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Abstract: Accurate and reasonable clustering of spatial data results facilitates the exploration
of patterns and spatial association rules. Although a broad range of research has focused on
the clustering of spatial data, only a few studies have conducted a deeper exploration into the
similarity approach mechanism for clustering polygons, thereby limiting the development of spatial
clustering. In this study, we propose a novel fuzzy similarity approach for spatial clustering, called
Extend Intuitionistic Fuzzy Set-Interpolation Boolean Algebra (EIFS-IBA). When discovering polygon
clustering patterns by spatial clustering, this method expresses the similarities between polygons
and adjacent graph models. Shape-, orientation-, and size-related properties of a single polygon
are first extracted, and are used as indices for measuring similarities between polygons. We then
transform the extracted properties into a fuzzy format through normalization and fuzzification.
Finally, the similarity graph containing the neighborhood relationship between polygons is acquired,
allowing for clustering using the proposed adjacency graph model. In this paper, we clustered
polygons in Staten Island, United States. The visual result and two evaluation criteria demonstrated
that the EIFS-IBA similarity approach is more expressive compared to the conventional similarity
(ConS) approach, generating a clustering result more consistent with human cognition.

Keywords: clustering; similarity approaches; EIFS-IBA

1. Introduction

Nowadays, establishing methods to extract relevant knowledge from abundant information
in big data is very challenging. Data mining technologies have alleviated the issue of extracting
effective information from jumbled data by proposing big data processing models that discover certain
characteristics [1], such as pattern recognition and clustering analysis. Clustering is one of the most
prominent data mining methods used for mining spatial information. It processes data by analyzing its
spatial characteristics; spatial clustering [2] has been shown to perform well in various disciplines [3–7],
including detecting crime hotspot distribution in crime analysis, identifying disease outbreak patterns
related to public health problems, determining climate in the context of meteorological phenomena,
detecting earthquake distribution in geological exploration studies, and determining the ecological
landscape pattern in the ecological field. On the other hand, spatial clustering can be used as a
preprocessing step for other data analysis. For example, it may be used for generating objects in
high-resolution remote sensing image classification, solving small sample problems in rare events,
reducing data redundancy in geographic data visualization, and identifying groups in cartographic
synthesis. In addition, a large proportion of spatial data for polygon clustering can be used to generalize
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maps at different scales [8], watershed analysis, drought analysis, and spatial epidemiology [9]. Hence,
clustering is a vital technique for spatial data analysis and other related applications.

Spatial clustering approaches are divided into six categories: partition-, hierarchy-, density-,
grid-, graph-, and model-based [10–16]. Although the categories vary widely, they are inseparable
from similarities. As the similarities between spatial polygons are fundamental for clustering [17],
exploring the influence of indices on similarity are abundant. The research initially only considered
single properties [18], and investigations into multi properties arose later [19]. To date, multi properties
investigations have been more recognized [15]. Geographical configuration and the spatial cognition
theory [20] can handle polygons that have more regular and simple shapes. Additionally, work
performed in [17] proposes a multi-level graph partitioning approach for clustering polygons, which
can handle more generic polygons with irregular and complex shapes. The aforementioned studies
accurately define spatial similarities between polygons, thus achieving better spatial clustering,
indicating that similarity-based investigations that express the relation between polygons well are vital
in spatial clustering.

Various spatial properties (such as area, orientation, and shape, etc.) have been used as indices
for measuring similarities between polygons. However, rigid conventional similarity mechanisms
(by ratio or difference) still limit the process of depicting the relation between spatial objects.
To resolve this issue—that the similarities between spatial objects measured by conventional similarity
approaches lose details—similarities should be calculated “softly” [21], in a fuzzy set (FS) manner [22].
Intuitionistic fuzzy sets (IFS) [23], i.e., the generation of FS, can describe objects more realistically and
practically. IFS extends the concept of FS by defining non-membership and uncertainty, as well as
origin membership [24], thus improving the objects’ express ability and making them more widely
applicable across disciplines [25]. Research conducted into the IFS approach has shown that the
similarities/distances vary widely for the different generated approaches. However, existing IFS
measures may generate unreasonable results when applied to specific situations [26], indicating a
limit to the bounds of IFS applications. To avoid these drawbacks, applying appropriate IFS measures
for depicting real world objects is essential. Beyond the four common geometric model-based IFS
measures [27], the Interpolative Boolean Algebra (IBA) approach [28] with a solid mathematical
background has advantages in describing objects. Details of the similarities measured using the
IFS-IBA approach are preserved between objects, consistent with the approach of selecting more
proper indices to acquire more crucial details, allowing us to measure similarities between spatial
objects. Multiple studies have supported the descriptive power of the IFS-IBA approach [29], through
which similarity detection between polygons can be further improved.

In this paper, we propose an extended IFS-IBA (Extend Intuitionistic Fuzzy Set-Interpolation
Boolean Algebra (EIFS-IBA)) similarity approach to measure the similarities between polygons and
discover their clustering patterns. In this model, we first fuzzified the polygon’s extracted properties
(such as area, orientation, and length–width ratio, etc.) as indices and used them to measure similarity.
We then built adjacency graph models (that further contain distance and connectivity) between the
adjacent polygons, with corresponding similarities that were measured using the EIFS-IBA similarity
approach. Finally, the obtained similarities were employed to complete the clustering. Compared with
conventional similarity approaches, EIFS-IBA exhibited stronger information expression capabilities
when depicting the similarities between adjacent polygons, which is beneficial for producing more
reasonable clustering results.

The remainder of the paper includes the following: Section 2 introduces the methodology,
including IBA theory application in polygons, the EIFS-IBA similarity approach, and the evaluation
approach. Section 3 covers the experimental results and analyses, including experimental data.
Section 4 discusses the advantages of the proposed EIFS-IBA similarity approach. Finally, Section 5
includes the concluding remarks and an outlook on future work.
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2. Methods

Polygon similarities are the fundamentals of clustering. However, the similarities applied in
previous polygon clustering have not been expressive where the similar part between spatial objects
was not evident, thus limiting spatial polygon data mining results. This study proposes a solution
by applying a similarity approach in a fuzzy manner. In the proposed EIFS-IBA similarity approach,
we first employed the IBA theory to depict the spatial properties of polygons in an IFS-dependent
manner, and then measured the spatial properties between polygons to derive overall similarities.
During the process of measuring polygon similarities, the Relief-F algorithm [30] was applied, which
generated the corresponding weight of each index instead of a trial-and-error methodology. Finally,
the adjacent graph model containing the similarities between adjacent polygons was acquired, to which
the multi-level graph partitioning approach [17] was applied to finalize the clustering. We added the
evaluation approach to the final part of this section.

2.1. Extraction and Preprocession of Polygons

Object-based modeling has been a hot topic in the polygon studies domain. Previously published
literature indicates that the object-based model is an effective data structure, which is more in line with
the method of interpreting urban scenes by both humans and computers [31]. As a result, we treated
polygons as objects. Before polygons could be utilized for clustering, they required identification and
delineation. Polygon construction was simplified into two steps. The first step was to assign object
identifiers, and we assigned a unique ID number to each polygon object. The next step was to obtain
each object’s properties (Figure 1).
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Figure 1. Numbering spatial polygons.

Considering polygon construction and relevant investigations that have been previously
published [15], we fuzzified the following polygon information features to construct adjacency graph
models (Table 1). A polygon’s shape was described by three indices: length–width ratio (LWR),
solid degree (SD), and edge number (EN). A polygon’s direction was described by its orientation
(O). A polygon size was described by calculating its area (A) and perimeter (P). Distance (D) and
connectivity (C) were used to describe the neighborhood relationship of polygons.
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Table 1. Definition of polygon space spatial index.

Similarity Indexes Definition

Shape
Length–width ratio (LWR) The length–width ratio of the minimum bounding rectangle

Solid degree (SD) The ratio of polygon area and area of a smallest bounding rectangle
Edge number (EN) The number of polygon edges

Direction

Orientation (O) The angle in degree between the x-axis and the major axis of the minimum
bounding rectangle measured counterclockwise (see Figure 2a).

Size
Area (A) The area of a single polygon

Perimeter (P) The perimeter of a single polygon
Neighborhood relationship

Distance (D) The shortest distance between polygons

Connectivity (C) The length of the skeleton line between adjacent polygon: C (x, y) =
Len(Skeleton(x, y)) (see Figure 2b)
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Since the properties extracted from urban polygons have scale differences, fuzzifying them
directly may obscure the effects of certain properties with small values. Therefore, different scales of
the extracted properties were normalized using

x∗=
x−min

max−min
, (1)

where x∗ is original crisp of a certain property, x is the property of a certain index, and min and max
are the minimal and maximum values of this particular property. This normalization approach was
standardized for min-max, which is a linear transformation of the raw data whereby the resulting raw
data is mapped between [0–1]. The standardized transformation process can unify dimension of index
properties, which is beneficial for their fuzzification.

2.2. The EIFS-IBA Similarity Approach in Polygons

2.2.1. IBA Theory on Polygons

IBA contains all Boolean axioms and realized Boolean algebra in real-value ([0,1]-valued), which
can depict objects with multiple properties. The origin framework of IBA is a generalized Boolean
polynomial (GBP) [32], whose polynomials consist of Boolean algebra variables and operators standard
+, standard -, and generalized product (GP). As GP operator is a subclass of t-norms; the four axioms
(commutative, associative, monotone, and boundary condition and non-negativity) are also effective.
Among various GP operators, min (GP: ⊗ = min) is only suitable for depicting multi properties of
objects [29]. Supposing primary variables Ω = {b1, b1 . . . bm}. Define two elements S (a1, a1 . . . am)
and T (a1, a1 . . . am) as belonging to Boolean Algebra BA(Ω). When GP is min, the IBA operation is
performed based on the following formulae (GP: ⊗ = min):
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(S∧ T)⊗ = min (min(S), min(T))
(S∨ T)⊗ = min(S) + min(T)−min (min(S), min(T)),
(¬S)⊗ = 1−min(S)

(2)

This formula denotes the IBA operation of two different objects; the operation can select the
collective part of two objects with less information loss.

IBA is a strict mathematical operation which can be combined with IFS to express similarities
between polygons. IFS originates from IF [22]. However, the generalization was first described in [23].
In Atanassov’s definition, an intuitionistic fuzzy set A in a universe E is

A = {(x,µA (x), vA(x) |x ∈ E)} =< µA, vA >, (3)

where functions µA (x): E → [0, 1] and vA (x): E → [0, 1] denote the degree of membership and
the degree of non-membership of the element x to the IFS A, respectively. As the sum of degrees of
membership and non-membership is no more than 1, IFS may include another degree of uncertainty
πA (x) of the membership of the element x ∈ E to A:

πA= 1− (µA +vA) (4)

With the emergence of non-membership and uncertainty, IFS can provide a richer semantic
description compared to fuzzy sets. However, since πA investigations are not as valid as membership
and non-membership [29], we define the situation that µA + vA = 1, and ignore the existence of πA.

Having acquired relevant theories on IFS, we can apply the specific IBA operation into IFS. Define
two polygons OA{µA, vA} and OB{µB, vB}, and the logical operations of conjunction, disjunction, and
negation within the IFS-IBA approach (GP: ⊗ = min) should use the following formulae:

(OA ∧OB)
⊗=< min(µA , µB), vA+vB−min(vA , vB) >

(OA ∨OB)
⊗=< µA+µB−min(µA , µB), min(vA , vB) >

(¬OA)
⊗=< vA, 1− vA >

(5)

In addition, the definition of IFS [28] IFS-IBA operation investigations revealed the rule on
operating polygons:

(µA ∧ vA)
⊗= min(µA , vA) = 0 (6)

When expressing similarities with a strict mathematical logic axiom, more detail of objects’
properties will be preserved. As a result, more meaningful spatial clustering results can be derived for
more precise similarities.

2.2.2. EIFS-IBA Similarity Approach

The IBA theory, which has a strict mathematical logic axiom, performs well in measuring
similarities/distances between non-spatial objects [29]. However, polygons are largely different
from non-spatial objects, which contain extra proximity and spatial distances. Additionally, the roles
of different spatial properties clearly vary in measuring similarities between polygons. To resolve
this issue, we propose the Extend Intuitionistic Fuzzy Set-Interpolation Boolean Algebra similarity
approach. The main advantage of the EIFS-IBA similarity approach over the original IFS-IBA is
that it provides more complete, formal, and explicit sets. The formal description of EIFS-IBA can be
represented as

EIFS− IBA =
{

PA
o , PB

o , S, W, R, G
}

, (7)

where PA
o refers to the properties of polygons, such as the properties in shape, direction, and size; PB

o
refers to the properties between adjacent polygons, such as proximity and spatial distance; S refers to
the similarity in polygon pairs, such as polygons OA and OB; W refers to the corresponding weight of
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each polygon property; R refers to the adjacent relation graph of contiguous polygons; and G refers to
the final similarity graph model. In Equation (7), the sets of PA

o and S were elements of the original
IFS-IBA approach. Compared with our proposed approach, conventional IFS-IBA did not provide
sufficient information about polygon properties and configurations. We explain sets PA

o , PB
o , S, and W

in the following statement; sets R and G are arranged in Section 2.3.
To depict spatial properties of polygon PA

o (such as orientation and area) in the EIFS-IBA similarity
approach, the extracted spatial properties were first normalized into a [0,1]-interval crisps µF

o via data
preprocessing. Then, we transformed the obtained crisps µF

o into membership µA
o and non-membership

vA
o . Among various transformation approaches [33,34], the maximum intuitionistic fuzzy entropy

principle [34] with λ ≥ 0 proved to be suitable for depicting objects [29]:

µA
o = 1− (1− µF

o)
λ

vA
o = (1− µF

o)
λ(1+λ) (8)

The value λ plays an important role in the transformation process; an expert in the case of IF
clustering [35] suggests that λ = 0.95. Polygon PA

o properties were derived in the following manner:

PA
o =

(
µA

o , vA
o

)
(9)

Distinct from the spatial properties of polygon PA
o , the properties between adjacent polygons PB

o
were acquired differently [17]. The properties between adjacent polygons PB

o were derived using

PB
o= (DAB

o , CAB
o ), (10)

where DAB
o and CAB

o are the distance and connectivity between two polygons, respectively. In our
EIFS-IBA approach, sdis and scon are equal to DAB

o and CAB
o , respectively, and were derived from the

Delaunay triangle and skeletons [17].
For polygon objects OA{µA, vA} and OB{µB, vB}, the similarity measurement (only containing

polygon properties) satisfies the IFS-IBA equivalence relation. The well-known tautology [29] is still
suitable for polygons:

A<=>B= (AˆB)∨(¬Â ¬B) (11)

As a result, the operation can be derived in the following manner [29] (GP: ⊗ = min):

(OA<=>OB)
⊗= (OÂ OB) ∨ (¬OÂ

¬OB)
⊗

= {(< µA, VA >ˆ < µB, VB >) ∨ (¬< µA, VA >̂ ¬ < µB, VB >)} ⊗
=< min(µA,µB) + min(VA, VB), VA + VB − 2∗min(VA, VB) >,

(12)

When measuring similarities between polygons, only the membership of IFS is vital. The
similarities of non-spatial properties can be calculated using

SI(OA, OB)=

{
1, OA = OB

min(µA,µB) + min(VA, VB), otherwise
, (13)

where SI is polygon similarities; for polygon objects OA and OB, the similarities can be denoted as
1 when the properties of the two are coincident. Otherwise, the similarities can be measured using
the IFS-IBA operation. The similarity SI only contains polygon properties for the IFS theory, which
cannot express the properties between polygons (such as spatial distance and proximity). Figure 3
interprets the IFS-IBA similarity theory. For object OA and OB, the similarity obtained using the
IFS-IBA similarity approach is C (C is the properties that are part of A and B).
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Spatial properties of polygons cannot provide sufficient information to depict similarities between
them. Hence, other spatial properties, like distance and connectivity, are indispensable [36]. However,
both distance and connectivity represent the relation between polygons, which cannot be depicted
by the IFS-IBA approach directly. The S in our proposed EIFS-IBA approach resolves the issue.
The formula is

S(OA, OB)= wi × SI(OA , OB) + w2 × sdis+w3 × scon, (14)

where wi refers to the total weight of polygon properties in shape, orientation, and size, and SI(OA,
OB) refers to the similarity of each property in shape, size, and orientation; and w2 and w3 refer to
weights for distance and connectivity properties, respectively. The total weight of wi, w2, and w3 is 1.
When wi = 1, the S in IFS-IBA was consistent with S in the EIFS-IBA approach.

Different properties have different roles in polygons’ clustering. It is therefore crucial to provide
a reasonable weight for each polygon property. In this paper, we used the Relief-F algorithm [30] to
automatically optimize weights and reduce time consumption. W in the EIFS-IBA approach can be
denoted in following manner:

W = (wi , w2 , w3) (15)

The weight of each property can be trained with sample data. In general, the W in different
datasets was slightly different.

2.3. The Graph Model and Partition of Polygons

Graph theory is a widely used method for representing the relationship between a set of polygons.
In general, a simple graph G consists of a finite, non-empty set of nodes N (G) and edges E (G).
Meanwhile, each edge Eij(Ni, Nj) connects nodes Ni and Nj in graph G.

In the polygon’s adjacent graph model, each member of set N (G) in graph G corresponds to a
unique urban object, and an edge Eij(Ni, Nj) between nodes Ni and Nj indicates that a relation exists
between the corresponding polygons. Constructing the adjacency graph model between polygons
began with polygons being coarsened into nodes (N). In this process, the centroid of polygons can
be selected as coarsened nodes (N). Then, we constructed the Delaunay triangulation of the nodes to
generate the adjacency relationship graph that contains the connection relationship between polygons.
Finally, we calculated the value of edge (E) in the adjacency relationship graph and establish a
competed adjacency graph (G). Calculating the value of each edge Eij(Ni, Nj), which is the similarity
between adjacent polygons, is significant for constructing the adjacency graph model. The adjacency
relationship graph model (AGM) that corresponds to R in EIFS-IBA can be achieved using the matrix

AGM =

 a11 · · · a1j
...

. . .
...

ai1 · · · aij

, (16)
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where aij refers to the similarity between the two polygons (or polygon pair). If the polygons are not
adjacent, we used 0 to denote the similarity between them. The AGM was used to identify whether
two polygons were adjacent. As the polygon pairs were obtained from the Delaunay triangulation [37]
of the nodes, the storage efficiency of the AGM matrix model was low. To resolve the dilemma, we
established an extended adjacency relationship graph model (EAGM) corresponding to G in EIFS-IBA,
which only contained the similarity of adjacent polygons, i.e.,

EAGM =
(
wij
)
, (17)

where wij refers to the similarity between the two polygons, corresponding to S in our EIFS-IBA
approach. Figure 4 depicts the polygon adjacency graph model construction. For instance, w12(a1, a2)
is the similarity between polygon a1 and a2; w13(a1, a3) will not arise in the EAGM, for a1 and a3 are
not adjacent.
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Figure 4. Adjacency relationship graph. (a) The polygon; (b) the constructed adjacency relationship
graph; and (c) the corresponding extended adjacency relationship graph model (EAGM).

The partition process is the final step of clustering. As the multi-level graph partitioning approach
performed well in the multi-property polygon clustering analysis, we partitioned the acquired graph
model with similarities between polygons using the multi-level graph partitioning approach [17].

2.4. Evaluation of Clustering Quality

As clustering is an unsupervised process, clustering quality evaluation is of great importance.
There are many clustering evaluation criteria; the silhouette coefficient and information entropy are
superior in many methodologies [17]. In this paper, we chose the silhouette coefficients of the clustering
results to evaluate their merits, and further used geometric features to validate the results.

2.4.1. Silhouette Coefficient

The silhouette coefficient [38] is a method used for evaluating clustering effectiveness using the
pairwise difference between- and within-cluster distance. For a polygon vi in a cluster, its silhouette
s(i) is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)} , (18)

where s(i) ranges from −1 to 1, a(i) measures the compactness of the cluster containing vi, and b(i)
captures the degree to which vi is separated from the other clusters. A larger s(i) implies that the
cluster containing vi is compact and vi is far away from the other clusters. However, when s(i) is
negative (i.e., b(i) < a(i)), vi is closer to the polygons in other clusters.

2.4.2. The Information Content of the Geometric Features

The information content of geometric features (ICGF) of polygons is generated using the complex
diversity of polygon geometries. The geometric shape of complex surface elements can be decomposed
into the convex tree node polygons and their mutual relationships. The ICGF (Ai) of individual
polygon element Ai [39] is
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I(Ai)=
mi

∑
j=1

wij log2
(
1 + neij )

(
2−Cij )

(
lij + 1 )

(
dij + 1

)
, (19)

where mi refers to the number of convex hulls generated by Ai decomposition; neij refers to the ratio
of the number of polygon edges to the average number of edges in the pocket nodes of the convex hull
tree; Cij refers to the solidity of the pocket polygon of the convex hull tree node; lij refers to the ratio
of the number of layers in the convex hull tree node and the average number of layers; dij refers to
the ratio of out-degree and average out-degree of the convex hull tree node; and wij refers to the area
weight, which is the ratio of the area of the convex hull to the area of the largest convex hull.

The ICGF is related to the geometric shape of the polygons in each polygon. The geometric
features of each polygon are independent of each other. We calculated the weight of each polygon
according to the area and then the weight and sum of geometric features for all polygon features,
finally acquiring the ICGF of the polygon Ig, which is

Ig =
m

∑
i=1

wiI(Ai), (20)

wi = si/s, (21)

where s refers to the average area factor of polygons; m is the total number of polygons; and wi

refers to area weight, which is the area ratio of the features to the mean value. The geometric feature
information performance of the clustering results is described by calculating the difference in ICGF
between adjacent clusters. Having known the ICGF of each cluster from the different similarity
approaches, we constructed a graph model containing adjacent clusters and calculated the ICGF
difference between them.

3. Results

3.1. Dataset

In this study, we applied the proposed method to Staten Island. Staten Island, which is one of the
five boroughs of New York City, is located in the southernmost part of New York City. The geometric
features and spatial distribution of polygons in Staten Island are complex and diverse, and it represents
a more general polygon distribution pattern. Hence, we chose polygons in Staten Island to study their
clustering, given that the complicated polygon distribution in Staten Island can fully demonstrate the
applicability of the EIFS-IBA similarity approach. To further verify the applicability and reliability of
the presented approach, we analyzed the regions outlined by red boxes in Figure 5. Experimental region
b was first partitioned according to human cognition to train the weight of each index using the Relief-F
algorithm. Then, we conducted the whole process using the proposed approach in experimental region
a. Finally, comparative analysis using different similarity approaches was performed in experimental
region c. The footprint in vector format of New York City was released by the NYC Department of
Information Technology and Telecommunications (DoITT, http://www1.nyc.gov/site/doitt/index.
page, accessed July 2017).

http://www1.nyc.gov/site/doitt/index.page
http://www1.nyc.gov/site/doitt/index.page
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3.2. Experiment Setting and Clustering Results

Selecting similarity properties and their corresponding weights affects the calculated similarity
between polygons, which has a further significant influence on the cluster result. This study aimed to
cluster polygons in a manner consist with human cognition, so we trained the sample (Figure 6) to
acquire the corresponding weight of each property using the Relief-F algorithm shown in Table 2.
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Table 2. Weight scheme trained by the Relief-F algorithm.

Influencing Factors Shape Orientation Size Spatial Distance Connectivity

Weight 0.243 0.159 0.116 0.301 0.181



ISPRS Int. J. Geo-Inf. 2019, 8, 98 11 of 18

Table 3 is the adjacency graph model of experimental region a. The maximum similarity (edge
weights) between the polygons is 1, indicating that the two polygons are linked together. The minimum
value is 0.1167 (given the large amount of data, this value is not shown in Table 4); and the similarity
between most polygon pairs is ~0.70 (Figure 7). The similarity between these polygon pairs allowed
us to partition in the next step. After constructing the adjacency graph model containing polygon
neighbor information, we used the multi-level graph partitioning approach to complete the clustering.

Table 3. The adjacency graph polygon model.

Node (ID) edge Node (ID) edge Node (ID) edge

(1,121) 0.6909 . . . . . . . . . . . .
(1,155) 0.6996 (111,150) 0.6444 (293,5) 0.5917
(1,266) 1 (111,230) 0.6599 (293,117) 0.7166
(2,27) 0.6895 (111,281) 0.6862 (294,65) 0.6944

(2,132) 0.7008 (112,16) 0.6436 (294,77) 0.6419
(2,224) 0.6994 (112,37) 0.6439 (294,83) 0.6818
(2,269) 0.6835 (112,87) 0.6291 (294,113) 0.6626

Table 4. Silhouette coefficient of experimental region a under different thresholds.

Similarity Threshold Silhouette Coefficient

75% 0.1484
70% 0.2455
65% 0.1728
60% 0.1847
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After completing the similarity property and weights analysis, we set the similarity thresholds of
the multi-level graph partitioning approach to 75%, 70%, 65%, and 60% according to the distribution
of similarity in experimental region a. Figure 8 shows the partitioned results of experimental region a.
However, due to the complexity of polygon distribution in the experimental region, it was difficult to
distinguish the effect with simple human vision. Hence, further assessment and analysis are necessary.

By analyzing the clustering results of experimental region a under different thresholds (Figure 8),
we found that the number of clusters gradually decreased with the gradual reduction in partition
threshold (from 75% to 60%) as the number of polygons per cluster increased and the total number of
clusters naturally decreased. Secondly, the silhouette coefficients (Table 4) with different thresholds
varied greatly. When setting the similarity threshold to 70%, the silhouette coefficient values reached
the maximum. When the threshold gradient was 5%, setting the similarity threshold to about 70%
generated better results. The number of polygon pairs above or below 0.7 was relatively rare;
the threshold outside this range (~70%) was not conducive to better results. If the threshold is
too small, the cluster result is not fully partitioned. Otherwise, the clusters are over partitioned.
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3.3. Comparison and Analysis of Different Similarity Approaches

We then performed further analysis and comparison of the clustering results in experimental
region c which were operated by various similarity approaches (including EIFS-IBA, normalized
Euclidean (Eu), Hausdorf Euclidean (HauEu), normalized Hamming (Hamm), and conventional
similarity (ConS); see Table 5). When setting the similarity threshold to 70% and applying each index
weight as shown in Table 2, the clustering partitions were completed by different similarity approaches.
Clusters (Figure 9) of the four fuzzy similarity approaches were similar in polygon volume and spatial
characteristics within clusters. There were some clusters of abnormal shape in the ConS approach.
For example, the region of cluster number 8 was approximately character ‘C’, and the boundary near
cluster 9 was not clear. The overall visual cognition cannot rigorously evaluate the quality of the
clustering result, so it still essential to use the silhouette coefficient to carry on further evaluation.

Table 5. The five similarity approaches.

Similarities Approach Corresponding Formula

Normalized Hamming (Hamm) S(OA, OB) = 1 − 1
2n ∑n

i=1(|µA − µB|+|VA −VB|)
Normalized Euclidean (Eu) S(OA, OB) = 1 −

√
1

2n ∑n
i=1((µA − µB)

2 + (VA −VB)
2

Conventional similarity (ConS) S(OA, OB) = 1 − |OA−OB|
max(OA, OB)

Hausdorf Euclidean (HauEu) S(OA, OB)= 1 −
√

1
n ∑n

i=1 ((µA − µB)
2, (VA −VB)

2,)

IFS-IBA SI(OA, OB) =
{

1, OA = OB
min(µA,µB) + min(VA, VB), otherwise



ISPRS Int. J. Geo-Inf. 2019, 8, 98 13 of 18ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  12 of 17 

 

 

Figure 9. Clustering results of different similarity approaches. 

Table 6. The silhouette coefficient of cluster region c. 

Similarity/Distance 
Approach. 

Silhouette Coefficient Improvement (Based as 
ConS) 

Extend Intuitionistic Fuzzy 
Set (EIFS)-IBA 

0.2576 25.54% 

ConS 0.2052 0 
Eu 0.2285 11.35% 

HauEu 0.2208 7.60% 
Hamm 0.2276 10.92% 

Table 6 shows the silhouette coefficients of experimental region c using five different similarity 
approaches under the same parameter settings. The EIFS-IBA similarity approach had the best 
performance, while the ConS approach performed the worst. By comparing the silhouette 
coefficients between the two, the EIFS-IBA had up to 25% improvement. In addition, the other three 
fuzzy similarity approaches all had different degrees of improvement. However, because the 
mechanism of similarity expressions is different, the improvement effect is not as significant as that 
of EIFS-IBA.  

We further assessed the four areas marked by red rectangular boxes in the experimental region 
in Figure 9 (dotted lines indicate that the area did not meet visual cognition and the solid line is 
consistent with cognition) and analyzed the effect of the EIFS-IBA similarity approach from a local 
perspective. The four solid red rectangles indicated that the EIFS-IBA similarity approach partition 
did not significantly violate human visual perception. For example, the uppermost region of the 
figure partitioned two neighboring polygons—whose shape and area were significantly different in 
different clusters—instead of being partitioned into the same cluster only based on distance. As for 
the other fuzzy similarity approaches, only one area of Eu and HauEu was consistent with 

Figure 9. Clustering results of different similarity approaches.

Table 6 shows the silhouette coefficients of experimental region c using five different similarity
approaches under the same parameter settings. The EIFS-IBA similarity approach had the best
performance, while the ConS approach performed the worst. By comparing the silhouette coefficients
between the two, the EIFS-IBA had up to 25% improvement. In addition, the other three fuzzy
similarity approaches all had different degrees of improvement. However, because the mechanism of
similarity expressions is different, the improvement effect is not as significant as that of EIFS-IBA.

Table 6. The silhouette coefficient of cluster region c.

Similarity/Distance Approach Silhouette Coefficient Improvement (Based as ConS)

Extend Intuitionistic Fuzzy Set
(EIFS)-IBA 0.2576 25.54%

ConS 0.2052 0
Eu 0.2285 11.35%

HauEu 0.2208 7.60%
Hamm 0.2276 10.92%

We further assessed the four areas marked by red rectangular boxes in the experimental region
in Figure 9 (dotted lines indicate that the area did not meet visual cognition and the solid line is
consistent with cognition) and analyzed the effect of the EIFS-IBA similarity approach from a local
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perspective. The four solid red rectangles indicated that the EIFS-IBA similarity approach partition
did not significantly violate human visual perception. For example, the uppermost region of the figure
partitioned two neighboring polygons—whose shape and area were significantly different in different
clusters—instead of being partitioned into the same cluster only based on distance. As for the other
fuzzy similarity approaches, only one area of Eu and HauEu was consistent with cognition, and Hamm
was totally against human cognition. Although ConS had two cognitive areas, the overall division
results differed significantly from cognitive criteria. As a whole, fuzzy sets had significant advantages
with regards to similarity expression. Furthermore, an appropriate express manner is particularly
important in the application of polygon cluster analysis. The adopted EIFS-IBA similarity approach
has obvious advantages in polygon clustering analysis.

3.4. Verification by the Differences Between ICGF

The geometric features between polygons in the same cluster are of relevance, and therefore, the
clustering results can be evaluated by comparing the differences between ICGF in adjacent clusters.
The ICGF of clusters according to different similarity approaches are shown in Table 7.

Table 7. The information content of geometric features (ICGF) in different clusters by different
similarity approaches.

Approaches The ICGF in Different Clusters

EIFS-IBA 3.33 3.46 3.00 3.07 3.40 3.41 3.11 3.09 3.38 3.22 3.00 3.00 3.23
ConS 3.07 3.00 3.31 3.56 3.26 3.42 3.10 3.18 3.05 3.10 3.00 3.33 3.12

HauEu 3.31 3.47 3.00 3.17 3.30 3.40 3.00 3.11 3.42 3.00 3.22 3.23 3.00
Eu 3.42 3.45 3.07 3.00 3.52 3.28 3.24 3.00 3.00 3.17 3.36 3.00 3.12

Hamm 3.31 3.47 3.00 3.17 3.43 3.27 3.11 3.00 3.42 3.00 3.21 3.00 3.23

Table 7 represents statistical information on the ICGF of clusters in Figure 9; the numerical values
in each row are the ICGF for corresponding clusters (i.e., the data in the first column corresponds to
clusters in the clustering result obtained by the EIFS-IBA similarity approach in Figure 9). According
to Section 2.4.2, ICGF differences can be evaluated based on the effect in the perspective cluster pair.
After acquiring the adjacent relation of clusters in Figure 9, we summarized ICGF differences and
excellence rates in Figure 10.

Figure 10 shows the range for which ICGF differences was [0, 0.51] and where a, b, c, d, e, and f
corresponded to the EIFS-IBA, ConS, HauEu, Eu, and Hamm similarity approaches and excellence
rates, respectively; and where the horizontal axis in a, b, c, d, and e represented an adjacent cluster
pair. For example, [1, 2] (which is cluster 1 and cluster 2) corresponded to the 0 and 1 regions in
Figure 9; the vertical axis is the difference in the ICGF. By combining the EIFS-IBA clustering results in
Figure 9, the adjacent cluster differences can be divided into three ranges: [0, 0.1], [0.1, 0.3], and [0.3,
0.51]. When the difference range is [0, 0.1] and the cluster pair [1, 2] is taken as an example, we found a
clear interval between the corresponding 0 and 1 regions, indicating that the location was close to the
dominant relationship and the results were reasonable. When the difference range was [0.1, 0.3] and
the cluster pair [9, 12] was used as an example, we found that the corresponding positional relationship
between the 8 and 11 regions was not obvious. Polygons’ ICGF values in their respective regions were
quite different, and the ICGF of the two regions were averaged. As a result, ICGF differences in the
two regions were not significant, showing that the division results of the two regions were mediocre.
When the difference range was [0.3, 0.51] and the cluster pair [4, 5] was taken as an example, we
found that the corresponding positional relationship between regions 3 and 4 regions was not obvious,
but the ICGF difference between the two regions was relatively large, indicating that the geometric
features were dominant, thus giving reasonable results. Hence, it can be concluded that the ranges
[0, 0.1] and [0.3, 0.51] belong to the favorable division. These two ranges correspond to results of the
significant partition of the neighborhood relationship or geometric features, respectively. In the range
[0.1, 0.3] there may be more negative partitions. The clusters contained more incorrectly partitioned
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boundary polygons in which the difference in the ICGF was large. The average ICGF was closed to
an intermediate value, which ultimately led to differences in ICGF information between clusters in
this range. Thus, the distribution range of the statistical cluster differences can reflect the dependence
of polygons in the same clusters. Furthermore, the excellent rate of partition results can reflect the
performance of clustering results based on different approaches.
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Figure 10. The ICGF differences and excellence rates, where (a–f) corresponded to the EIFS-IBA, ConS,
HauEu, Eu, and Hamm.

The first five graphs in Figure 10 show cluster pairs’ (between adjacent clusters) ICGF differences,
and the last graph is the excellence rate of the different similarity approaches. It can be found that the
performance of EIFS-IBA was predominantly better than the other approaches, followed by the other
three fuzzy set approaches; the ConS approach performed the worst. The performance was also similar
to the previous silhouette coefficients, which fully showed the strong information expression ability of
the fuzzy sets, and the appropriate similarity approach was more conducive to polygon clustering,
which was in accordance with the cognitive criteria.

4. Discussion

It is essential to describe polygon property information accurately as a condition of differentiation
during polygon clustering. As the conventional similarity approach simply handles the similarity
properties, it is difficult to include detailed feature information representing polygons. To resolve
the issue, we have proposed the EIFS-IBA similarity approach, which is very flexible and has some
outstanding advantages over ConS methods. First, we dealt with the properties of a single polygon,
which is consistent with the way that humans or computers come into contact with city scenes. In the
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fuzzy similarity, the geometric spatial information of the direction, shape, and size of the polygon was
added to improve the information richness. This information can better express the polygon attributes
and establish a more accurate attribute relationship for clustering so as to obtain better clustering results.
Secondly, the EIFS-IBA similarity approach has a strict mathematics foundation which is derived from
the argument of equivalent substitution and is logically rigorous. More importantly, the EIFS-IBA
similarity approach has strong expressive ability and can accurately describe the relationships between
polygon entities, which is more advantageous than conventional ways that calculate it from ratios
or differences.

The fuzzy set theory is relatively mature and performs well in clustering, partitioning, and pattern
recognition. However, the application of clustering in geographic information systems is relatively
rare. In this paper, we have proposed the EIFS-IBA similarity approach that has a strong capability
of information expression and integration to measure polygon similarities. The experiments showed
that the similarities acquired by the EIFS-IBA similarity approach have a good effect on clustering.
However, the effectiveness of the EIFS-IBA similarity clustering experiment is still affected by the
following factors: first, in fuzzy set application, we only adopt the currently applied mature degree
of membership and non-membership, and do not apply the third uncertainty index of the fuzzy
concentration, which will affect the powerful information expression of the EIFS-IBA approach to a
certain extent; second, although the spatial attribute features used in this paper are rich, there may still
exist other potentially more effective attribute indices, such as POI, etc. Even multiple attributes may
interact with each other to further affect clustering.

5. Conclusions

Polygon clustering is one of the most important tasks of data mining. Most of the current similarity
calculation approaches for clustering mining experiments remain at a certain level, and do not further
explore the potential of similarity approaches. On the one hand, the mechanisms of current similarity
approaches are quite primitive and the acquired similarity cannot show details of the similar part.
On the other hand, current mathematical sciences have reached a higher level in the study of similarity
approaches, which has explored the advanced similarity that can express the additional detail of
similar parts. However, there are fewer theories applied to geographic information systems. The major
contribution of this work is the designed EIFS-IBA similarity approach, which can measure similarities
between polygons.

This paper overcomes the drawbacks of the conventional IFS-IBA approach that cannot measure
the spatial relation between spatial objects. In this paper, we first extracted spatial properties (such as
area, shape, and orientation, etc.). Then we applied IFS-IBA to measure the properties of spatial objects
and measure the additional similarities between spatial objects (length and connectivity). Finally,
we conducted spatial clustering with the weight similarity between spatial objects. Both the visual
result and evaluation criteria demonstrate that the EIFS-IBA similarity approach can partition complex
polygons in accordance with visual recognition results. In addition, our proposed EIFS-IBA similarity
approach is expressive and therefore can be applied to many geographical information analyses which
utilize similarity. Furthermore, we will also explore the impact of the uncertainty in the EIFS-IBA
similarity approach, and of membership and non-membership on the ability to express similarities
in geographic information. In future work, we aim to explore cluster analysis tools that are more
conducive to mining hidden information in spatial data.
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