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Abstract: Remote sensing has been widely used in vegetation cover research but is rarely used for 

intercropping area monitoring. To investigate the efficiency of Chinese Gaofen satellite imagery, in 

this study the GF-1 and GF-2 of Moyu County south of the Tarim Basin were studied. Based on 

Chinese GF-1 and GF-2 satellite imagery features, this study has developed a comprehensive feature 

extraction and intercropping classification scheme. Textural features derived from a Gray level co-

occurrence matrix (GLCM) and vegetation features derived from multi-temporal GF-1 and GF-2 

satellites were introduced and combined into three different groups. The rotation forest method was 

then adopted based on a Support Vector Machine (RoF-SVM), which offers the advantage of using 

an SVM algorithm and that boosts the diversity of individual base classifiers by a rotation forest. 

The combined spectral-textural-multitemporal features achieved the best classification result. The 

results were compared with those of the maximum likelihood classifier, support vector machine 

and random forest method. It is shown that the RoF-SVM algorithm for the combined spectral-

textural-multitemporal features can effectively classify an intercropping area (overall accuracy of 

86.87% and kappa coefficient of 0.78), and the classification result effectively eliminated salt and 

pepper noise. Furthermore, the GF-1 and GF-2 satellite images combined with spectral, textural, and 

multi-temporal features can provide sufficient information on vegetation cover located in an 

extremely complex and diverse intercropping area.  

Keywords: intercropping classification; classifier ensemble; rotation forest; GF-2 

 

1. Introduction 

Increasing food production to meet the enormous demand for food due to the world’s 

population growth has become a widespread concern [1,2]. Intercropping serves as an excellent 

means to increase food productivity, enhancing farm income, improving soil and water quality, and 

reducing greenhouse gas emissions [3]. Intercropping not only plays an important role in both land 

resource management and food production solutions but also supports dynamic interactions 

between trees and crops [4]. Intercropping has been often used and has become essential to the 

world’s agricultural production. Many studies showed that reasonable intercropping can efficiently 

utilize natural resources (e.g., light, heat, fertilizer, and water), reduce risks of nature disasters, reduce 

weed competition, and improve yields of limited cultivated land. On the other hand, inappropriate 

intercropping patterns may have adverse effects, such as decreasing production and ecological 
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deterioration [4]. Therefore, surveying and mapping plant types, quantity structures, and spatial 

distribution characteristics are important in improving intercropping systems and in estimating 

potential yields and tree crop system adjustments. 

Remote sensing has been widely used in monitoring cropping at different spatial and temporal 

scales [5]. However, intercropping has been rarely addressed with remote sensing in the literature 

[6]. Compared with conventional planting patterns, intercropping is challenging in remote sensing 

monitoring due to the complexities of spatial distributions. First, when several crops are planted 

together during the growing season, different crops may have spectral intersections at different 

growth stages. Under such conditions, discriminating different intercropping objects from a single 

image is relatively difficult. High temporal resolution remote sensing has been used in crop 

monitoring, and it has been proven that time-series images can perform better than single-data 

mapping methods [7,8]. Belgiu et al. classified various crops of Sentinel-2 time-series images using a 

time-weighted dynamic time warping method to three different test areas in Romania, Italy, and the 

USA with high levels of overall accuracy [9]. Second, in an intercropping area, differences in the sizes 

and shapes of tree canopies lead to uncertainty at canopy edges and to different spectral crop 

characteristics under tree canopies. Crops and trees are inlaid and intertwined in space, creating some 

forms that are difficult to distinguish and extract. Studies have generally used high-resolution remote 

sensing imagery to extract trees. Hartfield et al. [10] described a novel Cubist-based approach to 

modelling woody cover in Oklahoma and Texas using 1 and 2 m spatial resolution data. D. S. 

Culvenor [11] applied tree identification and delineation algorithms to delineate tree crowns of a 

Mountain Ash forest from 0.8 m resolution imagery. Mayossa et al. [12] introduced a semi-automatic 

classification method based on a QuickBird texture analysis to differentiate coconut palms from oil 

palms in Melanesia. In tree–crop monitoring, high spatial remote sensing imagery must be used. 

In this work, images captured by GF-1 and GF-2, two of the satellites used in China’s high-

resolution Earth Observation System, are employed. The data can be downloaded from the China 

Resource Satellite Center [13]. The GF-1 satellite includes two panchromatic multispectral sensors 

(PMS) and four wide field view (WFV) cameras, which can acquire data at a high spatial resolution, 

with broad coverage, and at a high revisit frequency (The revisit frequency of the GF-1 PMS is four 

days and that of the WFV cameras is two days) [14]. Each PMS includes a panchromatic band (0.45–

0.90 μm) of 2 m resolution and multispectral bands of 8 m resolution as follows: blue band (0.45–0.52 

μm), green band (0.52–0.59 μm), red band (0.63–0.69 μm), and Near-InfraRed (NIR) band (0.77–0.89 

μm) [15]. The revisit frequency of the PMS aboard the GF-2 satellite is 5 days, providing a 

panchromatic band of 0.81 m resolution and multispectral bands (B, G, R, and NIR) of 3.24 m 

resolution. Compared to IKNOS, Worldview, Quickbird, and SPOT 6/7 images, GF images are 

favorable. Of these sub-meter resolution remote sensing data, Worldview and Quickbird images are 

more expensive than IKNOS images whereas the price of a GF-2 image per km2 is less than one 

seventh of the price of an IKNOS image (0.82 m panchromatic and 4 m multispectral bands: R, G, B, 

and NIR). GF satellites can provide very high spatial resolution, low-cost, and continuous data for 

agricultural and forestry monitoring. GF-1 has been used to study land cover [16], but few studies 

have used GF-1 or GF-2 to monitor cropping. 

Many machine learning algorithms have been applied for crop classification, such as maximum 

likelihood classification (MLC), neural network, Support Vector Machine (SVM), and Random Forest 

(RF) [17]. The SVM and RF have been shown to outperform the MLC in classifying crops [18,19]. 

Rodriguez et al. [20] proposed a Rotation Forest (RoF) and performed experiments using 33 data sets 

from the University of California Irvine Machine Learning Repository. The results of those studies 

showed that the RoF performed better than three ensemble learning methods (Bagging, AdaBoost 

and RF methods) [20]. The RoF is an ensemble approach based on feature transformation and the 

segmentation of attribute sets [20]. The RoF adopts a principal component analysis (PCA) of feature 

subtests to reconstruct full feature space and to improve the diversity of all base classifiers, 

distinguishing it from the RF. Moreover, the RoF has been used for optical and Fully Polarimetric 

Synthetic Aperture Radar remote sensing classification, and it has been demonstrated that the RoF 

achieves a higher level of classification accuracy than the RF [21,22]. 
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However, regardless of the many types of classification methods available, each method 

presents its own advantages and weaknesses [23]. For instance, the SVM is highly accurate but offers 

a slow processing speed [24]. Although the MLC is less accurate, it is still widely used for image 

classification due to its rapid calculation capabilities and convenient implementation. Balancing the 

trade-off between accuracy and speed is crucial. The use of ensemble learning methods to increase 

classification accuracy has received much attention [25]. 

This paper used the SVM as the base classifier of the RoF method. This method has been used 

as a network composed method for anomaly detection [26] that (i) can increase the diversity of base 

classifiers, (ii) is suitable for small samples and high-dimensional classification objects, and (iii) 

effectively prevents overfitting. 

Based on Chinese GF-1 and GF-2 satellite imagery features, this study has developed a 

comprehensive feature extraction and intercropping classification scheme. The experiments have 

shown that GF-1 and GF-2 satellite images combine spectral, textural and multi-temporal features to 

provide sufficient vegetation coverage information for extracting crop information from extremely 

complex and diverse intercropping regions. This study serves as a basis for the application of Chinese 

GF satellites for the monitoring of intercropping in areas such as precision agriculture and forestry. 

2. Study Area and Data  

2.1. Study Area 
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Figure 1. Map showing the study area: (a) study area in the Tarim Basin; (b) study area illustrated 

with false colour combinations (near-infrared, red, and green bands) for September 18, 2016. The 

green points denote training samples and the blue points denote validation samples. 

The selected study area is located in Moyu County, Hetian, Tarim Basin. The Tarim Basin is 

located in southern Xinjiang. The area covers the southern Tianshan Mountains, the northern Kunlun 

Mountains, and the hinterland of the Taklimakan Desert. Foothills close to the basin are composed 

of alluvial plains formed by seasonal snowmelt, forming a well-known forest fruit producing area. 

The area is characterized by a warm temperate dry desert climate and is a typical arid oasis 

agricultural area. The area lacks water resources but supports a large population and per capita arable 

land area of less than 2 acres. To increase local farmer incomes, the intercropping of fruit trees and 

crops has been promoted since the end of the last century. Horticultural activities that characterize 

the Tarim Basin benefit from the interplanting model. The industrial forest fruit of the region accounts 

for 83.47% of the forest fruit area of Xinjiang, and local fruit production accounts for 67.36% of that 

of Xinjiang [27]. More than 80% of local counties include intercropping areas. Therefore, the selection 

of the study areas in the Tarim Basin is representative. 

The area is a typical rotation and intercropping area. The main trees produced are walnut trees, 

and the main crops grown are winter wheat and maize. A shelterbelt dominated by populus bolleana 
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is also planted. This planting mode has the effect of sand fixation and storm resistance and increases 

the yields of economic crops while producing grain. The region has become a new planting model 

for oasis agriculture. The selected test area is 3.1 × 3.1 km, covering an area of 961 ha, but it includes 

almost all features of typical agricultural planting areas in arid areas: shelter forests, economic trees, 

crop rotation systems (wheat-maize), residential areas, roads, water systems, sandy areas, and 

grassland. In particular, the spatial structure of intercropping areas is extremely complex and diverse. 

Walnut trees and different crops (wheat, vegetables, grassland and maize) are intercropped with 

completely different row spacing and densities (as shown in (c–h) of Figure 1), creating complex 

spatial distribution characteristics. Therefore, the test area serves as an ideal sample area for 

intercropping classification tests. 

2.2. Field Sampling 

For the vegetation classification, seven land cover categories were classified, including walnut 

trees, maize, shelterbelts, grassland, vegetable cropland, water, and bare ground. The bare ground 

area includes all non-vegetated areas such as residential areas, roads, and sandy areas. A total of 1963 

samples were selected for manual field surveys (July to August 2016) by the visual interpretation of 

different land cover types as shown in (b) of Figure 1. All samples are shown in pixels divided into 

two groups: 1363 samples (64 061 m2) were used as training data (green points in (b) of Figure 1) for 

the development of a classification algorithm and the remaining 600 samples (15,250 m2) were used 

as validation data (blue points in (b) of Figure 1) to evaluate the classifier. 

Previous studies showed that the area has a double cropping form. Winter wheat is planted at 

the end of October every year, and the area enters a greening period in the middle of March of the 

next year. Wheat ears grow in May when the Normalized Difference Vegetation Index (NDVI) 

reaches its peak, and harvesting begins in early June. Summer maize is planted in June, seedlings 

emerge at the end of June, and crops reach advanced vegetative phases in September [28]. Data from 

field observation sites and surveys of local farmers show the growth period of main crops in the study 

area as illustrated in Figure 2. According to surveys of local farmers, the harvesting and sowing 

periods of regional crops usually varies within ten days. Three temporal images with no cloud 

coverage in the test area were selected from GF-1 PMS1 on May 10, 2016, from GF-1 PMS2 on June 

24, 2016, and from GF-2 PMS2 on September 18, 2016. Crop growth patterns corresponding to each 

remote sensing image shown in Figures 2a, b, and c were randomly selected for the same farmland 

area from three images, revealing differences observed between crops and trees. These images 

provide crop rotation and growth information, reflecting differences observed between some crops 

and trees. 
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Figure 2. Growth period and sample images of study area; (a) Sample GF-1 images acquired on May 

10; (b) Sample GF-1 image acquired on 2 June 24, 2016; (c) Sample GF-2 image acquired on September 

18, 2016. 

2.3. Remote Sensing Data Pre-processing 

All GF-1 and GF-2 images were preprocessed in ENVI 5.3.1, which applies ortho-rectification, 

radiometric calibration, atmospheric correction, the fusion of panchromatic and multispectral bands, 

and geometric registration. The three images were projected in Albers Conical Equal Area coordinate 

system World Geodetic System 1984 to obtain the planting area. Orthophoto-rectification was applied 

to the Rational Polynomial Coefficient (RPC) parameters of the image and to the GMTED2010 digital 

elevation model (DEM) in ENVI. Radiation calibration involves converting the originally recorded 

digital number (DN) into the reflectivity of the outer surface of the atmosphere. The parameters of 

the satellite sensors are shown in Table 1; all the parameters have been input into the Radiometric 

Calibration tool of ENVI for radiation calibration. The ground elevation of the area is set to 1.2 km, 

and since the latitude of the area is 37° N, the atmospheric model of the GF-1 image for May 10, 2016, 

is set to the Sub-Arctic Summer, and the GF-1 image for June 24, 2016, and GF-2 image for September 

18, 2016, are set to the Mid-Latitude Summer. The atmospheric correction converts radiance or surface 

reflectance into the actual reflectance of the surface to eliminate errors resulting from atmospheric 

scattering, absorption, and reflection. The atmospheric correction algorithm used in ENVI 5.3.1 is the 

FLAASH Atmospheric Correction module developed from the MODTRAN5 radiation transmission 

model.  

Table 1. Absolute radiometric calibration coefficients of GF-1 and GF-2 images used in this work. 

Sensors Band Gain Offset 

GF-1 PMS1 

Pan 0.1982 0 

Band1 0.232 0 

Band2 0.187 0 

Band3 0.1795 0 

Band4 0.196 0 

GF-1 PMS2 

Pan 0.1979 0 

Band1 0.224 0 

Band2 0.1851 0 

Band3 0.1793 0 

Band4 0.1863 0 

GF-2 PMS2 

Pan 0.1863 0 

Band1 0.1762 0 

Band2 0.1856 0 

Band3 0.1754 0 

Band4 0.1980 0 

In recent decades, a variety of hyperspectral image and multispectral image fusion algorithms have 

been proposed [29–33], proving that a fusion image can effectively improve the accuracy of land cover 

classification and vegetation detection results [34,35]. Since GF-1 and GF-2 have different 

panchromatic-multispectral spatial resolutions, they must be fused to generate high-resolution 

multispectral images. The Gram-Schmidt Pan Sharpening method is one of the most popular 

algorithms used to pan-sharpen multispectral imagery. This method outperforms most other pan-

sharpening methods in both maximizing image sharpness and minimizing colour distortion [36]. In 

this study, for GF-1 and GF-2 PMS images, new synthetic images are generated with the Gram-

Schmidt Pan Sharpening method to fuse the panchromatic band with multispectral bands. 

3. Methodology 
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3.1. Feature Selection 

After pre-processing, multispectral images of GF-2 at 1 m resolution and of GF-1 at 2 m 

resolution were generated. In the GF-2 image, textural features of different ground objects are clearer 

and more effective; thus, the spectral and textural features of GF-2 are used. As described in Section 

2.2, there are visible differences in crop growth across the three images. The spectral features of the 

other two temporal GF-1 images are introduced to explore the accuracy of using multi-temporal 

images in the intercropping classification to increase the characteristic differences in various crops 

for the growing period. 

Various vegetation indices have been referenced in other works [18], among which few have 

been commendably validated. For the present study, the NDVI and Enhanced Vegetation Index (EVI) 

were used.  

The NDVI is one of the most widely used vegetation indices for studying vegetation phenology 

[37]. The NDVI limits spectral noise caused by certain illumination conditions, topographic variations 

and cloud shadows [38,39] to reveal the growth state and spatial distribution density of vegetation 

and separate vegetation from water, buildings, and bare ground [37]. The third and fourth bands of 

the GF-2 and GF-1 images are used to calculate the NDVI separately at 1 and 2 m resolutions as shown 

in Equation (1) [39]. ρ
k
 denotes the reflectance of the k-th band. 

NDVI = 
ρ

4
-ρ

3

ρ
4
+ρ

3

 (1)

The EVI offers advantages when applied to densely vegetated areas. The effects of soil backgrounds 

and aerosol scattering were corrected by adding a blue band (the first bands of GF-1 and GF-2) to 

enhance vegetation signals, to improve sensitivity to high biomass regions while minimizing soil and 

atmospheric effects [40] and to compensate for deficiencies of an easily saturated NDVI [41]. In the 

GF-2 image for September 18 used in this study, almost all crops were in a period of high NDVI 

values. Therefore, the EVI features of three different phases are adopted with the calculation shown 

in Equation (2) [42] as follows: 

EVI = 2.5
ρ

4
-ρ

3

ρ
4
+6.0ρ

3
-7.5ρ

1
+1

 (2)

The NDVI and EVI calculated from GF-1 should be resized to a 1 m resolution to perform the 

classification algorithm.  

A Gray level co-occurrence matrix (GLCM) is often used to extract textural features [19]. The 

GLCM is obtained by calculating the second-order combined conditional probability density of 

greyscales, which are used to describe the spatial distribution (direction and adjacent intervals) and 

structural features (arrangement rules) of greyscales of each pixel. The GLCM method has been 

widely used for texture analyses and pattern recognition and plays a central role in improving the 

accuracy of image segmentation and classification in remote sensing [43]. Wang et al. used the GLCM 

and different spectral features for worldview-3 for the mapping of mangrove trees, which improved 

the accuracy [44]. Lan et al. proved that using appropriate parameters for the scale of GLCM texture 

windows can effectively improve the classification accuracy of geographical analyses of optical 

remote sensing images [45]. GLCM-derived features are sensitive to texture boundaries. In 

intercropping areas, the shapes and heights of crops and trees are significantly different. Walnut trees 

and populus bolleana have different tree spacing features; according to field observations and a 

previous study, walnut trees are usually spaced more than three meters apart [28] while poplars in 

shelter forests are very dense at usually 4~6 trees per square meter. The “Co-occurrence Measures” 

tools of ENVI 5.3.1 were used to extract the GLCM at different window sizes, including the mean 

value, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation. 

These texture measures can be divided into four categories: features based on information theory, 

features based on statistical characteristics, features based on linear relationships, and features that 

express clarity. The window size was set to 5 × 5 in this study according to comparative experiments. 

In total, 32 texture feature bands were obtained from the GF-2 image. 
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Table 2. Features of the combinations. 

ID Feature ID Feature ID Feature 

1 Band1 15 Homogeneity-2 29 Mean value-44 

2 Band2 16 Contrast-2 30 Variance-4 

3 Band3 17 Dissimilarity-2 31 Homogeneity-4 

4 Band4 18 Entropy-2 32 Contrast-4 

5 Mean value-11 19 Second Moment-2 33 Dissimilarity-4 

6 Variance-1 20 Correlation-2 34 Entropy-4 

7 Homogeneity-1 21 Mean value-3 35 Second Moment-4 

8 Contrast-1 22 Variance-3 36 Correlation-4 

9 Dissimilarity-1 23 Homogeneity-33 37 NDVI-201605105 

10 Entropy-1 24 Contrast-3 38 NDVI-20160624 

11 Second Moment-1 25 Dissimilarity-3 39 NDVI-20160918 

12 Correlation-1 26 Entropy-3 40 EVI-201605105 

13 Mean value-22 27 Second Moment-3 41 EVI-20160624 

14 Variance-2 28 Correlation-3 42 EVI-20160918 
1 1: Blue band of GF-2 image; 2 2: Green band of GF-2 image; 3 Red band of GF-2 image; 4 Near-InfraRed  

band of GF-2 image. 5 The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index 

(EVI) calculated from the image for May 10, 2016. 

To explore the feature combination method, all features have been combined into three groups 

as follows: 

1. F1．Spectral features of GF-2 images, which include fused multi-spectral GF-2 

images (features 1–4 in Table 2). 

2. F2．Multisource information of GF-2 images, including F-1 and textural features 

(features 1–36 in Table 2). 

3. F3．Multi-temporal and multisource information, including the F2 and GF1 NDVI, 

EVI GF2 NDVI, and EVI (features 1–42 in Table 2).  

The pre-processing and feature combination workflow is shown in Figure 3. 

 

 

Figure 3. Workflow for feature selection. 
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3.2. Intercropping Classification  

In this work, we applied the RoF using SVMs as base classifiers (RoF-SVM) for intercrop 

classification. First, it uniformly divides the feature set into � subsets at random [21]. Then, the 

subsets are transformed to obtain new samples through reconstructing and are then used to train the 

base classifiers to increase the differences between them to generate diverse and accurate base 

classifiers [46]. In this study, the proposed ensemble learning method also increased the level of 

diversity between base feature transformations and the segmentation of attribute sets. However, the 

result obtained from the RoF-SVM was different from that of the ordinary RoF using decision trees 

as base classifiers. The SVM is used as a base classifier, as it better solves the high-dimensional small 

sample non-linear problems. Figure 4 illustrates the workflow. 

Let X be the training dataset, which is an (� × �) matrix. � represents the number of training 

objects, and � represents the number of features. Let � = [��, … , ��, … , ��]� denote the vector with 

class labels in training set X where ��  takes a value of the set of class labels {ω1, ω2,⋯,ωc } and 

where � denotes the number of classes. Let ℱ denote the feature set and let � denote the number 

of subsets of features after splitting. Let � be the number of base classifiers in the ensemble, and let 

��, ��, ⋯ , �� be the base classifiers. The rotating forest model is built as follows: 

1. Input the initial sample set X, which includes n features, and the number of base classifiers L. 

2. Randomly divide ℱ  into �  equally sized subsets: ℱ� (� =  1, 2, ⋯ , �) where � =
�

�
 features 

were obtained from each subset. When the number of features is not divisible, the remaining 

features are added to the last subset of features. 

3. Process � subsets as follows: 

1) Let ℱ��  be the �-th subset of features used to train the �-th classifier, �� . Let X��  be the 

sample set with only features involved in subset ℱ�� . This subset can be viewed as a 

reduced-dimension dataset of original set X and thus as an (� × ��) matrix where �� is 

the number of features in subset ℱ��. Then, apply the bootstrap method is to X�� to obtain 

new sample subset X��
� . 

2) Perform a principal component analysis (PCA) of X��
�  to calculate coefficients of the 

principal components. 

3) Repeat Steps 1 and 2 and organize the obtained principal component coefficients into a 

matrix ��: 

�� =

⎣
⎢
⎢
⎢
⎡���

� ���
� ⋯ ���

�� 0 ⋯ 0

0 ���
� ���

� ⋯ ���
�� ⋯ 0

0 ⋮ ⋱ ⋮

0 0 ⋯ ���
� ���

� ⋯ ���
��⎦

⎥
⎥
⎥
⎤

 (3) 

4) Rearrange �� to obtain rotation matrix ��
� and generate new sample set X' = X��

�. 

5) Select �  as the base classifier (SVM is adopted in this study) to obtain an ensemble 

classifier �� (� = 1, ⋯ , �) and then return to Step 2, loop � times, and obtain the ensemble 

classifier [20].  

6) Let �  be the sample to be classified and ���(���
�)  is the probability of classifier �� 

determining that sample � belongs to the �-th class. Then, the credibility of the sample 

assigned to a certain category is defined as Equation (4), which is adapted from [20]: 

��(�) =
1

�
� ���(���

�)
�

���
 (4) 

Again, � is the number of base classifiers, and �  is the number of categories (classes). 

Sample � belongs to the category of maximal reliability. 
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Figure 4. RoF-SVM classification flowchart. 

4. Results and Analysis 

In this section, the parameter values of the RoF-SVM algorithm are initially determined. Then, 

to evaluate the impact of multi-feature and multi-temporal data on classifications, the RoF-SVM is 

adopted to classify the three different feature combinations presented in Section 3.1. The optimal 

feature combination is selected based on the accuracy of classification results. Then, to evaluate the 

effectiveness of the RoF-SVM, classification experiments are performed by applying the MLC, SVM 

and RF classification methods to the same training samples and input feature combinations. The 

overall accuracy (OA) is used to compare the results of different feature combinations of all 

classification methods. The best classification results for each classification method are then 

compared in terms of OA, manufacturer accuracy, user accuracy indicators, and kappa coefficients 

to evaluate the performance of different classifiers. 

4.1. RoF Parameter Setting 

The RoF-SVM ensemble method is applied to each dataset using the Radial Basis Function (RBF) 

as the kernel function. A 10-fold cross-validation is used to determine the factor of the gamma and 

cost of the SVM. The RoF uses two parameters that influence the accuracy of its results: the number 

of subsets, �, and the number of base classifiers in the ensemble, �. For the three feature combination 

groups, the value of � is set to 6, and experiments are conducted using � = 1,2, ⋯ , � where � is 

the total number of features. The OAs using the three feature combinations listed above, F1, F2 and 

F3, are shown in Figure 5. The three combinations indicate that the accuracy levels are extremely low 

when � = 1, and thus no partitioning of features is performed. The OA increases along with an 

increase in � but tends to be stable when � reaches a certain value. In F1, the combination group 

has only four features, and � = 3 tends to be stable. F2 has 36 characteristic dimensions, and � =

12 generates the highest OA. In F3, with 42 characteristic dimensions, when � = 14, the accuracy 

level is the highest of all combinations.  
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Figure 5. Overall accuracy (%) with respect to the number of subsets �. 

In groups F1, F2 and F3, optimal � values are 3, 12, and 14, respectively. We then fix the optimal 

� values and conduct experiments using instances of RoF-SVM constructed with different numbers 

of base classifiers, � = 2, 4, 6, ⋯ , 50. The OA values of the RoF-SVMs of different sizes are shown in 

Figure 6. The OA increases when the size of the ensemble increases from 2 to 10 but converges when 

the � value is not less than 10. 

 

Figure 6. Overall accuracy (%) versus ensemble size (n). 

4.2. Comparison of Different Feature Combinations 

The experiments presented in Section 4.1 reveal that the optimal combination of � and � for 

each group is as follows: � = 3 and � = 10 with the highest OA (65.94%) for the best result of the 

F1 combination. For the F2 combination, � = 12 and � = 10 generate the highest OA (82.38%) and 

the best result of the F1 and F2 combinations. For the F3 group, � = 14 and � = 10 generate the 
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best result of the three combinations (OA = 86.87%). Classification results of the RoF-SVM for the 

three groups are shown in Figure 7 and Table 3. 

The F1 group containing only GF-2 multispectral bands is evidently less accurate than the other 

two combinations. When combined with spectral and texture features based on the GF-2, F2 

improved the OA by 16.44%, and the kappa coefficients increased by 0.12. Evidently, water can be 

most easily distinguished. The additional texture features derived from the GLCM remarkably 

improve all forms of vegetation classification accuracy. A marked increase is observed in the 

distinction of walnut trees and crops. However, for different crops of the growing season, lush 

grassland is confused with vegetables and walnut trees are confused with shelterbelts. The 

classification results of F2 still present a relatively large degree of error. F3 combined multi-temporal 

NDVI and EVI features based on F2. The classification maps and accuracy levels show a significant 

improvement in the discrimination of different crops. Moreover, different types of trees with similar 

spectral and textural features are confused in F2. The OA of F2 increased by 4.49% and kappa 

coefficients changed to 0.05. 
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Figure 7. Crop classification maps based on the RoF-SVM: (A) True colour map of GF-2; (a) Sample 

area of (A); (B) RoF-SVM classification results of F1; (b) Sample area of (B); (C) RoF-SVM classification 

results of F-2; (c) Sample area of (C); (D) RoF-SVM classification results of F3; (d) Sample area of (D). 

Table 3. Image Classification Accuracy Levels of the RoF-SVM for three Combinations. 

Feature 

Combination 

Land Cover 

Type 

User’s 

Accuracy 

Producer’s 

Accuracy 

Overall 

Accuracy 

Kappa 

Coefficient 

F1 

Walnut trees 55.36 57.72 

65.94  0.61 

Maize 68.08 73.1 

Shelterbelt 57.84 62.49 

Grassland 60.61 57.62 

Vegetable 68.42 63.72 

Water 92.76 87.35 

Bare ground 62.45 59.32 

F2 

Walnut trees 72.26 71.68 

82.38  0.73 

Maize 83.11 86.96 

Shelterbelt 74.22 83.74 

Grassland 80.08 80.32 

Vegetable 85.82 78.96 

Water 97.06 90.16 

Bare ground 89.67 89.8 

F3 

Walnut trees 78.11 74.61 

86.87  0.78 

Maize 87.57 89.84 

Shelterbelt 82.58 87.14 

Grassland 83.74 86.83 

Vegetable 86.24 82.76 

Water 99.65 94.93 

Bare ground 92.97 90.47 

4.3. Comparisons with Other Classifications 

 

Figure 8. Overall accuracy of three combinations of different methods. 

To verify the effects of the ensemble method, three classification methods, the MLC, SVM, and 

RF, were selected for a comparative experiment. MLC, also known as Bayes classification, classifies 
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remote sensing images according to the Bayes criterion. MLC is one of the most commonly used 

traditional remote sensing classification methods. The SVM offers particular advantages in 

classifying small samples, nonlinearities and high dimensions; it is a useful classification method 

widely adopted in recent years and has been proven by many studies [15,24]. Random Forests have 

attracted considerable attention in the field of remote sensing and especially for multispectral and 

hyperspectral classification [19,47]. The same training samples for the RoF-SVM classification were 

used for the MLC, SVM and RF classification. The SVM also uses the RBF as a kernel function, and 

the coefficient is determined by using the 10-fold cross-validation as shown in Section 4.1. The data 

for the three groups were classified by the MLC and SVM methods in ENVI 5.3.1. For the RF, the 

three combinations were applied using the MATLAB Random Forest package after several test runs, 

the number of decision trees was set to a default value of 500 and the number of randomly selected 

predictors at each tree node was set to 1/3 of the input features [48]. Figure 8 shows the OA of the 

three feature combinations applied with the four classification methods. It is evident that the OA of 

the classification methods increases as the amount of feature information used increases. F3 spectral-

textural-multitemporal features serve as the optimal combination when employing the four-

classification method. Furthermore, compared to F1, F2 enhances the overall accuracy level 

significantly. The feature combination method used in this study has the effect of improving the 

accuracy of the four classifications.  

We also evaluated the best classification results of each method in terms of producer’s accuracy 

levels, user’s accuracy levels, and kappa coefficients as shown in Table 4, and corresponding 

classification maps are shown in Figure 9. 

Table 4. Image classification accuracy levels of the MLC, SVM, RF and RoF-SVM methods for F3. 

Classification 

Method 

Land Cover 

Type 

User’s 

Accuracy (%) 

Producer’s 

Accuracy (%) 

Overall 

Accuracy (%) 

Kappa 

Coefficient 

MLC 

Walnut trees 51. 46 56.91 

63.46 0.61 

Maize 62.33 71.12 

Shelterbelt 54.05 60.64 

Grassland 57.93 55.61 

Vegetable 66.85 61.01 

Water 89.86 80.21 

Bare ground 65.36 56.03 

SVM 

Walnut trees 70.19 69.19 

80.15 0.72 

Maize 81.56 84.73 

Shelterbelt 76.35 80.24 

Grassland 78.48 82.02 

Vegetable 79.64 76.93 

Water 93.35 89.56 

Bare ground 88.12 86.4 

RF 

Walnut trees 74.62 73.17 

84.11 0.76 

Maize 84.43 88.75 

Shelterbelt 83.01 87.07 

Grassland 83.52 85.24 

Vegetable 82.31 79.66 

Water 98.86 94.8 

Bare ground 93.2 91.1 

RoF-SVM 

Walnut trees 78.11 74.61 

86.87 0.78 

Maize 87.57 89.84 

Shelterbelt 82.58 87.14 

Grassland 83.74 86.83 

Vegetable 86.24 82.76 
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Water 99.65 94.93 

Bare ground 92.97 90.47 

 

Figure 9. Crop classification maps of F3 combinations: (A) MLC classification results; (a) Sample area 

of (A); (B) SVM classification results; (b) Sample area of (B); (C) RF classification results; (c) Sample 

area of (C); (D) RoF-SVM classification results; (d) Sample area of (D). 
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The classification accuracy of the MLC is 63.46%, that of the SVM is 80.15% and that of the RF is 

84.11%. The corresponding kappa coefficients are valued at 0.61, 0.72, 0.76 respectively. However, the 

accuracy of RoF-SVM is 86.87%, and the kappa coefficient is 0.78. Compared with the three 

classification methods, the proposed RoF-SVM achieved a significantly higher level of classification 

accuracy. In the classification results of the four methods, the map derived via MLC showed evident 

“salt and pepper phenomena”. Many walnut trees are classified as maize and are visibly reduced 

relative to actual walnut plantations. The confusion of maize, vegetables, and grassland is 

considerable. This may mainly be attributed to the high-density intercropping area considered, and 

the selected GF-2 remote image acquisition period is the crop growth period, which is very similar in 

textural and spectral features. However, the MLC must assume that the spectral features of training 

samples are normally distributed, which is less realistic in the case of discrete and complex samples. 

Relative to the MLC results, the SVM classification reduces “salt and pepper phenomenon” and 

improves the OA by 16.69%. The producer and user accuracy levels of all types of vegetation cover 

show distinct improvements. The RF classification result is further improved relative to those of the 

SVM, and its OA reaches a value of 84.11%, which is very close to that of the RoF-SVM. 

The RoF-SVM significantly increases user and producer accuracy levels for nearly all categories. 

The water body is continuously distributed and presents pronounced spectral features. Each 

classification result is highly accurate. However, in the MLC classification, some dried-out canals 

along the road are divided into water bodies. Serious interference is observed in the intercropping 

area. The accuracy of the classification of walnut trees and crops with the RoF-SVM was markedly 

improved. Errors in the shelterbelt are mainly observed in irregular and mixed walnut fields, and 

because populus bolleana usually reach heights of 1.2 m~20 m, some small trees were shaded by large 

trees. The shadow of the shelterbelt also leads to errors in the results for bare ground, grass, and 

crops. 

5. Conclusions 

Intercropping proves to offer many advantages and is a common cropping pattern. Remote 

sensing monitoring is important in estimating potential yields and tree–crop system management 

patterns. However, few remote sensing studies have addressed the issue of intercropping. This study 

developed a comprehensive feature extraction and intercropping classification scheme. Chinese GF-

1 and GF-2 images were selected to explore the efficiency of vegetation classification for the 

intercropping area by using an ensemble classifier and rotation forest using the SVM as a base 

classifier (RoF-SVM). Walnut and maize intercropping areas in Moyu County south of the Tarim 

Basin were selected as the study area. To evaluate optimal feature selection, three group feature 

combinations derived from GF-1 and GF-2 images were combined, and the RoF-SVM ensemble 

learning method was adopted to classify the three groups. The group that combined spectral-textural-

multitemporal features achieved the best classification results. Then, the classification results were 

compared with those of the MLC and SVM via optimal feature selection. 

Therefore, GF-1 and GF-2 satellite images combined with spectral, textural, and multi-temporal 

features can provide sufficient information on vegetation cover in intercropping areas. At the same 

time, because such images are less expensive than other high-resolution images of the same 

resolution, they may be the preferred data source for crop monitoring and ecological environment 

assessments. 

In the area of intercropping trees and crops, multi-feature and multi-temporal information can 

improve the differentiation of various objects and increase the classification accuracy. With the 

addition of textural features derived from a GLCM, the recognition of textures is greatly enhanced, 

and the distinction of trees and crops is greatly improved. Combining phenological information on 

the classified objects and selecting vegetation indices of specific temporal imagery can improve the 

classification accuracy of different types of trees and crops. 

The proposed RoF-SVM offers the advantages of ensemble learning methods, offers the 

advantages of base classifiers (SVM algorithm) and enhances the level of diversity between 

individual base classifiers from a rotation forest. Therefore, different types of trees and crops in 
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intercropping areas can be effectively distinguished (the OA was measured at 86.87 and the kappa 

coefficient was measured at 0.78). Moreover, classification results effectively eliminated salt and 

pepper noise. 
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