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Abstract: With coastal erosion and the increased interest in beach monitoring, there is a greater need
for evaluation of the shoreline detection methods. Some studies have been conducted to produce state
of the art reviews on shoreline definition and detection. It should be noted that with the development
of remote sensing, shoreline detection is mainly achieved by image processing. Thus, it is important to
evaluate the different image processing approaches used for shoreline detection. This paper presents
a state of the art review on image processing methods used for shoreline detection in remote sensing.
It starts with a review of different key concepts that can be used for shoreline detection. Then, the
applied fundamental image processing methods are shown before a comparative analysis of these
methods. A significant outcome of this study will provide practical insights into shoreline detection.

Keywords: beach monitoring; coastline; feature extraction; shoreline

1. Introduction

It is estimated that there are about 504,000 km of shoreline worldwide, and more than 50% of
the world’s population lives within 100 km of the sea [1]. Detecting and monitoring shorelines are
consequently of significant economic and social importance, especially if we know that climate change
has devastating effects on coastal areas. The shoreline marks the transition between land and sea.
Ideally, it is defined as the physical interface of land and water [2]. In some references, the shoreline
is expressed as an intersection of coastal land and water surface showing water edge movements as
the tides rise and fall [3,4]. In fact, the shoreline is flexible depending on sea level, swell, tides and
near-shore currents.

For having a good shoreline detection method, it is necessary to evaluate the existing ones, to
know their drawbacks so that we will be able to propose better approaches. Shoreline detection can be
achieved using different processes.

Mapping the seabed using acoustic waves such as sonar is currently the only technique that can
be used without depth limitation. However, swell conditions and tidal currents can make embedded
operations difficult to realize.

Terrestrial surveys can be achieved using landmarks, Global Positioning System (GPS), terrestrial
Light Detection And Ranging (LiDAR) or tridimensional (3D) scanners [5]. In general, in situ
measurements are difficult to achieve. In this case, other survey methods such as remote sensing are
recommended [6].

Remote sensing is the technique of obtaining information about objects or areas from a distance,
typically from aircraft or satellites [7]. It is increasingly used in coastal monitoring insofar as it
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contributes to the fullness of the radiometric information and allows automated or semi-automated
extraction of the shoreline by image processing.

To analyse coastal change, a shoreline indicator is required. Because of the dynamic nature of this
borderline, the chosen indicator needs to take into account the shoreline in a spatiotemporal sense and
must consider the dependency of this variability on the time scale [8].

The rest of this paper shows a state of the art review on shoreline detection methods used in
remote sensing.

A compilation of the different shoreline indicators that have been reported in the literature is
provided. Then, a summary of shoreline detection approaches in remote sensing is proposed, extending
from image pre-processing to segmentation and edge detection.

2. Coastline Indicators

For coastal management purposes, it is necessary to know the evolution of the shoreline according
to the associated time scale. In order to analyse these changes, a definition of the shoreline must be
given. The definition of the shoreline that theoretically is supposed to represent the linear boundary
between the maritime and land domains is very challenging because of the wide variety of indicators
(key) that can be based on geomorphologic aspect, tidal level, or the configuration of the vegetation,
among others [9].

To understand coastline detection methods, it is first necessary to know the organization of the
coastal environment. A typical beach profile is represented in Figure 1.
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Figure 1. Schematic typical beach profile, terminology and zonation [10].

Coastal environments are similar in composition and shape. As shown in Figure 1, four general
areas can be defined in a typical beach profile; they extend from the cliff or dunes to the end of the
nearshore. Readers are referred to [10,11] for more details of beach profile organization.

This profile can change from one coast to another. For this reason, there is no indicator
that can be used for all types of coast; functional indicators depend on the coast profile and the
monitoring objectives.

Coastline indicators must have the ability to represent schematically but correctly the overall
coastal state from the point of view of its sedimentary evolution [12].

Boak and Turner [8] listed 45 coastline indicators used around the world for coastal monitoring
studies. A sketch of the spatial relationship between the most commonly used shoreline indicators is
shown in Figure 2. A compilation of these indicators, their description and some references where
they are used are given in Tables 1–5. The different kind of indicators represented in this table are
organized into seven types: geomorphological reference lines, vegetation limits, instant tidal levels
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and wetting limits, tidal data, beach contours and storm lines. Each of these types of indicators relates
to different indicators that have been used for coastal detection and monitoring.

Detecting the different indicators, shown in the table above, allows coastal monitoring. These
indicators should be able to show the environmental modification in the beach area, but they should
not be so sensitive to fluctuations in local conditions.

The precision of these indicators depends on the quality of the material, the working conditions
and the experience of the operator. Therefore, this precision can vary from one operator to another,
but also for the same operator, several results are possible depending on the working conditions. A
good way of monitoring these indicators is the use of satellite remote sensing. There is a wide range of
satellites whose products can be successfully used for coastal science, and particularly for shoreline
detection using automated or semi-automated image processing techniques.

Due to the large range of shoreline indicators, an assortment of image processing tools has been
used for shoreline detection. Satellite images are pre-processed in order to produce images which can
be integrated into an image processing software for segmentation purposes to detect the shoreline.
The following section focuses on the pre-processing techniques.
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Table 1. Summary of shoreline indicators (adapted from [8,9]).

Kinds of Indicator Indicators Description References

Morphological reference lines Coastal dunes

Dune foot (dune toe, dune line)
The dune foot or dune toe is the outline from
elevation and slope changes observed landward of
the berm [13].

[13–19]

Dune top edge

The sliding of material on the dune front can
create a scree deck at its base and thus hide the
foot of dune. In this case, it is possible to use the
top edge of the dune which may also correspond
to a vegetation limit

[14,20,21]
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Table 2. Summary of shoreline indicators (adapted from [8,9] continued).

Kinds of Indicator Indicators Description References

Morphological reference lines

Coastal dunes Dune crest line The dune crest is the highest elevation peak, where the slope changes
sign from positive (landward facing) to negative (seaward facing) [23]. [18,22–24]

Cliffs and backed beach

Bluff top, cliff top, top of
the cliff The bluff top (cliff top) refers to the top edge of the cliff [14,25–29]

Base of the bluff, cliff toe,
bluff toe

In areas with sharp cliffs, with no notches, regularly beaten by the waves
and cleared of fallen materials, the base of the cliff is an optimal
alternative to the cliff top.

[14,30–33]

In case of scree at the cliff’s toe

Top of the landslide
headwall

This indicator is only used in [34], on bluffed shores in areas with mass
movement, for example, earth flows, landslides, among others [8] [34]

Base of the scree The base of the scree is an indicator that may be chosen when the cliff is
affected by mass movements. [35,36]

Contour of the tear scar Like the base of the scree, the contour of the tear scar may be used in case
of cliff mass movements [37]

In case of a protected seafront

Seaward-most edge of
hardening structures On beaches with hardening structures, a tree kind of indictor may be

used: the seaward most edge of hardening structures, the landward edge
of shoreline protection structures and crest of the shore-protection
structure. These reference lines are not able to show shoreline evolution
in this type of beach since they are intended to freeze the shoreline and
can be modified at any time [8]

[38,39]

Landward edge of
shoreline protection
structures

[40]

Crest of the shore-
protection structure [41]

Berm crest

The berm crest is the morphological feature that separates the steeper
forebeach from the gentler sloping backbeach. It is a depositional feature
constructed by runup of normal waves (generally summer conditions)
and a destruction feature when eroded by waves at abnormally high
water levels (generally winter conditions) [38]

[22,38,41–45]
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Table 3. Summary of shoreline indicators (adapted from [8,9] continued).

Kinds of Indicator Indicators Description References

Berm toe It is the base of the foreshore extending from the dune crest
to the low tide terrace [39,45,47,48]

Vegetation limits

Vegetation line, seaward edge of
dune vegetation

The vegetation line is a biological indicator of the limits of
regular flooding by high water and therefore it represents a
nearly ideal indicator of shoreline movement [35].

[22,30,49–52]

Line of permanent (stable, long-term)
vegetation

The vegetation line is a natural line formed by the plants in
the beach. It is easily identifiable, even on older
photographs that cannot be used for beach toe
identification.

[34,39,41,53–55]

Bound between Ammophila arenaria and
Agropyrum junceum in tempered
coastal dunes

Ammophila arenaria and Agropyrum junceum are plants used
to stop coastal dunes movements in tempered zones. [35,36]

Upper limit of algae or marine lichen on
the walls of rocky cliffs

The upper limit of algae or lichen may be used in a case of
rocky cliff [30,35,36,56]

Instant tidal levels and wetting limits

Water line (swash line, swash terminus)

The water line is the interface between the body of water
and the slope of the beach. It refers to the limit of the foam
of the swash (the rush of seawater up the beach after the
breaking of a wave).

[57–63]

Wet/dry line (wet/dry boundary, wetted
bound, wet/sand line)

It is the end of the swash at high tide and during the ebb
tide; it migrates to the sea and marks the land side limit of
the sands darkened by the breaking of a wave.

[50,56,64,65]

High water line

It is defined as the level of the last high tide and therefore
corresponds to the upper wetting limit of the foreshore by
the previous open sea.
The instantaneous high water line is commonly mapped on
aerial photographs as the shoreline proxy because it is
easily identified.

[22,49,66–70]

High tide wrack line
The high tide wrack line is the line of debris left on the
beach by high tide. It is usually made up of eelgrass, or
others kinds of litter.

[50,56]
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Table 4. Summary of shoreline indicators (adapted from [8,9] continued).

Kinds of Indicator Indicators Description References

Instant tidal levels and wetting limits Usual or mean high water line (average
high water line)

It is supposed to represent the average position of the full seas.
There is a correlation between the instantaneous high water line
and the mean high water line, but the mean high water line it is
not quite a tide datum because its definition takes into account
other criteria that include, among others, the vegetation limit.

[71–73]

Tidal datums

Mean sea level

The rise and fall of the tides along the coast is a complex
process that influences the establishment of a shoreline
indicator. The tidal datums refer essentially to high tide or low
tide. Different tidal data are used successfully as shoreline
indicators. We can cite the mean sea level, the mean high water
line, and the mean spring high water line, among others.

[74,75]

Mean high water line [76–80]

Mean spring high water line, mean high
water spring tide [81,82]

Mean higher high water line [83]

Mean low water line [81,84]

Mean low water spring tide mark [85]

Lowest astronomical sea level [86,87]

Virtual reference lines

Shoreline maximum intensity
It is the line of maximum light intensity. Like all virtual
reference lines, this line is a digital reference line resulting from
image processing

[88,89]

Shoreline extracted from colour and
luminance distinction on colour
averaged video images

These features represent an average position of the
instantaneous shoreline for about ten minutes. [89,90]

Skeleton of beach

It corresponds to the median line of the form described by the
contours of the beach circumscribed by the vegetative limit or
the foot of the dune and the wetting line of foreshore or
“visible high seas” [91].

[91]
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Table 5. Summary of shoreline indicators (adapted from [8,9] end).

Kinds of Indicator Indicators Description References

Beach contours Beach width

It defines the variations of the width of the range between
an upstream limit and a downstream limit. The upstream
limit is set at the foot of the dune or the lower limit of
vegetation whereas the position of the downstream limit
varies according to the authors.

[46,64,92]

Storm lines

Storm-surge penetration line (overwash
penetration boundary)

In [93] the overwash penetration distance is defined as the
width of the “active” sand zone; that is, the distance
between the ocean shoreline and the zone of dense
vegetation that typically extends to the seaward face of
barrier foredunes.

[94,95]

Crest of washover terrace

Washover terraces are deposited where beaches are highly
erosional and adjacent ground elevations are lower than the
highest storm surges. The crest of the washover terrace
forms the highest beach elevation and is the best indicator
of shoreline movement for these types of beaches [38].

[38,44,53,54,96]
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3. Pre-Processing

Pre-processing methods can be grouped into two kinds, which are noise reduction and image
correction. Irrespective of the processes used in a shoreline detection method, it naturally begins with
preliminary steps that aim to reduce noise and improve image quality. The quality of a detected
shoreline partially depends on the quality of the pre-processing methods applied. By using a
pre-processing method that is better adapted to the data set, it is possible to improve the detection
result. For a better recognition of the shoreline, it is crucial to reduce noise while preserving edge
information. For this reason, adaptive filters, such as the median filter [97], are widely used. They are
particularly suitable when the noise is composed of thin lines or isolated points, which are scattered in
the image.

The median filter replaces each pixel in the image with the median of those values within the
moving kernel. It is always applicable to optical images, as well as LiDAR data [98].

There are multiple types of median filters: Progressive Switching Median Filter, Fuzzy Switching
Median Filter, Adaptive Median Filter, Simple Adaptive Median filter [99].

The use of a median filter window smoothens the image while enhancing the edges because some
pixels have high grey-level values compared to their neighbours. It is effective in removing white
noise, while preserving sharp shoreline edges.

The Lee sigma filter replaces each pixel with the mean of all diagonal values in the moving kernel
that fall within the designated standard deviation range, in which the pixels beyond the standard
deviation range are regarded as speckle-contaminated and hence are not used to calculate the mean.
It takes into account, for estimation of local statistics, only the pixels within a certain range of
radiometric values [100].

The Frost filter has the advantage of smoothing homogeneous areas, and preserving edge and
transition lines. However, the micro strokes are also smoothed [101].

Noise reduction is an important task in shoreline detection; it allows improving image quality,
which contributes to a better detection of the shoreline. However, it is not the on-off pre-processing step
applied to satellite images. In the case of a multispectral analysis, it is necessary to perform radiometric
and geometric corrections. To minimize the effects of weathering on the radiometric values generated
by interpolation during the geometric correction, radiometric corrections must precede geometric
corrections [102]. Geometric corrections can be of two kinds; rectification and georeferencing [103].
The rectification is an oblique image correction in order to obtain a vertical image corrected for all or
most strains inherent in the shot and distortion produced by the environment [104]. Georeferencing is
the application of a coordinate system to an image to put it to the real spatial scale [104].

After pre-processing, segmentation methods can be used in order to discriminate the land from
the sea: this is the subject of the following section.

4. Land-Sea Segmentation

Automated methods of shoreline extraction from remote sensing imagery can be grouped into
three categories [105]:

• the edge detection approaches, which treat the extraction of shoreline as an edge
detection problem;

• the band thresholding methods, in which a thresholding value is selected either by man-machine
interaction or by a local adaptive strategy;

• the classification approaches, which aim to separate the image into land and water components,
and then take the boundary line between them as the shoreline.

Moreover, shoreline detection is not a simple task that can be executed using a single image
processing technique, but rather it is a complex mechanism that requires the use of several techniques.
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4.1. Thesholding

Thresholding is the simplest segmentation technique. It aims to segment images into several
classes using a histogram. Since segmentation by thresholding is conceptually simple, some authors
have improved segmentation by designing optimal threshold determination techniques. Otsu [106]
proposed a method considered as the gold standard in the field of thresholding.

If the lighting is not uniform or the different objects in the image have different luminance values,
global thresholding is no longer appropriate. For these images, local or adaptive thresholding is better
suited. Unlike the global methods that consider the value of the pixel, the local methods take into
account the value of neighbouring pixels for the calculation of thresholds.

Many authors have subsequently used this thresholding technique to implement shoreline
detection methods.

Jishuang [107] proposes a multi-threshold based morphological approach, which divides the
isolated regions by thresholding them into intra-continent, exterior-sea, and along-coastal isolated
regions at first, and then uses morphological operators to process along-coastal regions further so as to
improve the detection accuracy and decrease false detection.

Aedla et al. [108] proposed a method using adaptive thresholding. Other authors, like Kuleli, [109],
used Otsu’s method but in association with classification techniques.

Liu et al. [110] used the Levenberg-Marquardt algorithm [111], and [112] the Canny edge detector
to accelerate the iterative fitting process convergence of the Gaussian curve and improve the accuracy
of the bimodal Gaussian parameters of their thresholding.

The thresholding methods are simple and fast, but they have often been developed to treat the
particular case of segmentation of panchromatic (Pan) images into two classes and are not sufficient
for multispectral (MS) and hyperspectral (HS) images where the complexity of the information
cannot be summarized by a grey-level histogram without information loss. For this reason, many
algorithms using other segmentation techniques such as classification can be found in the coastline
detection process.

4.2. Classification

The aim of classification is to obtain a simplified data representation of a set of homogeneous and
natural regions called classes.

Two classification types can be distinguished, the pixel-oriented classification and the
object-oriented classification. Each of these two types of classification has been successfully used in the
context of shoreline detection.

4.2.1. Pixel-Based Classification

Traditional classification methods are based only on the pixel value. For this reason, they use only
the spectral information provided by the pixel and do not take into account the spatial organization of
these pixels. A classification can be supervised or unsupervised.

In recent years, image classification has become an active research topic in the field of pattern
recognition and computer vision [113], and several pixel-based classification methods have been used
for shoreline extraction.

Among the unsupervised methods or clustering, there is the Iterative Self-Organizing Data
Analysis (ISODATA) model introduced by Ball and Hall in 1965 and used by [98].

To perform land/sea segmentation, different techniques were reviewed by [114], as well as the
parameters to use in the classification technique. Following the assessment of a number of options, the
chosen technique was an unsupervised classification (ISODATA).

ISODATA classification is an improved version of K-means. Due to its simplicity of
implementation, K-means is the most used classification algorithm. To modify the number of classes
during the iterations, the ISODATA model introduces new parameters, allowing it to divide a class
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into two, when the sum of the variances of the grey-level pixels belonging to a class becomes greater
than a fixed threshold, or to merge classes, when the distance between the centroids of two classes
becomes less than another threshold.

Like the clustering methods, various methods for establishing water spectral index have been used
for shoreline detection. In [115], the Normalized Difference Water Index (NDWI) and the Normalized
Difference Snow Index (NDSI) were successfully applied. The NDWI [116] is a satellite-derived
index from the Near-Infrared (NIR) and Short Wave Infrared (SWIR) channels. The SWIR reflectance
reflects changes in both the vegetation water content and the spongy mesophyll structure in vegetation
canopies, while the NIR reflectance is affected by leaf internal structure and leaf dry matter content
but not by water content.

Although the NDWI index was created for Landsat Multispectral Scanner (MSS) images, it has
been successfully used with other sensor systems in applications where the measurement of the extent
of open water is needed [117]. Images obtained by calculating NDWI were successfully used in
shoreline detection in [12,118].

Discriminating water from dense vegetation can be difficult with the NDWI. For this reason, a
spectral index called the Superfine Water Index (SWI) was developed by [119].

Like water indexes, vegetation indexes such as the Normalized Difference Vegetation Index NDVI
were also used for coastline detection [120].

Using water membership and band ratios can be an alternative way to derive the shoreline.
In [121], methods based on the spectral band characteristics for extracting the waterline from

various Landsat images over years are presented. A classification using ratios between different
spectral bands was processed. For Landsat ETM + and TM images, the ratio B5 / B2 was used, whereas
for Landsat MSS images, (B3 + B4) / B1 was used.

Dewi et al [122] used six spectral bands of Landsat TM and ETM and seven spectral bands of
Landsat OLI/TIRS and presented two fuzzy C-means classification to determine partial membership
of water and non-water.

In [123], a histogram threshold of Landsat Band 5 and a combination of the histogram threshold of
Band 5 and two band ratios were used for shoreline detection and land cover changes around Rosetta
Promontory, Egypt.

In the case of unsupervised classification, one can use a Principal Component Analysis (PCA) to
determine the class number. For coastline detection, PCA can be a powerful tool that allows researchers
to obtain uncorrelated pixels with high variance for a better classification [124].

Regarding supervised methods, due to their strong capability to handle complex phenomena,
neural networks were used to improve coastline detection accuracy [125,126].

The feed forward network, consisting of multi-layer perceptron (MLP), probabilistic neural
network (PNN), radial basis function (RBF), and generalized regression neural networks (GRNN) is
the commonly used ANN model in remote sensing application [127]. The neural networks can be
expended using multiple different training algorithms, but they need larger computational resources.

The performance of artificial neural networks is well established. However, they require the
extraction of a feature vector. The convolutional neural networks (CNN) make it possible to abstract
this step of feature extraction, by taking images as input. Currently, CNNs are widely used for deep
learning algorithms.

Deep learning can achieve state of the-art accuracy for many applications by taking the advantages
of the larger data set (Big Data) that we are now able to analyse. It is the object of intense research in
image processing applications. However, according to our knowledge, a shoreline detection method
using deep learning has not yet been proposed.

When applied to images in which the different regions are clearly recognizable, the classification
techniques mentioned above give good results. When neighbouring regions overlap, fuzzy
classification methods should be used. They allow processing inaccurate, uncertain or redundant data.
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A non-fuzzy classification can be obtained by assigning each pixel to the class for which its degree of
belonging is higher.

The use of methods based on texture features is a common task in classification for shoreline
detection. With the arrival of very high-resolution imagery, the details that were unremarkable in the
decametric resolution images are clearly perceived. Therefore, these images require more complex
processing; hence the development of a new approach that focuses on the objects of the image and not
on the pixels. In this way, object based-classification is introduced.

4.2.2. Object-Based Classification

An object-oriented classification allows the integration into the analysis process of pixel spectral
values, spatial, textural and contextual parameters.

In [128], an object-oriented approach has been proposed to detect shoreline and its changes by
using 1:5000 scaled orthophoto maps of Riga-Latvia (3bands, R, G, and NIR) in the years of 2007
and 2013.

Ghoneim et al. [120] proposed an object feature named OMI (object merging index) to separate
land and sea. The OBRGIE method was applied to Landsat Thematic Mapper (TM) (pixel size 30 m)
and Satellite Pour l’Observation de la Terre (SPOT-5) (pixel size 10 m) images of two coastal segments
with lengths of 272.7 km and 35.5 km, respectively, and the accuracy of the extracted coastlines was
compared with the manually detected coastline.

An object-based classification can be implemented with other segmentation approaches like
region growing.

The growing region method is part of so-called object-oriented segmentation, which has started
to gain momentum in recent years and is being successfully used for coastline detection.

4.3. Morphological Segmentation

The ability of very high resolution optical satellite images to discern geometric objects in
the landscape has led many studies to consider the use of morphological segmentation for
shoreline detection.

In [129], two techniques of segmentation by mathematical morphology are used. They are the
region growing with germ algorithm (SGR introduced in 1994 by Rolf Adams and Bischof [130] and
improved in 1997 by Mehnert and Jackway who proposed the ISRG algorithm [131] and the watershed
transformation (WS) using a marker-controlled segmentation procedure. These algorithms are based
on a similarity criterion. The watershed transform allows the definition of the regions from the
gradients of the image. The region growing approach is also used in [124].

The region growing methods are fast and conceptually simple, but they are very sensitive to the
disposition of the objects in the image. The Table 6 summarizes the most commonly used segmentation
methods in shoreline detection.

Shoreline detection process involves image segmentation into regions but also requires edge
detection, since the shoreline is naturally an edge.
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Table 6. Summary of segmentation approaches.

Approaches Advantages/Disadvantages References

Thresholding
It is the simplest segmentation method with a rapid
implementation. Since thresholding uses only the image
histogram, the image should be of good quality.

[107–110];

K-means/ISODATA

K-means and ISODATA are the most popular
classification methods. They are easy to implement and
they give good results when they are applied to images
in which the different regions are easily separable

[114,115]

Neural network
The Artificial Neural Network (ANN) is easy to use and
can perform complex segmentation and object
recognition problems

[130,131]

Region growing
The region growing methods are fast and conceptually
simple, but they are very sensitive to the distribution of
the objects in the image.

[124,129]

Watershed transform

Watershed transform is fast in computation time but
often provides a very large number of regions that will
be merged to obtain a correct segmentation of the objects
in the image.

[125,129]

Wavelet transform
The wavelet transform is computationally fast and offers
a simultaneous localization in time and frequency
domain.

[132]

Super resolution mapping

The advantages of this technique are simplicity of
integrating two images and good for highlighting urban
features. Its drawback is that it does not retain the
radiometry of the input multispectral image [133].

[133]

Principal Component Analysis The PCA allows the use of smaller databases and
reduction of noise [120,124]

Object-oriented classification It reduces salt-and-pepper effects commonly noted in
pixel-based remote sensing image classification. [120,128,134]

Texture analysis-based methods

Texture analysis groups together a set of techniques
allowing quantifying the different grey-levels present in
an image in terms of intensity and distribution in order
to calculate a number of parameters characteristic of the
texture to be studied. It is a very important task, which is
useful for image segmentation and object detection.

[135]

5. Edge Detection

Edges are significant local changes of intensity in an image. They typically occur on the boundary
between two different regions. An edge is defined by a “fast” variation of the grey-level, the color or
the texture function of an image.

Many edge detection methods have been successfully used for shoreline detection. Heene [136]
showed results obtained using the Canny edge detector together with two masking steps, an additional
edge focusing and closing step as an input for an object-oriented matching process.

Kass [137] proposed a different approach of edges detection, the active contours or snake. A snake
is an energy-minimizing spline guided by external constraint forces and influenced by image forces
that pull it toward features such as lines and edges. Snakes have been used in shoreline extraction the
recent years. This is due to their ability to take into consideration in the same formalism the constraints
of smoothing and elasticity of the edges. Snakes lead to interesting results but unfortunately the
adjustment of the many associated parameters is very difficult and the result obtained strongly
depends on the initialization.
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In [138], an approach based on snakes was applied to Landsat images from Antarctica.
Three different transition models that match a large part of the Antarctic shoreline were formulated.
For each of the three models, the energy terms were optimized based on the radiometric properties of
the adjacent regions as well as the curvature and the potential change-rate of the shoreline itself.

Chong et al. [139] presented two methods of detection of the littoral based on the method of the
level set. In this method, the contour detection speed accelerated when the contour moved away
from the actual edge of the images, which greatly reduced the detection time. The detection time also
reduced thanks to the reduced image resolution.

The level set method is an efficient way for edge detection, but it can develop some irregularity
during its evolution. This led to the development of a type of level set evolution method called distance
regularized level set evolution (DRLSE) [140]. This formulation of the level set function was used by
Toure et al. [141] to avoid numerical errors and reduce computational time for shoreline detection,
while ensuring sufficient numerical accuracy.

The Table 7 summarizes the advantages and disadvantages of the most commonly used edge
detection approaches.

Table 7. Summary of edge detection approaches.

Approaches Advantages Disadvantages References

Canny Edges detection Good results can be obtained for
images in some spectral bands

Due to the Gaussian smoothing: the
location of the edges might be off,
depending on the size of the
Gaussian kernel.

[110,135]

Snakes

Snakes can adapt to differences and
noise in stereo matching and motion
tracking. Additionally, the method
can find illusory contours in the
image by ignoring missing
boundary information

Snakes are sensitive to local minima
states, which can be counteracted by
simulated annealing techniques.
Minute features are often ignored
during energy minimization over
the entire contour.
Their accuracy depends on the
convergence policy

[138]

Level Set Algorithm
Compared to the Snake method, the
Level Set Algorithm also to improve
the edge detection speed.

The procedure using LSA requires a
lot of time when applied to
high-resolution images

[132,139,141]

6. Discussion

Shoreline detection approaches can be classified according to the resolution of the images that
are used.

It is obvious to remark that a high number of methods have been developed using Landsat data.
This is due to the accessibility of these data, which are available from the USCG web site. In addition,
Landsat images cover all the areas of the earth and allow diachronic studies over a long period.

Another satellite whose data are also commonly used is SPOT, since it is one of the oldest satellites
with a wide coverage. As for high-resolution satellites data, they are used in a fewer number of
publications due to the high cost of these products.

The state of the art also shows that almost all shoreline detection methods use commercial tools
and do not rely on the development of automated process.

Moreover, all these methods try to combine existing process and adapt them to a specific problem.
Their fundamental difference lies in the point of view of the target application. Some methods are
limited to show an application on a specific satellite; more general ones propose solutions to a specific
kind of image.

It is also noted that some articles focus on the algorithmic approaches used while others merely
present results without providing sufficient details on how they were obtained.

Moreover, although very high resolution has been the subject of some works, the number of
publications in this field still remains limited.
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7. Conclusions

In this paper we show a compilation of shoreline detection methods based on optical remote
sensing images. First, we list the indicators presented in the literature and then the different
methodological approaches used are presented before conducting a comparative analysis of these
different approaches.

We can note that the shoreline detection problem has still not been adequately solved since
there are no algorithms that can be used regardless of the application or type of image. Moreover,
for a particular application, the choice of an algorithm is problematic because there is neither a
theory established for this purpose nor an index of comparison between the different methods.
An existing method is often adapted to a particular application. These are then “ad hoc” methods
whose performance is difficult to evaluate outside their specific application.

Future work should be directed to very high resolution and complete automation of methods to
reduce errors and computational time.
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