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Abstract: This study focused on the evaluation of forest vegetation changes from 1992 to 2015 in the
Low Tatras National Park (NAPANT) in Slovakia and the Sumava National Park in Czechia using a
time series (TS) of Landsat images. The study area was damaged by wind and bark beetle calamities,
which strongly influenced the health state of the forest vegetation at the end of the 20th and beginning
of the 21st century. The analysis of the time series was based on the ten selected vegetation indices
in different types of localities selected according to the type of forest disturbances. The Landsat
data CDR (Climate Data Record/Level 2) was normalized using the PIF (Pseudo-Invariant Features)
method and the results of the Time Series were validated by in-situ data. The results confirmed
the high relevance of the vegetation indices based on the SWIR bands (e.g., NDMI) for the purpose
of evaluating the individual stages of the disturbance (especially the bark beetle calamity). Usage
of the normalized Landsat data Climate Data Record (CDR/Level 2) in the research of long-term
forest vegetation changes has a high relevance and perspective due to the free availability of the
corrected data.
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1. Introduction

The issue of the time series has been a highly discussed subject recently, particularly in the field
of observations of local and global change. The time series from Landsat gives us insights from the
1980s that can be used for a variety of analyses. This is the only continuous mission in the field
of high-resolution data. This fact brings many problems that need to be addressed through the
pre-processing of data: from the non-homogeneity of the sensed environment, through the different
types of sensors with different radiometric and spectral resolutions, to the aging of the sensors. Several
possible methods of processing the long time series are currently being used. Due to the low temporal
resolution (for example, unlike Sentinel-2) of the Landsat images, it is necessary to pre-process the
data for a possible quantitative comparison. We can use, for example, spectral unmixing methods [1],
fractional methods [2], radiometric normalization and linear image regression [3–13]. Other methods
such as cross-calibration methods that combine sets of multiple data types [14] are also used.
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Thanks to the correct pre-processing of the raw data, it is possible to monitor several local and
global phenomena. From the local phenomena, changes in forest ecosystems have been the most
observed. In forest ecosystems, it is possible to observe the decrease of forests in tropical areas,
the cultivation of palm trees or the range of biotic and abiotic disasters, among which bark beetle
calamities are associated, which is also pertinent to this article. The massive expansion of bark beetle
calamities was mainly due to the planting of non-indigenous species of coniferous forests in Central
Europe. In the last few years, there have been large droughts that evoke dissemination of the pests
to damage the weakened vegetation [15] and also allows the pests to dig out several times in a year.
The second major factor is global change and global warming, which helps to exacerbate calamities.

Current studies [16] help us determine the parameters of the environment into which the pests are
spreading. The quality of the trees, altitude, soil quality, groundwater content, or aspect belong among
the factors that affect dissemination. Besides medium multispectral data, hyperspectral data [17] or
very high-resolution multispectral data [18] are also used. These data help us determine the individual
phases of damage more accurately, such as the Red Attack phase. High-resolution multispectral
data help us locate the areas by various indicators and detect the particular phase or quantity of
damage [19–21]. For medium resolution, only the wider changes [22–25] can be localized. On this
basis, this study documented the process of bark calamities in various phases in the selected localities
of two national parks using a time series of satellite imagery that was pre-processed with relative
radiometric normalization for the purpose of comparison of values over time. As an indicator of
change, specific types of vegetation indices were selected.

This work was focused on evaluating of changes in the forest areas in the selected localities of
the Low Tatras NP (National Park) and Sumava NP using TS methods. The creation of the TS is
based on the Landsat images. The changes in the forest vegetation induced by various disturbance
processes were evaluated based on the selected vegetation indices, their tentative capabilities being
tested and validated by comparing the in-situ data. An important part of this study was the evaluation
of the data, methods and results achieved for the landscape and nature management and nature
conservation institutions.

The main objectives of this work were:

• To evaluate and compare changes in the forest areas in the selected localities of the Low Tatras
National Park and Sumava National Park using TS methods, which use normalized Landsat data

• To evaluate the suitability of individual vegetation indices for the detection of different types of
biotic and abiotic disturbances

• To validate and interpret the results using in-situ data
• To discuss and recommend the suitability of the Earth Observation for nature conservation and

management of the Low Tatras National Park and Sumava National Park.

Observed Area

The Low Tatras National Park (in Slovakia) is 73 km2. The dominant land cover is forest; thus, we
can find extensive forest ecosystems. In many parts of the Low Tatras, spruce forests dominate. Their
development takes place under the influence of natural and anthropogenic factors. The integrity of the
forest ecosystems has been disturbed by several abiotic events (wind, snow, frost, and avalanches),
biotic agents (sub-insects) or anthropogenic influences (e.g., air pollution).

On 19 November 2004, from 15:00 to 24:00, a windstorm passed through the area of the Low
Tatras with a maximum speed of about 175 km/h. The territory of the Low Tatras National Park
and its protection zone was damaged and extensive forest stands in several areas and localities were
destroyed. The wind storm in November 2004 hit the territory of NAPANT very strongly and, as a
result, led to the reproduction of the European bark beetle (Ips typographus). During the summer
of 2007, extremely favorable conditions for grafting of subcortical insects were created in almost all
non-native and natural spruces in Slovakia (Figure 1). The observed sites of this study are located
in the Dumbier part of the Low Tatras (Western Carpathians), in the Mlynna valley. It is in an about
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7 km long valley. After the wind calamity in 2004, the valley area was affected by a biotic bark beetle
calamity, mainly culminating in 2009 (mass pine devastation). The sites of interest were categorized
according to the type of disturbance. The first site represents the territory with the wind disturbance in
2004, the second represents the prevailing beetle disturbance between 2006 and 2009, the third site has
minimal disturbance, the fourth site represents a place with the beetle disturbance (2005) immediately
after wind calamity in 2004 and the last site represents a place with minimal disturbance (Figure 2 and
Table 1).ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  3 of 33 

 

 
Figure 1. The first phase of a bark beetle calamity in the Low Tatras (Photo by J. Lastovicka). 
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Figure 1. The first phase of a bark beetle calamity in the Low Tatras (Photo by J. Lastovicka).

Table 1. Overview of the selected localities in the Low Tatras NP with the GPS position in WGS 84.

ID Type of Disturbance Year Northing Easting

1 Wind calamity 2004 48.9047556 19.6364333
2 Bark beetle calamity 2006–2009 48.9155019 19.6520547
3 Minimal disturbance – 48.9010178 19.6532992
4 Bark beetle with wind calamity 2004–2005 48.903718 19.716530
5 Minimal disturbance – 49.0019478 19.6275692

The Sumava is an extensive mountain range on the border of Czechia, Austria and Germany
(Bavaria). The Sumava (Bohemian) Forest together with the neighboring Bavarian Forest creates the
most extensive forest landscape in Central Europe, called the “Green Roof of Europe”. The area of the
park is more than 900 km2. The Sumava forests are dominated by spruce.

During the 1990s in the last century, a bark beetle calamity occurred in the Czech part of Sumava
NP with the culmination during 1995–2001. The Kyrill gales had a strong impact on the forest
vegetation in 2007. In 2008, there was a sharp rise in the bark beetle affected forest areas and it
continued to grow until 2010. In the period from 2011 to 2014, there was a slight decline in the intensity
of the disturbance with a stabilization period after 2014 (Figure 3). The first site of interest in this study
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represents the territory with the wind and bark beetle disturbance, the second and fourth represent the
bark beetle disturbance, and the third and fifth site are with minor disturbances (Figure 4 and Table 2).
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Table 2. Overview of the selected localities in the Sumava NP with the GPS position in WGS 84.

ID Type of Disturbance Year Northing Easting

6 Bark beetle calamity with wind and non-natural recovery since 2007 48.973628 13.561746
7 Bark beetle calamity and natural recovery since 2008 48.983655 13.561720
8 Minimal disturbance – 48.989884 13.558225
9 Bark Beetle with natural recovery since 2009 48.9847661 13.5227772
10 Minimal disturbance – 49.0451933 13.4761361
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2. Materials and Methods

2.1. Data

Satellite and in-situ data were used to process the study. Landsat Climate Data Record (CDR)
satellite imagery was used as the remote sensing data. The distributed Landsat CDR data were
pre-processed with geometric and atmospheric corrections using the CDR database. For more
information on the methodologies, see, e.g., [26,27].

A sufficient number of usable Landsat satellite images (data from the Landsat 4–8 missions)
were found for our areas of interest. Eleven images were finally selected for each of the Low Tatras
NP (Table 3) and the Sumava NP (Table 4). A crucial condition for the selection of the data was
their minimum cloud cover and no significant haze infection. Another important aspect of the
selection was the date of the acquisition. According to many authors (e.g., Vogelmann et al. [28] and
Griffiths et al. [29,30]), the summer to the first autumn phase is an appropriate time for the assessment
of the forest vegetation. Based on these works, it was decided to select data in the months of July
to September.
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Table 3. Overview of the used Landsat images in the Low Tatras NP.

Name Date Sensor

LC81880262013219LGN00 7 August 2013 Landsat 8
LC81880262015193LGN00 12 July 2015 Landsat 8
LE71880261999221SGS01 9 August 1999 Landsat 7
LE71880262001242SGS00 30 August 2001 Landsat 7
LT51880261994183XXX02 2 July 1994 Landsat 5
LT51880262005245KIS00 2 September 2005 Landsat 5
LT51880262006200KIS01 19 July 2006 Landsat 5

LT51880262007203MOR00 22 July 2007 Landsat 5
LT51880262009240KIS00 28 August 2009 Landsat 5

LT51880262011198MOR00 17 July 2011 Landsat 5
LT41880261992202XXX02 20 July 1992 Landsat 4

The in-situ data, used for the validation of the results from the Landsat data analysis,
were obtained from the administration of the national parks and from their own field survey.
The information obtained from the national parks included the field records of foresters, information
from forest management plans and archive records of nature conservation documentation. The forest
management plan is legislatively enshrined in the Forest Law on Forest Economic Planning and it
provided data on the status of the forests and their past management: the area and category of the
forest, the age of the stock and the age, stocking and representation of the individual trees, the average
height, stockpile and method of management and proposal of the economic measures.

Table 4. Overview of the used Landsat images in the Sumava NP.

Name Date Sensor

LC81920262013215-SC20160702161259 3 August 2013 Landsat 8
LC81920262015221-SC20160702161912 9 August 2015 Landsat 8
LE71920262002209-SC20160702153836 28 July 2002 Landsat 7
LT51920261994211-SC20160702152112 30 July 1994 Landsat 5
LT51920261998222-SC20160702151843 10 August 1998 Landsat 5
LT51920262004223-SC20160702151849 10 August 2004 Landsat 5
LT51920262005241-SC20160702151622 29 August 2005 Landsat 5
LT51920262006196-SC20160702151531 15 July 2006 Landsat 5
LT51920262007231-SC20160702151832 19 August 2007 Landsat 5
LT51920262009236-SC20160702151537 24 August 2009 Landsat 5
LT51920262010191-SC20160702151637 10 July 2010 Landsat 5

2.2. Data Processing

To determine the state and changes in the vegetation from the satellite images, the key information
was placed on the spectral characteristics of the vegetation species studied. Each species of vegetation
has specific characteristics, and we can detect them and determine their properties (e.g., health status)
based on this knowledge. Spectral reflection can be represented by a curve that can be divided into
three basic parts according to the main structural properties: the area of pigmentation absorption,
the cellular structures and the area of water absorption [31]. The time series analyses monitor the
changes in the vegetation over long periods of time. The spectral characteristics of studied objects
are often used for estimating the health phase of vegetation or it could be based on the spectral
characteristics of the derived data, such as the vegetation indices.

To ensure compatibility, the Landsat data source was used. As mentioned above, the atmospheric
and radiometric corrections did not need to be performed on the CDR data because the images
are distributed with the correction and conversion to surface reflectance (i.e., surface reflectance).
The Fmask [32] feature was used to create cloud-free images and to mask the clouds, shadows, snow
and other disturbing elements.
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It is clear from many studies that a significant problem in creating the time series is to ensure
compatibility between the types of data that are often taken by multiple types of sensors [33].
A different sensor type and a different acquisition time may have a large influence on the result
of the time series analyses. For this reason, relative radiometric normalization was used to eliminate
the influence of the different acquisition times, the different phenological phases of the vegetation and
the influence of the different spectral and radiometric characteristics of the different sensors. Thanks
to normalization, we can reduce the effects of the different time and place of acquisition, the different
positions of the sun, and the different radiometric and spectral differences.

Based on previous empirical testing, the PIF (Pseudo-Invariant Features) Linear Based method
was selected for the normalization purposes. This normalization was selected based on the
recommendations of many studies [33,34] and the testing of relative radiometric normalizations
in the article by Lastovicka et al. (2017) [35]. It is a relatively standard proven method, which already
has its origins in the 1990s, and the PIF Linear Based method is probably the most commonly used [34].
There are many variations of PIF and it is used in many programs for time series (IR-MAD/MAD CAL
algorithm). The linear-based method is based on linear alignment using linear regression. For the PIF
linear-based method, a classical linear regression (y = b1 * x + b2 + ε) was used, which represents the
approximation of the known values using the smallest square method.

Thus, by linear regression, we looked for the most suitable parameters, b1 and b2, to approximate
the two observed frames in the correlation diagram. The values b1 and b2 represent the slope and
intercept, respectively [34].

The method consists of finding the pseudo-invariant objects and the invariant objects in two
observed images that occur as clusters [33,36–38]. Using a scatter plot, the values of both images
and the search for the unmodified objects were displayed manually or automatically using the
algorithm [39]. The invariant areas required for this method were selected based on the NDVI
index, where the minimum area of the index was the appropriate area. Roads, parking areas, roofs
and other long-standing elements were among the selected invariant objects. These selected elements
are suitable for normalization calculations. Then, the regression parameters were computed [33].
The equalization was performed for each spectrum band separately—the band-by-band method [39].

For the data normalization of the CDR Landsat data, custom applications were developed
in the MATLAB environment. The developed application was inspired by the TimeSync web
application (made by Oregon State University—http://timesync.forestry.oregonstate.edu [40]), which
has limitations in accessing custom data as well as in bulk data over the Internet. Our application
allows one to work with any type of satellite data in an off-line mode. Thanks to the relatively
standardized MATLAB encryption, this application is transferable to a wide range of software and
operating systems. The application itself consists of several algorithms for which two user interfaces
were created. The first user interface allows seeing the differences between the two spectral bands that
are needed for normalization purposes. The scatter graph and interdependence were displayed using
a linear regression curve.

After the data standardization process, the selected vegetation indices were calculated, and the
time series charts were created. To create the curves, the developed applications were used. For the
specified location, the application created time series charts. The calculations take the pixel values of
the site or its surroundings (3 × 3 pixels) into account. In this study’s case, the closest neighborhood of
the site was used (3 × 3 pixels). Nine pixels were selected for one pixel in the neighborhood of the
central pixel (the localities were chosen from a larger area of disturbed or non-disturbed places, thus
the values were averaged for the approximate value errors or outlying values). For a more detailed
description of this application, see the work of Lastovicka et al. [35].

Based on several elaborated studies [34,41–44], it was decided to use the list of vegetation indices
shown in Table 5.

http://timesync.forestry.oregonstate.edu
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Table 5. List of the vegetation indices and their expressions.

Vegetation Index Shortcut Equation

Foliar Moisture Index FMI (value * 10) (NIR)/(RED * SWIR)
Normalized Difference Moisture Index NDMI (NIR − SWIR)/(NIR + SWIR)

Normalized Difference Vegetation Index NDVI (NIR − RED)/(NIR + RED)
Simple Ratio Index SR (value/100) (NIR)/(RED)

Transformed Vegetation Index TVI sqrt ((NIR-RED)/(NIR + RED) + 0.5)
Wide-band Normalized Difference Infrared Index wNDII (2 * NIR − SWIR)/(2 * NIR + SWIR)

Note: The FMI and SR values were optimized for the value level to be comparable with the other chosen indices in
the graphs.

The masking and calculation of the vegetation indices was performed in ENVI 5.3. The final
database created for the time series analysis included calculations of six vegetation indices from the
Landsat CDR normalized data by the PIF Linear Based method.

For the statistical approach, the minimum (MIN), the maximum (MAX), the difference between
maximum and minimum (MAX-MIN) and the standard deviation (St. Deviation) were calculated.

For both areas of interest, the aggregate mathematical statistical characteristics were calculated.
From the locations where calamities occurred, the average values for the given period were calculated
and the graphs for all the interest areas were plotted.

3. Results

This section focuses on the description and interpretation of the value of the vegetation indices
in the 10 different localities in the Low Tatras and Sumava National Parks that have been under
different development influencing the forest areas (damage from wind calamity, bark beetle and forest
vegetation without any significant influence). The results describe and interpret the values of the
studied vegetation indices during the observed period (1992–2015) and evaluate their suitability for
the assessment of the forest changes. The results should indicate the applicability of the different
vegetation indices or their combinations for the detection of the different types of disturbances.

3.1. Locality 1

A significant part of the Low Tatras National Park was damaged by the wind calamity of Elizabeth,
which took place on 19 November 2004. The first site represents the area heavily damaged by this
event, followed by the natural regeneration of the vegetation in the following years after the calamity.

The results of the development of the individual monitored indices are documented in Figure 5.
The evolution of the values of the monitored indices shows that the wind calamity that occurred in
2004 significantly affected the state of the forest vegetation. The examined indices strongly reflected
this wind calamity. It can be seen in Figure 5 that the most significant change (decrease) is in the values
of the following vegetation indices NDVI, NDMI and wNDII; the decline in the curve is less significant
for the FMI, SR and TVI indices. These results can be also seen from the statistical information in the
Figure 5b, similar figures were calculated for all sites. For areas with disturbance, there was detected a
significant difference between minimum and maximum. In comparison, this statistical indicator was
lower in the areas with minimal disturbance. These results were also achieved with standard deviation.
Places with minimal disturbance had lower standard deviation. The area gradually began to be covered
by the ascending deciduous woods (after harvesting the dead trees), especially Sorbus aucuparia. These
young deciduous trees helped with the regeneration of the vegetation cover in the damaged area.

In 2005, there is missing value in Figure 5a. This is in case of clouds in the satellite image
(Figures A1 and A2 in Appendix A). In this situation, linear interpolation was used, and the curve
was connected to the nearest value point. The same method was used in other localities, if there was a
problem with missing values due to cloud cover.
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Figure 5. Time series of the vegetation indices for the areas affected by the wind calamity (Locality 1);
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3.2. Locality 2

The second observed site is a site affected by the strongly expanding, devastating bark beetle after
2007. The forest vegetation after the attack was dying and left to spontaneously develop. The TS graph
of the vegetation indices in this area can be seen in Figure 6.
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Figure 6. Time series of the vegetation indices for the area affected by the bark beetle (Locality 2) (a);
and the statistical information (b) (Source: Own work).

In Figure 6, we can see some obvious trends. At the initiation phase of the bark beetle calamity,
the vegetation indices wNDII, NDMI and FMI declined, while the values of the NDVI, SR and TVI
indices slightly increased in the period 2005–2007. During 2007–2009, the location was characterized by
the significant degradation of the spruce forest. All the monitored indices responded with a decrease
in the values continuing until 2012. Then, the natural regeneration of the territory with the dominance
of the deciduous trees began, which successively occupied the deforested areas in the territory of the
calamity. This was mainly reflected by the NDMI, wNDII and NDVI indices.
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3.3. Locality 3

The next observed locality in the Low Tatras represents a place where, unlike the two previous
localities, there have been no significant changes in the vegetation during the observed period. The time
series of the vegetation indices can be seen in Figure 7.
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Figure 7. Time series of the vegetation indices for localities with minimal disturbance (a); and the
statistical information (b) (Locality 3) (Source: Own work).

It can be seen in the figure that relatively small value changes occurred in the observed area.
Insignificant oscillations are mainly evident in the wNDII and NDMI indices, as well as in the FMI.
A slight fluctuation was recorded in the TVI index, less so in the NDVI and SR indices. In terms of
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interpretation, it is necessary to realize that changes in the index values may reflect specific, local
conditions, e.g., weather conditions: precipitation vs. drought [39].

3.4. Locality 4

The fourth observed site is a site affected by the strongly expanding, devastating bark beetle after
2001. The forest vegetation after the attack was dying and left to spontaneously develop. The TS graph
of the vegetation indices in this area can be seen in Figure 8. All monitored indices responded with a
decrease in the values with minimal values in 2005. Then, the natural regeneration of the territory was
reflected by an increase of the values, mainly in NDMI, wNDII and NDVI indices.
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Figure 8. Time series of the vegetation indices for the area affected by the bark beetle and wind (a); and
the statistical information (b) (Locality 4) (Source: Own work).
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3.5. Locality 5

Locality 5 (Figure 9) in the Low Tatras represents a place where, unlike Localities 1, 2 and 4,
there have been no significant changes in vegetation during the observed period. As can be seen in
the graphs, values have a fixed level. Only in 2007 we can see an insignificant decline of values of
the indices.
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Figure 9. Time series of the locality with minimal disturbance (a); and the statistical information (b)
(Locality 5) (Source: Own work).
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3.6. Locality 6

The first site from the Sumava NP is a site that has been hit by a wind calamity (2007). After
disturbing the tree structures, the forest was much more affected by bark beetle attack. The result can
be seen in Figure 10. Here, the steep decline in the curves after 2008 is especially visible, caused by
the disturbance of the trees by the wind and the subsequent bark beetle. The destruction process is so
much faster than, for example, in Locality 7.
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Figure 10. Time series of the vegetation indices for the area affected by the bark beetle and wind (a);
and the statistical information (b) (Locality 6) (Source: Own work).
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3.7. Locality 7

The next location from the Sumava NP is similar to Locality 2 from the Low Tatras region. This is
a place where a biotic disturbance has occurred, i.e., a bark beetle calamity. Figure 11 shows the results
of the time series analyses. The NDMI and wNDII indices reflected the whole disturbance event with
a decreasing value. The NDVI, SR, and TVI indices had similar trends in the first years of the calamity
(decrease). The dead trees were not harvested.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  17 of 33 

 

The next location from the Sumava NP is similar to Locality 2 from the Low Tatras region. This 
is a place where a biotic disturbance has occurred, i.e., a bark beetle calamity. Figure 11 shows the 
results of the time series analyses. The NDMI and wNDII indices reflected the whole disturbance 
event with a decreasing value. The NDVI, SR, and TVI indices had similar trends in the first years of 
the calamity (decrease). The dead trees were not harvested.  

 
(a) 

 
(b) 

Figure 11. Time series of the vegetation indices for the area affected by the bark beetle (a); and the 
statistical information (b) (Locality 7) (Source: Own work). 

Locality 8 

0

0.2

0.4

0.6

0.8

1

1.2

IN
D

EX
 V

A
LU

E

DATE

FMI (value*10)

NDMI

NDVI

SR (value/100)

TVI

wNDII

0

0.2

0.4

0.6

0.8

1

1.2

FMI (value*10) NDMI NDVI SR (value/100) TVI wNDII

IN
D

EX
 V

A
LU

E

INDEX

MIN MAX MAX-MIN Standard Deviation

Figure 11. Time series of the vegetation indices for the area affected by the bark beetle (a); and the
statistical information (b) (Locality 7) (Source: Own work).
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3.8. Locality 8

The next site of interest is similar to Locality 3 in the Low Tatras NP: without any significant
disturbance. This location is covered by a spruce forest with an approximate age of 50 years according
to the in-situ data. In Figure 12, we can see the development with the oscillation in the values without
any significant breaks.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  18 of 33 

 

The next site of interest is similar to Locality 3 in the Low Tatras NP: without any significant 
disturbance. This location is covered by a spruce forest with an approximate age of 50 years 
according to the in-situ data. In Figure 12, we can see the development with the oscillation in the 
values without any significant breaks. 

 
(a) 

 
(b) 

Figure 12. Time series of the locality with minimal disturbance (a); and the statistical information (b) 
(Locality 8) (Source: Own work). 

  

0

0.2

0.4

0.6

0.8

1

1.2

IN
D

EX
 V

A
LU

E

DATE

FMI (value*10)

NDMI

NDVI

SR (value/100)

TVI

wNDII

0

0.2

0.4

0.6

0.8

1

1.2

FMI (value*10) NDMI NDVI SR (value/100) TVI wNDII

IN
D

EX
 V

A
LU

E

INDEX

MIN MAX MAX-MIN Standard Deviation

Figure 12. Time series of the locality with minimal disturbance (a); and the statistical information (b)
(Locality 8) (Source: Own work).
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3.9. Locality 9

The next location from the Sumava NP is similar to Locality 2 from the Low Tatras region and
Locality 7 from the Sumava National Park. This is the place where a biotic disturbance has occurred,
i.e., bark beetle calamity. Figure 13 shows the results of the time series analyses. The NDVI, NDMI and
wNDII indices reflected the whole disturbance event with a decreasing value. The dead trees were not
harvested after the disturbance.
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Figure 13. Time series of the vegetation indices for the area affected by the bark beetle (a); and the
statistical information (b) (Locality 9) (Source: Own work).
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3.10. Locality 10

The last site of interest is similar to Localities 3 and 5 in the Low Tatras NP (without any significant
disturbance) and Locality 8 in the Sumava National Park (with minimal disturbance). This location
is covered by a spruce forest with an approximate age of 60 years according to the in-situ data.
In Figure 14, we can see the development with the oscillation in the values with only small breaks.
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Figure 14. Time series of locality with minimal disturbance (a); and the statistical information (b)
(Locality 10) (Source: Own work).
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3.11. Statistical Results and Comparison of Both Specific Areas

Figures 15, 16, 17 and 18 show the average values from the Low Tatras National Park and the
Sumava National Park. The graphs 16 and 18 show the minimal variance caused by the different
site conditions. However, in Figures 15 and 17, we can see the graphs of both sites affected by the
calamities with average values. For Figure 17 (the Sumava National Park), it can be stated that, due to
the gradual spread of the disturbance in the individual years, the longer span of the time of the calamity
breakdown shows the calamity break is slower. In addition to the summary graphs, the individual
aggregate values of the individual vegetation indices are described in Tables 6 and 7 for the Low Tatras,
and Tables 8 and 9 for the Sumava National Park.
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Figure 15. Time series of the vegetation indices for the area affected by the bark beetle and the wind
calamity (a); and the statistical information (b) (the average from the Low Tatras National Park) (Source:
Own work).
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Figure 16. Time series of the vegetation indices of the areas with minimal disturbance (a); and the
statistical information (b) (the average from the Low Tatras National Park) (Source: Own work).

Table 6. Statistical information about the average values in the disturbed areas in the Low Tatras NP.

Vegetation Index MIN MAX MAX-MIN Standard Deviation

FMI (value * 10) 0.0412 0.1676 0.1264 0.0421
NDMI 0.1612 0.4191 0.2579 0.0883
NDVI 0.6712 0.8249 0.1537 0.0551

SR (value/100) 0.0560 0.1078 0.0518 0.0177
TVI 1.0805 1.1510 0.0705 0.0252

wNDII 0.4683 0.6555 0.1872 0.0710
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Figure 17. Time series of the vegetation indices for the area affected by the bark beetle and the wind
calamity (a); and the statistical information (b) (the average from the Sumava National Park) (Source:
Own work).

Table 7. Statistical information about the average values in the areas with minimal disturbance in the
Low Tatras NP.

Vegetation Index MIN MAX MAX-MIN Standard Deviation

FMI (value * 10) 0.0932 0.1980 0.1048 0.0273
NDMI 0.3283 0.4213 0.0930 0.0262
NDVI 0.8108 0.8812 0.0705 0.0227

SR (value/100) 0.0984 0.1678 0.0694 0.0212
TVI 1.1448 1.1752 0.0304 0.0098

wNDII 0.5948 0.6614 0.0666 0.0200
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Figure 18. Time series of the vegetation indices of the areas with minimal disturbance (a); and the
statistical information (b) (the average from the Sumava National Park) (Source: Own work).

Table 8. Statistical information about the average values in the disturbed areas in the Sumava NP.

Vegetation Index MIN MAX MAX-MIN Standard Deviation

FMI (value * 10) 0.0334 0.1411 0.1077 0.0374
NDMI 0.1341 0.4411 0.3070 0.1065
NDVI 0.6812 0.7658 0.0846 0.0309

SR (value/100) 0.0532 0.0762 0.0231 0.0079
TVI 1.0868 1.1250 0.0383 0.0141

wNDII 0.4454 0.6745 0.2291 0.0797
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Table 9. Statistical information about the average values in the areas with minimal disturbance in the
Sumava NP.

Vegetation Index MIN MAX MAX-MIN Standard Deviation

FMI (value * 10) 0.0716 0.1694 0.0978 0.0300
NDMI 0.3433 0.4737 0.1304 0.0395
NDVI 0.7051 0.7922 0.0871 0.0290

SR (value/100) 0.0593 0.0866 0.0273 0.0094
TVI 1.0976 1.1367 0.0391 0.0130

wNDII 0.6061 0.6952 0.0891 0.0271

4. Discussion and Conclusions

The forests in the Low Tatras and Sumava National Parks have been severely affected by wind
calamities and, subsequently, by bark beetle insects. For the selected locations, which differed in
the type of disturbance, the calculation of the vegetation indices and the comparison/evaluation of
their trajectories were performed. The main aim was to determine the suitability of the individual
vegetation indices for the detection of the different types of biotic and abiotic disturbances using a
TS analysis. Based on the results of this study, it is obvious that each type of disturbance, whether
biotic or abiotic, has a specific development and different consequences on the state (health) of the
vegetation/spectral expression. In the case of a wind disaster, a large part of the forest vegetation is
devastated in a quick period. This corresponds to a large impact decrease (more than with the bark
beetle calamity, because the biotic calamity is decreasing more slowly) in the indices using RED, NIR
and SWIR bands [45]. A forestry intervention or succession of new vegetation causes an increase in the
reflection in the green and especially in the near infrared part of the spectrum in a relatively short time
after the disturbance. A wind calamity has a strong effect on the vegetation, however the recovery
in the following years is quick, both in a spontaneous way and a forest-controlled way. When the
three sites affected by wind calamities in Low Tatras and Sumava NPs were compared, similar result
could be seen. The vegetation indices based on the use of the SWIR band (e.g., the NDMI and wNDII
index) show similar trends as well [46]. A bark beetle calamity has a much more complicated progress
with a specific effect on the vegetation. Several generations of beetles gradually occupy the forest
with a strong culmination phase. There can be three generations of beetles in one year, which greatly
disturb the resistance of the forest stand. Our results confirmed the high sensitivity of the wNDII
and NDMI vegetation indices based on the SWIR band in the case of the bark beetle disturbance (see
Figure 17). These vegetation indices were able to reflect all the phases of the disturbance using the time
series analysis. The reflectivity of the healthy forest vegetation in the SWIR was lower than in the NIR.
However, during the disturbance/damage, the SWIR reflectivity tended to increase. It is clear from the
results that this aspect played an important role in detecting the disturbed period (compare the NDMI
or wNDII vegetation indices that use the SWIR band with the vegetation indices based on NIR such as
NDVI). An important result of this study is that the NDMI and wNDII vegetation indices can detect
all the stages of the bark calamity (before, during and after the culmination) and are thus suitable
indicators in monitoring the health status of the forest vegetation in such specific/environmentally
complex processes as a bark beetle calamity with its causes and consequences. On the other hand,
it can be stated that indices using SWIR are more sensitive to more local factors [45]. The values of the
vegetation indices can be affected by many factors out of our current investigation, e.g., meteorological
factors such as precipitation or soil moisture. For a more detailed interpretation of these changes,
it would be necessary to include several factors, such as meteorological, which was beyond the scope
of this study.

In terms of comparison of the two observed areas (Sumava NP and Low Tatras NP), statistical
summaries were made. It can be said that the calamity conditions of the observed sites took place over
a longer period in Sumava areas. This can also be seen from the individual figures. However, if we look
at aggregate indicators, both locations have a very different evolution of recovery phase. In particular,
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in the Low Tatras, trees were harvested after the calamities. This results in a different development
from the Sumava areas, where the trees were left. The spread of new trees and bushes in Sumava is
slower and the values of the selected indices after overcoming the recovery phase do not reach their
initial values from before the calamity, but in the Low Tatras in several cases indices approximately
reach their initial values from before the calamity. However, this does not indicate anything about an
unnatural interference with nature. In Figures 15–18 and Tables 6–9, the NDMI index can be picked up
again as the best index to detect the disturbance of the forest ecosystems. Secondly, the wNDII index
also had comparable results. The NDVI index also corresponded to the disturbances, but the problem
of the NDVI index is that it cannot differentiate the recovery phase in comparison with the wNDII and
NDMI indices.

A long-term TS can be used to track the development and current state of diverse forest ecosystems.
The Landsat data are a very useful data source in this respect [47]. On the other hand, it is necessary
to pay attention to the compatibility of the data coming from various types of Landsat sensors [40].
Although Landsat CDR data contain atmospheric and radiometric corrections, it is still useful to
perform radiometric normalization. Thanks to the normalization, we can reduce the effects of the
different times (phenology period) and places of acquisition, the different positions of the sun,
and radiometric and spectral differences. The PIF Linear Based method appears to be a suitable
standardization method. For data normalization of the CDR Landsat data, custom applications were
developed in the MATLAB environment. The application allows one to work with any type of satellite
data and it is transferable to a wide range of software and operating systems.

This study should serve as an example when the development of the impacts of the disturbances
on the state of the forest vegetation was analyzed by traditional methodological procedures using
vegetation indices. These results and methods should be useful, inspirational to the institutions for the
management of the protected areas and to determine the appropriate forest management practices
implemented in them. The time series results obtained can be applied to generate predictions of future
states and to observe the spontaneous and economically managed forest regeneration. The use of
satellite data provides progressive opportunities to monitor and evaluate the state and changes in the
forest vegetation for the purpose of the protection and management of national parks [46,47].
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Figure A1. Statistical information about the vegetation indices values in the Low Tatras NP (Source:
Own work).
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FMI (value*10) 0,0836 0,0890 0,0793 0,0960 0,0850 0,0994 0,0845 0,0716 0,1004 0,0769 0,0916 0,0716 0,1004 0,0288 0,0088
NDMI 0,3445 0,3486 0,3594 0,3333 0,3678 0,3891 0,3818 0,3433 0,3671 0,3788 0,3809 0,3333 0,3891 0,0558 0,0178
NDVI 0,7271 0,7265 0,7051 0,6857 0,7484 0,7441 0,7651 0,7118 0,7659 0,7616 0,7843 0,6857 0,7843 0,0986 0,0288
SR (value/100) 0,0686 0,0671 0,0593 0,0556 0,0711 0,0694 0,0759 0,0606 0,0771 0,0741 0,0830 0,0556 0,0830 0,0274 0,0079
TVI 1,1072 1,1071 1,0976 1,0886 1,1172 1,1153 1,1247 1,1007 1,1250 1,1232 1,1332 1,0886 1,1332 0,0446 0,0130
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FMI (value*10) 0,1634 0,1510 0,1460 0,1453 0,1475 0,1283 0,0940 0,1378 0,0328 0,0234 0,0234 0,1634 0,1400 0,0478
NDMI 0,4942 0,4655 0,4365 0,4475 0,4728 0,4235 0,4398 0,4307 0,0959 0,0227 0,0227 0,4942 0,4715 0,1589
NDVI 0,7685 0,7523 0,7210 0,7726 0,7440 0,7653 0,6843 0,7514 0,6297 0,6164 0,6164 0,7726 0,1562 0,0547
SR (value/100) 0,0777 0,0713 0,0628 0,0786 0,0684 0,0764 0,0536 0,0714 0,0442 0,0422 0,0422 0,0786 0,0364 0,0129
TVI 1,1262 1,1190 1,1049 1,1281 1,1153 1,1248 1,0882 1,1186 1,0628 1,0566 1,0566 1,1281 0,0715 0,0250
wNDII 0,7104 0,6914 0,6717 0,6793 0,6963 0,6631 0,6742 0,6680 0,4158 0,3533 0,3533 0,7104 0,3571 0,1205
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FMI (value*10) 0,1666 0,1891 0,2135 0,2059 0,2394 0,1662 0,2187 0,1359 0,1666 0,1359 0,2394 0,1035 0,0310
NDMI 0,5500 0,5388 0,5658 0,5518 0,5582 0,5129 0,5394 0,5067 0,4902 0,4902 0,5658 0,0756 0,0243
NDVI 0,7985 0,8018 0,7664 0,8126 0,8085 0,7930 0,8021 0,7771 0,8001 0,7664 0,8126 0,0462 0,0140
SR (value/100) 0,0899 0,0918 0,0766 0,0978 0,0967 0,0873 0,0912 0,0799 0,0901 0,0766 0,0978 0,0212 0,0066
TVI 1,1395 1,1409 1,1253 1,1456 1,1438 1,1371 1,1411 1,1301 1,1402 1,1253 1,1456 0,0203 0,0062
wNDII 0,7464 0,7393 0,7564 0,7474 0,7516 0,7226 0,7397 0,7186 0,7078 0,7078 0,7564 0,0486 0,0156

Index/Date 30.07.1994 10.08.1998 28.07.2002 10.08.2004 29.08.2005 15.07.2006 19.08.2007 25.08.2009 10.08.2010 03.08.2013 09.08.2015 MIN MAX MAX-MIN St. Deviation
FMI (value*10) 0,1310 0,1290 0,1411 0,1212 0,1317 0,1002 0,0801 0,0887 0,0361 0,0334 0,0334 0,1411 0,1077 0,0374
NDMI 0,4411 0,4216 0,4144 0,4115 0,4218 0,3820 0,3830 0,2787 0,1675 0,1341 0,1341 0,4411 0,3070 0,1065
NDVI 0,7658 0,7547 0,7221 0,7581 0,7449 0,7449 0,6812 0,6961 0,6846 0,6976 0,6812 0,7658 0,0846 0,0309
SR (value/100) 0,0762 0,0728 0,0631 0,0746 0,0697 0,0696 0,0532 0,0607 0,0548 0,0589 0,0532 0,0762 0,0231 0,0079
TVI 1,1250 1,1200 1,1054 1,1215 1,1156 1,1157 1,0868 1,0929 1,0882 1,0940 1,0868 1,1250 0,0383 0,0141
wNDII 0,6745 0,6614 0,6566 0,6546 0,6614 0,6341 0,6339 0,5528 0,4734 0,4454 0,4454 0,6745 0,2291 0,0797

Index/Date 30.07.1994 10.08.1998 28.07.2002 10.08.2004 29.08.2005 15.07.2006 19.08.2007 25.08.2009 10.08.2010 03.08.2013 09.08.2015 MIN MAX MAX-MIN St. Deviation
FMI (value*10) 0,1251 0,1391 0,1548 0,1455 0,1694 0,1254 0,1596 0,1064 0,1291 0,0716 0,1694 0,0978 0,0300
NDMI 0,4473 0,4437 0,4496 0,4598 0,4737 0,4474 0,4533 0,4428 0,4356 0,3433 0,4737 0,1304 0,0395
NDVI 0,7628 0,7642 0,7261 0,7805 0,7763 0,7791 0,7840 0,7694 0,7922 0,7051 0,7922 0,0871 0,0290
SR (value/100) 0,0793 0,0795 0,0661 0,0845 0,0831 0,0816 0,0842 0,0770 0,0866 0,0593 0,0866 0,0273 0,0094
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Figure A2. Statistical information about the vegetation indices values in the Sumava NP (Source:
Own work).
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