretely,

DC2 = [dij]m×mC2 , dij =

{
1, Si � C2,j
0, otherwise

(12)

UC2 = [uji]mC2×m, uji =

{
ui

j 6= 1, Si � C2,j

0, otherwise
(13)

where Si � C2,j means station Si belongs to cluster C2,j in the layer `2, ∑m−1
i=0 ui

j = 1, ui
j is the station Si’s

out-flow proportion in cluster C2,j, estimated by the maximum likelihood estimation method according
to different time periods. The non-zero entries in each column in DC2 and in each row of UC2 denote
the ‘pools’ of gDownSampling and gUpSampling, respectively.
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In this paper, station-level crowd flow forecasts includes in and out flow. The operations above
are easily extended with slight modifications. First, the ‘pools’ DC2 and UC2 should be extended as

DC2 =

[
DC2, 0
0, DC2

]
∈ N2m×2mC2 (14)

UC2 =

[
UC2, 0
0, UC2

]
∈ R2mC2×2m (15)

and,
gDownSampling(xτi , DC2) = f (xτi ·DC2), (16)

gUpSampling(hτi , UC2) = f (hτi ·UC2), (17)

where hτi is the result of gConv in the middle layer at τi. The form of gDownSampling and gUpSampling
for the top layer `1 are similar.

4. Experiments

Experiments to verify ST-Unet’s effectiveness are presented in this section. Three bike-sharing
trip datasets and one taxi-trip record dataset were used. All experiments were conducted on a virtual
machine with 32 GB RAM and Python 2.7 with tensorflow-1.7.

4.1. Datasets

The three sharing-bike trip datasets are from New York Citi Bike in New York City (http://www.
citibikenyc.com/system-data), Capital-Bikeshare in Washington DC (http://www.capitalbikeshare.
com/system-data), and DivvyBikes in Chicago (http://www.divvybikes.com/data). The taxi-trip
record dataset is the yellow taxi-trip records from NYC Taxi and Limousine Commission (TLC)
(http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml). They are named CITI, DC,
DIVVY, TAXI in the following. The details are presented in Table 1.

Table 1. Details of the datasets.

Data Source Citi DC Divvy Taxi

Time Span 1 April–30 October, 2016 1 April–30 October, 2017

Stations 572 367 469 263 *

Records 9,796,166 2,343,044 2,853,665 65,235,951

* Since 1 July 2016, only the origin/destination of each taxi trip was recorded; with the taxi zone ID according to
the taxi zone map (https://s3.amazonaws.com/nyc-tlc/misc/taxi_zones.zip). In the experiments, the centroid
of each taxi zone was treated as a location where a station was located.

The meteorology dataset used is from site (https://mesowest.utah.edu/) and the selected stations
are New York City Central Park (ID: KNYC), Washington (ID: WASD2), Chicago Midway Airport
(ID: KMDW). The missing records in the meteorology dataset were filled according to the records
from the previous hours. The weather features include: relative-humidity, wind-speed, visibility,
sea-level-pressure, precipitation-accumulation (1 h), precipitation-accumulation (3 h), temperature.

Data from 1 April to 19 September were used as training data; data from 19 September to 9
October were used as validating data; and data from 10 October to 30 October were used as testing
data. In the testing data, 10 October 2016 was Columbus Day, which was a public holiday. The rainy
dates and foggy dates in New York City (NYC), Chicago, and Washington DC are shown in Table 2.

http://www.citibikenyc.com/system-data
http://www.citibikenyc.com/system-data
http://www.capitalbikeshare.com/system-data
http://www.capitalbikeshare.com/system-data
http://www.divvybikes.com/data
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://s3.amazonaws.com/nyc-tlc/misc/taxi_zones.zip
https://mesowest.utah.edu/
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Table 2. The rainy dates and foggy dates in New York City, Chicago, and Washington DC.

Cities Rainy Dates Foggy Dates

NYC 21/10/2016, 27/10/2016, 29/10/2017 21/10/2016, 27/10/2016, 30/10/2016, 29/10/2017

Chicago 16/10/2016 26/10/2016, 27/10/2016

DC - 12/10/2016, 13/10/2016, 17/10/2016

Rainy: precipitation-accumulation (1 h) >0.2; foggy: visibility <2.

4.2. Hyperparameters Selection of ST-Unet

The selection of the hyperparameters significantly affects the performance of most deep
learning-based models. However, since the training of ST-Unet requires a great deal of time, we present
here the best hyperparameters for ST-Unet as well as other settings we tested.

• Observing time unit τ: 30 min.
• k nearest neighbor stations: 4.
• The length l of time slots chosen to stack in the input of each Unet branch: 4.
• Constraints dC1 and dC2 to limit the size of each cluster of layer `1, `2: 2.5 km and 1.5 km (10.0 km

and 5.0 km for Taxi dataset).
• r0, r1, r2 in each Unet: 16, 16, 16.
• Activation function of gConv, gDownSampling, gUpSampling: relu.
• Loss function: as the metric MAE depicted in Section 4.3.
• Optimizer: Adam-optimizer [24].
• Terminated condition: The training reaches 400 iterations, or when the model does not achieve

further improvement for 25 consecutive iterations on the validating data.

4.3. Baselines & Metric

In order to confirm the effectiveness of ST-Unet, we conducted experiments to compare ST-Unet
with seven baselines:

• XGB: XGB, short for eXtreme Gradient Boosting, is an implementation of GBRT (gradient boosted
decision trees) [25]. All input features are the same as ST-Unet.

• Ensemble: The ensembles of three predictive models proposed in Reference [13]: ARIMA,
time-varying Poisson model, weighted time-varying Poisson model.

• VARIMA: Vector-ARIMA extends ARIMA to the multivariate case, which can capture the pairwise
relations among the multi-time series.

• FC: A three-layers of Full-Connected neural networks is built. Its output is the forecast of all
stations’ in–out crowd flow. All input features are the same as ST-Unet.

• MG-CNN: Multi-graph convolutional networks, a deep neural network model with multiple
graphs fusing CNNs for station-level future bike flow forecast [17]. The past six time slots history
data are used to forecast the flow in the next time slot.

• Unet: Forecasting with only the closeness Unet branch (see Section 3.1).
• ST-net: Neither gDownSampling or gUpSampling are in the Unet branches, being replaced by

gConv.

XGB and Ensemble are single-output models, i.e., all stations’ forecast models of in or out crowd
flow were trained, respectively. VARIMA, FC, MG-CNN, and ST-Unet are multi-output models.
Owing to the heavy computational costs of VARIMA, the second layer `2 of stations was used and
VARIMA were trained for each cluster, respectively. Unet and ST-net are the simplified versions used
to verify the design of ST-Unet.



ISPRS Int. J. Geo-Inf. 2019, 8, 140 13 of 16

The metric we adopted to measure the results is Mean Abosulte Error (MAE):

MAE =
1

2mT

T

∑
i=1
‖x̂τi − xτi‖1, (18)

where xτi is the ground-truth of all stations’ in–out flow, while x̂τi is the corresponding forecast value.

4.4. Results

Table 3 shows the station-level crowd flow forecast error of ST-Unet compared with the other
baselines. The performance of ST-Unet and the seven baselines are measured according to all days
(whole), different weather conditions (rainy and foggy), and different time periods (hoildays, workdays,
weekends). Figure 10 shows some examples of the forecast results of the datasets CITI and TAXI.

Table 3. Station-level crowd forecasting error of ST-Unet compared with the baselines.

Dataset Methods XGB Ensemble VARIMA FC MG-CNN Unet ST-net ST-Unet

CITI

whole 1.057 1.067 1.247 1.077 1.023 1.028 1.103 0.98
workday 1.088 1.044 1.301 1.126 1.074 1.061 1.145 1.019
weekend 0.979 1.125 1.112 0.955 0.896 0.946 0.998 0.883
holiday 1.072 1.07 1.279 1.097 1.006 1.101 1.14 1.046
rainy 0.98 1.111 0.86 0.974 0.918 0.841 0.897 0.822
foggy 0.988 1.103 0.913 0.93 0.926 0.887 0.932 0.843

DC

whole 0.489 0.519 0.46 0.497 0.501 0.493 0.472 0.425
workday 0.481 0.479 0.451 0.487 0.494 0.493 0.471 0.428
weekend 0.509 0.619 0.483 0.522 0.519 0.493 0.475 0.418
holiday 0.515 0.487 0.471 0.48 0.505 0.498 0.479 0.419
rainy - - - - - - - -
foggy 0.499 0.468 0.48 0.512 0.49 0.502 0.482 0.443

DIVVY

whole 0.442 0.448 0.417 0.404 0.422 0.442 0.489 0.39
workday 0.439 0.43 0.412 0.401 0.411 0.43 0.475 0.392
weekend 0.45 0.493 0.43 0.412 0.45 0.472 0.524 0.385
holiday 0.514 0.533 0.494 0.488 0.524 0.545 0.644 0.517
rainy 0.43 0.438 0.4 0.387 0.433 0.426 0.399 0.364
foggy 0.342 0.324 0.284 0.298 0.321 0.335 0.318 0.285

TAXI

whole 3.552 3.786 4.372 4.601 3.642 3.731 3.422 3.23
workday 3.463 3.478 4.287 4.54 3.463 3.613 3.37 3.142
weekend 3.775 4.556 4.585 4.754 4.09 4.026 3.552 3.45
holiday - - - - - - - -
rainy 4.411 4.599 4.29 4.684 4.438 4.348 4.081 4.043
foggy 4.411 4.599 4.29 4.684 4.438 4.348 4.081 4.043

On the whole, ST-Unet performs well on the four datasets, which was expected. Compared
with all the baselines, ST-Unet reduces the average forecast error by 10.8% (CITI), 15.3% (DC), 12.2%
(DIVVY), 19.8% (TAXI), respectively. The much better performance for TAXI is due to the large
amount of people taking taxis, as shown in Figure 10c,d. The average forecast error reduced against the
baselines is around 9.4% for workday instances, while it is 6.1% for weekend instances. Furthermore,
as external factors are brought in, ST-Unet also performs well under different weather conditions.
The forecast errors are reduced by 6.2% on average. We found that most time periods that coincide with
foggy days in the test datasets are in the evening or midnight, such as 21:00–21:20 on 26/10/2016, 23:00
on 26/10/2016, and 5:30 on 27/10/2016 in Chicago. In addition, the precipitation-accumulation (1 h)
on rainy days are 0.43 mm on average and 0.54 mm max on 29/10/2017 in New York City. It seems
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that the influence that this made on crowd flow was not great, for this reason ST-Unet only performed
slightly better than the other methods.

As shown in Table 3, ST-Unet with other deep learning-based methods (FC and MG-CNN)
shows better performance than the other baselines on the whole. However, FC shows an unstable
forecast performance among different datasets, owing to its fully-connected layers containing too
many parameters for training. ST-Unet performs slightly better than MG-CNN. With long short term
memory (LSTM) cells, MG-CNN uses only the history data from the past six time slots to forecast
the flow in the subsequent time slot [17]. Details can be found in Figure 10, where we present some
forecast examples of different time periods (holiday: 10/10/2016; weekends: 15–16/10/2016 and
14–15/10/2017; rainy day: 29/10/2017; the others are workdays). It shows that ST-Unet performs
better than FC and MG-CNN at the peaks of crowd flow.
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Figure 10. (a,b) NYC: Forecast out-flow results for a station [id=498, Broadway & W 32 St] from
10/10/2016 to 12/10/2016 and 14/10/2016 to 16/10/2016, where 10/10/2016 is holiday, and
15–16/10/2016 is a weekend; (c,d) TAXI: Forecast out-flow results for a station [id=161, Midtown
Center] from 14/10/2017 to 16/10/2017 and 27/10/2017 to 29/10/2017, where 14–15/10/2017 is
weekend, and 29/10/2017 is a rainy day.

To verify the design of ST-Unet, we present the forecast results of Unet and ST-net (see Table 3).
The former has only a closeness Unet branch and the latter has no gDownSampling and gUpSampling.
The forecast performance was improved by 13.1% on average by ST-Unet, showing the necessity of
introducing the period/trend branch and the hierarchical structure of stations. It is worth noting
that ST-net does not perform better than Unet. It is probable that the highways in ST-Unet are quite
important for the networks’ training and ‘add’ is better than ‘concat’ (see Section 3.2), as determined
after attempts on multiple network structures.

5. Conclusions and Discussion

In this paper, we propose a deep learning-based model, named ST-Unet, to make station-level
crowd flow forecasts. We present our methods as regards combining the geographic information
with the design of the neural network. Three Unet branches to capture the temporal influence
and one branch to introduce external influence were integrated into the forecast model. To deal
with the irregular grid format of the data in the Unet branch, we propose gConv and
gDownSampling/gUpSampling to replace the corresponding widely used convolutional layer and
downsampling/upsampling layers in CNNs. Specifically, to make gConv effective, the receptive
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field is determined by each station’s k-NN as regards local stations reachable on the road network.
To make gDownSampling/gUpSampling effective, we regularize the ‘pools’ according to the hierarchical
structure of stations, which is extracted using an agglomerative clustering algorithm based on the
stations’ locations and the historical flow data. Compared with several baselines, ST-Unet generally
performed well in the experiments. ST-Unet accurately predicted each station’s in–out flow in a
future period.

It is notable that the proposed method does not show much superiority with regards to predictions
involving rainy/foggy days and holidays. The reason may be the insufficiency of training instances
on special days; however, this requires further study. In addition, the multi-time steps forecast
performance of ST-Unet was not explored; how ST-Unet can be modified to do this is a focus for
future research.
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The following abbreviations are used in this manuscript:

SLCFF Station-Level Crowd Flow Forecast
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ARIMA Auto-Regressive Moving Average
VARIMA Vector Auto-Regressive Integrated Moving Average
CNNs Convolutional Neural Networks
LSTM Long Short Term Memory neural networks
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