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Abstract: Evacuation plans are critical in case of natural disaster to save people’s lives. The priority
of population evacuation on coastal areas could be useful to reduce the death toll in case of tsunami
hazard. In this study, the population density remote sensing mapping approach was developed using
population records in 2013 and Defense Meteorological Satellite Program’s Operational Linescan
System (DMSP/OLS) night-time light (NTL) image of the same year for defining the coastal densest
resident areas in Pearl River Estuary (PRE), China. Two pixel-based saturation correction methods
were evaluated for application of population density mapping to enhance DMSP/OLS NTL image.
The Vegetation Adjusted NTL Urban Index (VANUI) correction method (R2 (original/corrected):
0.504, Std. error: 0.0069) was found to be the better-fit correction method of NTL image saturation for
the study area compared to Human Settlement Index (HSI) correction method (R2 (original/corrected):
0.219, Std. error: 0.1676). The study also gained a better dynamic range of HSI correction (0~25 vs.
0.1~5.07) compared to the previous one [27]. The town-level’s population NTL simulation model is
built (R2 = 0.43, N = 47) for the first time in PRE with mean relative error (MSE) of 32% (N = 24, town
level), On the other side, the tsunami hazard map was produced based on numerical modeling of
potential tsunami wave height and velocity, combining with the river net system, elevation, slope,
and vegetation cover factors. Both results were combined to produce an evacuation map in PRE.
The simulation of tsunami exposure on density of population showed that the highest evacuation
priority was found to be in most of Zhuhai city area and the coastal area of Shenzhen City under wave
height of nine meters, while lowest evacuation priority was defined in Panyu and Nansha Districts of
Guangzhou City, eastern and western parts of Zhongshan City, and northeast and northwest parts of
Dongguan City. The method of tsunami risk simulation and the result of mapped tsunami exposure
are of significance for direction to tsunami disaster-risk reduction or evacuation traffic arrangement
in PRE or other coastal areas in the world.

Keywords: evacuation priority; GIS; night-time lights (NTL); population density; remote sensing;
tsunami; China

1. Introduction

A tsunami can severely influence coastal areas in many countries worldwide. It is one of the
most devastating natural coastal disasters. Submarine earthquakes occurring in subduction zones
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generate most of the large tsunamis. However, Tsunamis can also be triggered by volcanic eruptions
and massive landslides [1,2].

The population evacuation plan is critical for coastal people safety in case of a tsunami hazard.
Reliable information on population distribution is essential to help decision-makers to reduce the
death toll of the disaster occurring. Hence, it is crucial to map population distribution in coastal areas
and include it in evacuation planning to give the government a chance to take the right decision in
evacuation prioritization and rescue operations.

The Pearl River Estuary (PRE) could be affected by a tsunami generated by an earthquake in the
Manila subduction zone [2–5], Taiwan region [6], and local sources [7]. The potential tsunami from
the Manila trench is the most expected source for hazardous tsunamis in the South China Sea [2,8].
The Manila subduction zone, or so-called Manila Trench, is an active subduction zone starting from the
northern tip of Palawan, Philippine, evolving to the north along the Western edge of Luzon, Philippine
and ending in Taiwan with the length of about 1000 km. It was initiated in the early Miocene (22–25 Ma)
and remains active to the present day [4,8,9].

Historical records show past tsunami earthquakes in the PRE region [10], such as the huge tsunami
in 1076 A.D which reached 500 km away from the shoreline of PRE. More information about historical
tsunami events and potential future tsunamis in the study area and the South China Sea (SCS) in
general could be extracted from the literature [2,11].

Literature has employed numerical modeling techniques to analyze the probability for tsunami
waves of various heights to hit the PRE based on potential large earthquakes originating from the
Manila Trench [1,3–5,12]. Some have concluded that the wave height could reach between eight to ten
meters in case of high magnitude earthquake [4,9,13]. Time of the tsunami wave arrival to the PRE
coast was also estimated in some models between two hours and a half to three hours [4,9].

Evacuation plans were proposed in different ways. Mainly, as a GIS-based analysis to map the
best routes for horizontal evacuation [14–16], and vertical evacuation [17,18]. Nevertheless, present
evacuation plans in many studies did not evaluate population density in hazardous areas. Besides,
those plans are typically applied in a city scale ignoring population in suburban and rural areas.

On the other hand, GIS and remote sensing were successfully utilized to improve the spatial
distribution of population statistical data. Among different remote sensing data sources, night-time
light (NTL) imagery was used successfully to distribute population density over wide areas [19–21].
NTL imagery offers a unique ability to observe human activities by measuring the night-time radiance
in the visible and near-infrared (VNIR) wavelength. Distribution of population based on NTL seem to
provide a basis for reliable population modeling to a resolution of at least 1 km [22].

The use of light emissions data as a proxy of population distribution and density has received
growing attention in recent years. Data from the Defense Meteorological Satellite Program’s
Operational Linescan System (DMSP/ OLS) have already been used depending on the relationship
between night-time light emissions and population density have likewise been demonstrated across
some countries and used as a basis for mapping population distribution [23,24].

For the best of our knowledge, there were few studies produced to evaluate saturation correction
of DMSP/OLS image in the whole metropolitan region of PRE. Tsunami evacuation assessment has
not been produced in PRE, nor had the combination of detailed population density and DMSP/OLS
remote sensing involved in evacuation models in a large area like PRE. Moreover, this study was
conducted for the first time to develop the remote sensing simulation method of population density
in risky areas under the case of tsunami hazard at the town level for whole PRE area. Based on the
method, a feasible way for town-level’s population mapping to a high resolution of at least 1 km2 was
produced. Finally., it was pointed out the areas with different population densities and risks, to assist
decision makers with proper population evacuation plans to reduce potential loss of citizens lives.
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2. Study Area

The PRE region is situated on the southeast coast of China. It is one of the largest urban areas in
the South China Sea [2]. This region has become one of the most economically developed regions in
China since the reform opening to the outer world in the late 1970s. It has major infrastructure projects,
such as the Hong Kong−Zhuhai-Macao Bridge, and two Special Economic Zones of Zhuhai and
Shenzhen cities. Besides, there are other middle-sized cities, such as Zhongshan, and Dongguan [7,23].

As a result of the economic development in the PRE, this area has become one of the country’s
densest regions in the population [23]. The high population density combining with the great economic
importance of the PRE because of the intensive growth of harbors and manufacture industry in the
coastal areas, gives importance to prepare for any potential tsunami waves. Especially, because of the
low altitude of the PRE coast and the number of river branches in the area, that created a complicated
river net system in Pearl River Delta. This makes the coastal area extremely vulnerable to potential
tsunami waves, probably suffering a large-scale tsunami disaster, even with very low tsunami wave
height [10,23].

Figure 1 presents the location of the Manila Trench and the area of interest in this study. This area
includes the whole districts of Dongguan, Zhongshan, and Zhuhai Cities, Shunde District of Foshan
City, Panyu and Nansha Districts of Guangzhou City, and the Western part of Shenzhen city, which
located directly on the eastern coast of the PRE.
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Figure 1. Study area location: The model area of interest and Manila Trench location (red line) in
South China.

3. Methodology

3.1. Data Collection

The latest available cloud-free DMSP/OLS NTL composite image provided by the American
National Oceanic and Atmospheric Administration (NOAA), was acquired in the year 2013. This image
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was downloaded from the American National Geophysical Data Center website [24]. This composite
image was made using all the available archived DMSP/OLS smooth resolution data for the calendar
year of 2013.

The DMSP program first provided low-light imaging data in 1972, and now provides a routine
source of NTL emissions data. The DMSP satellites are in low-altitude (830 km) sun-synchronous polar
orbits and carry oscillating scan radiometers—Operational Line-scan Systems (OLS)—with low-light
visible and thermal infrared imaging capabilities. While the primary purpose of these satellites is
to monitor global weather conditions during daylight hours, at least one sensor has been regularly
operated at night, at a gain setting capable of detecting clouds using moonlight [22].

Based on the DMSP/OLS NTL available image of 2013, the population data of the same year was
collected online from the Statistics Information Network (Statistical Yearbook) of each city’s website in
PRE, as shown in Table 1. In total, the population of 85 towns in PRE was collected.

Table 1. Online population data references for cities in Pearl River Estuary (PRE).

City Online Population Data Link Last Date Accessed

Dongguan http://tjj.dg.gov.cn/website/web2/art_list.jsp?columnId=1000

13 February 2019

Panyu District of Guangzhou City http://www.panyu.gov.cn/PY01/xxgk_index.shtml
Nansha District of Guangzhou

City http://www.gzns.gov.cn/zwxxgk/tjxx/

Shenzhen http://www.sztj.gov.cn/xxgk/zfxxgkml/tjsj/tjnj/
Shunde District of Foshan City http://www.shunde.gov.cn/sg/page.php?Sid=10&Tid=3

Zhongshan http://www.zsstats.gov.cn/tjzl/tjnj
Zhuhai http://www.stats-zh.gov.cn/tjsj/tjnj/

To improve the capability of population density modeling of the study area from remote sensing,
saturation correction of DMSP/OLS image has to be produced for the bright cores of urban centers.
Hence, a set of 23 MODIS Normalized Difference Vegetation Index (NDVI) images [25], acquired in
2013 were downloaded from The Global Visualization interface website (http://glovis.usgs.gov), to be
used for this purpose. Additionally, Shuttle Radar Topography Mission (SRTM) 1 arc data of DEM was
used as an input to the GIS evacuation prioritization model [26].

3.2. DMSP/OLS Data Saturation Correction

DMSP/OLS sensor was typically operated in a high gain setting to enable the detection of moonlit
clouds at the nighttime. This operation resulted in the saturation of recorded data in the bright cores
of urban centers, due to the six-bit quantization and a limited dynamic range. The loss of inner-urban
variation caused by saturation effects limits the application of Night Time Light image for population
distribution and economic activities [27].

The saturation correction method of NTL data needs to be selected carefully according to the
study area and the purpose of research [20]. In this study, two saturation correction methods were
tested to improve the DMSP/OLS NTL image, and the better result was used to model distribute
population density based on population statistics of the study area’s cities.

Two saturation correction methods at a pixel level were examined to compare their results
and select the suitable one to be used in population density distribution in the Pearl River Estuary.
These two methods are the Human Settlement Index (HSI) and the Vegetation Adjusted NTL Urban
Index (VANUI). Both HSI and VANUI methods are using contemporaneous NDVI to correct DN
saturation based on the principle that key urban features are inversely correlated with vegetation
health and abundance. HSI can be produced by using the following formula [27]:

HSI =
(1 − NDVImax) + NTLn

(1 − NTLn) + NDVImax + NDVImax × NTLn
, (1)

http://tjj.dg.gov.cn/website/web2/art_list.jsp?columnId=1000
http://www.panyu.gov.cn/PY01/xxgk_index.shtml
http://www.gzns.gov.cn/zwxxgk/tjxx/
http://www.sztj.gov.cn/xxgk/zfxxgkml/tjsj/tjnj/
http://www.shunde.gov.cn/sg/page.php?Sid=10&Tid=3
http://www.zsstats.gov.cn/tjzl/tjnj
http://www.stats-zh.gov.cn/tjsj/tjnj/
http://glovis.usgs.gov
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where NDVImax is the annual maximum NDVI for all MODIS NDVI images of 2013, and NTLn is the
normalized value of DMSP/OLS’s DN. Whereas, VANUI correction can be applied as [27]:

VANUI = (1 − NDVImean)× NTL, (2)

where NDVImean is the average value of annual MODIS NDVI data, and NTL is the DMSP/OLS stable
NTL data.

Negative values of NDVImax and NDVI mean were removed before the saturation correction
process to exclude water bodies [27]. A comparison between HSI and VANUI results was conducted
based on DMSP/OLS original data by using R2 and standard error measurements to select the optimum
one for population distribution in PRE.

3.3. Modeling Population Density

The best saturation correction of the original image was then re-sampled to a pixel size of
one square km. After, it was used to model the population density based on population statistical
reports of each town individually. The total population of each town was divided by the sum of
saturation-corrected values inside the town boundary. Then, this value was multiplied by these pixel
values to calculate population density per Km2. This process is representing in Equation (3):

Pd = (
TP

TLtvalue
)Lp-value, (3)

where Pd is the population density, TP is the total population of the town, TLtvalue is the total NTL
value inside the town, and Lp-value is the NTL pixel value. This process was simplified and presented
as a part of the study workflow in Figure 2.
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3.4. Map Evacuation Prioritization Zones

Model inundation map in case of tsunami hazard is essential for evacuation plans to know how
far tsunami wave could inundate the land. In this study, we used the simulation of wave height and
velocity in case of the worst scenario as results by simulation of Ren et al. [4], which was presented
in Lingding Bay simulation graphs of that study. Simulation graphs in that study, tsunami wave
may reach more than five meters with a potential to reach ten meters of height in the open water
before access the Lingding Bay. In our study, we take the average of nine meters height in the open
water depending on the highest recorded tsunami wave in the history that hit the PRE in May 1765,
which had killed more than ten thousand people in the region [28].

Nevertheless, wave height decreases to five meters when it enters the Bay as a result of Lantou
islands which working as wave breakers in front of the Bay. With moving forward in the bay, tsunami
wave height is gradually decreased as the influence by the decreasing of water depth inside the
Lingding Bay.

A buffer area was created for each tsunami wave height zone based on its corresponding wave
velocity on water as simulated in Ren et al. [4]. Each buffer area was designed by considering the worst
case of continuous penetration on land with the same velocity for one hour as we suggested in Table 2.

Table 2. Predicted inundation area based on worst case scenario of tsunami produced in Ren et al. [4]

Wave Height (m) Velocity (m/s) Penetration Distance (m)

9 5 18,000
5 3.2 11,520
3 2.4 8640
2 1.6 5760
1 0.4 1440

The SRTM DEM was used firstly to extract the river net in the study area to support the inundation
map simulation. Then, it was used again to produce elevation and slope maps in the study area.
For the elevation map, only areas of nine meters (or less) elevation were extracted and reclassified
in descending as areas with less than one meter has the highest rank of 9 and areas between eight to
nine meters elevation as the lowest rank of 1. The slope percentages were classified into five ranks.
The slope of less than 5% has the highest rank of 5 and the slope of more than 20% as the lowest rank
of 1.

In addition, MODIS NDVI data was used again to acquire the 2013 annual mean of vegetation
coverage in the study area. Negative NDVI values have the highest rank of 6. While ranks gradually
decreased for NDVI values between 0.8 and 1. Detailed criteria of hazard map modeling are shown in
Table 3.

Table 3. Input parameter criteria of hazard map modeling.

Elevation (m) Slope (%) NDVI Inundation Buffer Rank

8–9 More than 20 0.8–1 1 1
7–8 15–20 0.6–0.8 2 2
6–7 10–15 0.4–0.6 3 3
5–6 5–10 0.2–0.4 - 4
4–5 Less than 5 0–0.2 5 5
3–4 - Less than 0 - 6
2–3 - - - 7
1–2 - - - 8

Less than 1 - - 9 9
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Elevation and slope maps were firstly combined to produce a surface map for the study area.
Next, surface map, NDVI, and inundation map were multiplied to map tsunami hazard areas in PRE.
Tsunami hazard parameters are illustrated in Figure 3.
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Finally, hazard and population density maps were classified to quartiles and integrated to produce
the evacuation priority model in PRE. This process is described in Equation (4):

(S × I × NDVImean) P, (4)

where S is the produced surface image, I is the inundation map, and P is the population density. The result
was classified to quartiles; highest evacuation priority, second, third, and lowest evacuation priority.

4. Results

4.1. Saturation Correction Capability

Both HSI and VANUI methods showed a good ability to enhance saturation effects of urban cores
lights on DMSP/OLS NTL. A chi-squared test showed a statistically significant p-value (p < 0.05) of
the correlation between original DMSP/OLS DN values (Figure 4a) and saturation-corrected results of
the two methods (Figure 4b,c). However, VANUI demonstrated better result by the R2 value of (0.504)
and Std. error (0.0069), compared to HSI’s R2 (0.219) and Std. error (0.1676).



ISPRS Int. J. Geo-Inf. 2019, 8, 137 8 of 15

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 8 of 15 

 

Both HSI and VANUI methods showed a good ability to enhance saturation effects of urban 
cores lights on DMSP/OLS NTL. A chi-squared test showed a statistically significant p-value (p < 
0.05) of the correlation between original DMSP/OLS DN values (Figure 4a) and saturation-corrected 
results of the two methods (Figure 4b,c). However, VANUI demonstrated better result by the R2 
value of (0.504) and Std. error (0.0069), compared to HSI’s R2 (0.219) and Std. error (0.1676). 

 
Figure 4. DMSP/OLS Saturation Correction. (a) Original DMSP/OLS NTL data; (b) the saturation 
correction results of the HIS method; (c) the saturation correction results of the VANUI method. 

Apart from better dynamic range of HSI in the study than Ma et al.’s result (0~25 vs. 0.1~5.07), 
this result is in line with Ma et al. [27] which concluded that VANUI method enhances the 
correlation with DMSP/OLS original data better than HSI method, as HIS reduced the applicability 
of original NTL data. The saturation correction error was tested using the Root Mean Square Error 
(RMSE) for both results. RMSE in VANUI results was smaller than HSI with values of 0.247 and 
0.489 respectively. Hence, VANUI correction result was selected for population density distribution 
over the study area of PRE. 

4.2. Population Density Distribution in PRE 

Figure 5 illustrates the simulation of the population density distribution in the Pearl River 
Estuary based on VANUI saturation correction result of 2013 DMSP/OLS NTL image. The six towns 
were divided into calibration and validation data sets. However, we find there are the population 
simulation results of 14 towns having the percent relative errors over 100%. It is probably because 
the built-sites disturbed the simulation. After removing the 14 towns, the population NTL 
simulation model is showed in Figure 6 (R2 = 0.43, N = 47), and mean relative error (MSE) was 
calculated for the total population inside each town boundary based on the total population 
recorded in the annual statistical yearbook of 2013. The MSE was 32% (N = 24, town level), which 
confirms the acceptability of the population remote sensing model in this study (Figure 7). Moreover, 
this is the first time that the similar model at town level was built in PRE. 

Figure 4. DMSP/OLS Saturation Correction. (a) Original DMSP/OLS NTL data; (b) the saturation
correction results of the HIS method; (c) the saturation correction results of the VANUI method.

Apart from better dynamic range of HSI in the study than Ma et al.’s result (0~25 vs. 0.1~5.07),
this result is in line with Ma et al. [27] which concluded that VANUI method enhances the correlation
with DMSP/OLS original data better than HSI method, as HIS reduced the applicability of original
NTL data. The saturation correction error was tested using the Root Mean Square Error (RMSE) for
both results. RMSE in VANUI results was smaller than HSI with values of 0.247 and 0.489 respectively.
Hence, VANUI correction result was selected for population density distribution over the study area
of PRE.

4.2. Population Density Distribution in PRE

Figure 5 illustrates the simulation of the population density distribution in the Pearl River Estuary
based on VANUI saturation correction result of 2013 DMSP/OLS NTL image. The six towns were
divided into calibration and validation data sets. However, we find there are the population simulation
results of 14 towns having the percent relative errors over 100%. It is probably because the built-sites
disturbed the simulation. After removing the 14 towns, the population NTL simulation model is
showed in Figure 6 (R2 = 0.43, N = 47), and mean relative error (MSE) was calculated for the total
population inside each town boundary based on the total population recorded in the annual statistical
yearbook of 2013. The MSE was 32% (N = 24, town level), which confirms the acceptability of the
population remote sensing model in this study (Figure 7). Moreover, this is the first time that the
similar model at town level was built in PRE.
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Population distribution in PRE revealed higher density on the eastern part compared to the west
of PRE. The highest density in the study area found to be in Shenzhen City especially in Futian town
density exceeds 20,000/km2 in many parts of it. Moreover, Shilong town in Dongguan City has also
some parts with population density more than 20,000/km2.

The areas with more than 10,000/km2 population density are all located in Shenzhen city and in
Dongguan City (such as Chang-an, Shilong, and Shijie towns). Whereas, the densest area of the western
part of the PRE is only one square kilometer in the southeastern part of Nantou town (Zhongshan
City) with a density of about 9500/km2, followed by two square kilometers in Zhuhai city (about
9100/km2).

As shown in Figure 5, the high population densities were also retrieved in Zhuhai City,
Dongguan City, and urban cores of Zhongshan city, and Shunde District of Foshan City. Whereas,
lowest population densities found to be in roughly high-altitude areas, cultivated lands, and newly
reclaimed areas.

The areas of population density less than 1000/km2 are mainly located in the district of Nansha in
Guangzhou, the towns of Minzhong and Wuguishan in Zhongshan City, Wanshan Islands in Zhuhai,
and the high-altitude area of Yinping mountain at the east of Dongguan City.
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4.3. Evacuation Priority Map

Tsunami hazard map is presented in Figure 8a. This map shows a severe influence on the
whole area less than nine meters elevation in Zhuhai, Shenzhen Cities, most of the coastal area in the
Zhongshan city, and the eastern island of Nansha Districts of Guangzhou City. While, the hazard is
decreasing in the inner river net of PRE, and is mainly controlled by surface and vegetation elements
rather than inundation factor.
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More than 3800/km2), (c) evacuation priority map.

After quartiles of the population density map, it was clipped to the tsunami hazard area, as shown
in Figure 8b. The highest population density was identified in the coastal areas of Shenzhen and
Zhuhai cities. Then, urban cores of other cities follow. Low population densities were determined in
cultivated and newly reclaimed areas of PRE.

By integrating the tsunami hazard map in Figure 8a into the population map in Figure 8b, the final
evacuation priority map is presented in Figure 8c. Due to their high population density and predicted
severe tsunami hazard, the Zhuhai and Shenzhen coastal areas were found having the highest priority
of evacuation in PRE under the case of tsunami hazard. Exceptions are in those two areas in the newly
reclaimed areas and coastal aquaculture areas of Shenzhen City, and low population density in the
south and northwestern parts of Zhuhai City.

Although city centers in inner parts of the PRE are away from the coastal area of Lingding
Bay, the river net system and dense population in those areas make them in the second priority for
population evacuation in case of tsunami hazard. Those areas include the towns of Shijie and Gaobu,
and Dongguan’s central urban area in Dongguan City, the town of Ronggui and Daliang in Shunde
District of Foshan City, and the towns of Nantou and Shiqi in Zhongshan City.
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Third, and lowest evacuation priority, were concluded in the Panyu and Nansha districts of
Guangzhou City, eastern coast and western part of Zhongshan City, and Dongguan city’s northeast
and northwest parts.

5. Discussions

Although human lives in coastal areas are the most important element under risk in case of
any natural hazard, population density distribution was seldom considered in tsunami hazard and
evacuation models [15]. Hence, this study overcomes this issue by integrating population density at
the town level that was estimated from the DMSP/OLS NTL image with the tsunami hazard map of
PRE to model evacuation priority in the study area.

The positive correlation between NTL radiance data and population distribution is also
undeniable [29]. Meanwhile, it was still used to measure inequality of population distribution and
economic development among Chinese cities including cities of PRE [29,30]. Hence, NTL data is
considered as one of the best choices to map population density in PRE for evacuation in case of tsunami
hazard. In the NTL simulation of population, the built-site is probably one of the important disturbance
elements. Because the same NTL population model was built for all towns, the accuracy of the model
simulation in PRE is lower than the individual city-level’s model [36]. So, the town-level’ population
simulation from NTL image should be more challenged if relying on the light information [37].

This study focused more on defining evacuation priorities based on remote sensing of population
density. This aim is different from Nakai et al. [31] who focused on the evacuation of individual
home care recipients in need for permanent medical care in case of a tsunami hazard in Kochi City
on Shikoku Island, Japan. From the study, it is clearly important for local governments in PRE to
develop an evacuation plan based on findings in this study, especially in Zhuhai and Shenzhen cities.
It is also important to communicate with local citizens and spread such a kind of plans to improve
residents awareness about their location and inundation potential and depth, and routes to safe places
for better decision making to save people’s lives [32,33]. Additionally, Developing a mobile application
for tsunami evacuation undoubtedly is helpful for people under risk by feeding them with information
about inundation areas and depth under different tsunami risks [34].

As many researchers suggested before, it is difficult to evaluate tsunami evacuation models [32,35],
due to the difficulty to predict the exact tsunami wave height, penetration of water into land, and
dynamics of people. Primarily, there were no previous incidents in the study area to relay on for model
validation. It is also worth noting that the limitation of the NTL population distribution mapping
method is the lack of considering the actual population density difference between the daytime and
the nighttime. It is because many people should go to work or school or urban center during the
daytime, whereas most people should be at home during night-time or weekend. So, the method
cannot well reflect the situation where tsunami occurs during the daytime even rush hours. However,
the method is still meaningful for direction to tsunami disaster relief work especially with the one
kilometer resolution of population density estimation as suggested by Briggs et al. [22]. Hence, authors
may suggest a potential gap between this study and reality for the predicted model.

6. Conclusions

Two pixel-based saturation correction methods were evaluated for use to enhance DMSP/OLS
NTL image for application of population density mapping in the whole metropolitan area of PRE.
The Vegetation Adjusted NTL Urban Index (VANUI) correction method was found to be the better-fit
correction method of NTL image saturation for the study area. The HIS correction performed better
with greater dynamic range than previous research [27].

The study developed the town-level population density NTL mapping approach for the first time
in PRE that uses data of NTL emissions as covariates of population density (Calibration: R2 = 0.43,
N = 47; Validation: MRE = 32%, N = 24). The exclusion of built-sites is probably one of the choices for
improving the NTL population model further. Besides, the population density map was combined with
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a tsunami hazard map to model the evacuation priority in case of the worst tsunami scenario using
GIS modeling on surface elevation, slope, vegetation cover, and inundation map of the study area.

Highest evacuation priority in case of tsunami hazard was suggested in most areas of Zhuhai
and Shenzhen Cities with nine meters or less elevation, and followed by core built-up areas of other
cities in the PRE. Moreover, the lowest evacuation priorities were found mainly in Nansha and Panyu
districts of Guangzhou city, eastern coast and western areas of Zhongshan City, and northeast and
northwest of Dongguan City.

From this study, it is essential for local governments to prepare for the worst-case scenario of a
tsunami hazard to prevent fatal loss of residents lives as few as possible. It is suggested to prepare
detailed evacuation plans for horizontal and vertical evacuation in severe hazard areas, specifically in
the highest evacuation priority areas concluded in this study, mainly in Zhuhai and Shenzhen.

The evacuation priority method was found to be efficient in defining areas under risk for
population evacuation purposes or evacuation traffic volume estimation needed in PRE. Although
the method cannot well reflect the situation where tsunami occurs during daytime, due to significant
movement of population, it could potentially be applied for direction to tsunami disaster relief in
different tsunami scenarios of PRE or other coastal tsunami risk emergencies in the world.
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