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Abstract: The Geographic Object-Based Image Analysis (GEOBIA) paradigm relies strongly on the
segmentation concept, i.e., partitioning of an image into regions or objects that are then further
analyzed. Segmentation is a critical step, for which a wide range of methods, parameters and input
data are available. To reduce the sensitivity of the GEOBIA process to the segmentation step, here we
consider that a set of segmentation maps can be derived from remote sensing data. Inspired by the
ensemble paradigm that combines multiple weak classifiers to build a strong one, we propose a novel
framework for combining multiple segmentation maps. The combination leads to a fine-grained
partition of segments (super-pixels) that is built by intersecting individual input partitions, and each
segment is assigned a segmentation confidence score that relates directly to the local consensus
between the different segmentation maps. Furthermore, each input segmentation can be assigned
some local or global quality score based on expert assessment or automatic analysis. These scores
are then taken into account when computing the confidence map that results from the combination
of the segmentation processes. This means the process is less affected by incorrect segmentation
inputs either at the local scale of a region, or at the global scale of a map. In contrast to related
works, the proposed framework is fully generic and does not rely on specific input data to drive the
combination process. We assess its relevance through experiments conducted on ISPRS 2D Semantic
Labeling. Results show that the confidence map provides valuable information that can be produced
when combining segmentations, and fusion at the object level is competitive w.r.t. fusion at the pixel
or decision level.

Keywords: GEOBIA; segmentation fusion; segmentation evaluation; consensus; remote sensing

1. Introduction

The Geographic Object-Based Image Analysis (GEOBIA) paradigm has become very popular
for processing aerial and satellite imagery [1–3]. It relies strongly on the segmentation concept, i.e.,
partitioning of an image into regions or objects that are then further analyzed (e.g., described and
classified) [4,5]. Choosing an appropriate scale for the segmentation step is challenging and has been the
subject of extensive studies [6–10]. Despite these efforts, finding a perfect segmentation is an ill-posed
problem, and there is no (and probably will never be) a universal, domain- and image-independent
segmentation technique [1]. To produce a segmentation from some remotely-sensed observations of a
scene, various criteria have to be taken into account, namely the homogeneity of the scene and the size
of the objects, the properties of the input image (e.g., its spatial resolution), the method of segmentation
and its parameter settings (including the segmentation criteria, the scale, etc.). If multiple sensors or
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multi-temporal data are used, the segmentation process can exploit multiple sources of information to
create the objects.

Applying a GEOBIA process to multiple data sources requires fusing or combining information at
certain stages [11–13]. Such a task can be performed at different stages of the overall process: (i) before
segmentation, by merging the input data into one single, possibly multi-valued image (i.e., fusion at
pixel level; [13]); such an image will then be segmented, leading to a single segmentation map that is
then classified; (ii) after segmentation but before classification, by combining multiple segmentations
into a single one that will serve as a support for the classification process (i.e., fusion at object level; [14]);
(iii) after classification, by merging the decisions taken by the multiple classifiers, each of which is
specific to a segmentation input (i.e., fusion at decision level; [15]). While the first strategy greatly
reduces the richness of the information by providing a single image as input to the segmentation,
the third strategy leads to multiple, inconsistent classification maps since there is no guarantee that the
objects classified in the different segmentation maps have the same spatial support. In this paper, we
explore the second strategy, i.e., combining multiple segmentations into a single one that is used as an
input for the subsequent classification stage.

We present a generic framework to combine multiple segmentation maps into a fine-grained
partition of segments (super-pixels or small-size pixels, i.e., connected sets of similar pixels obtained
from an over-segmentation process) that is built by intersecting individual input partitions. Each
segment is then attributed a segmentation confidence score that directly relates to the consensus
between the different individual segmentation inputs concerning this segment. We discuss how such a
score can be exploited in further processing, beyond its direct use to produce a unique segmentation.
Further, we show how to adapt it to allow an expert to input prior knowledge through local or global
weights attached to specific regions or images, respectively.

The rest of the paper is organized as follows. First we review existing approaches for the
combination of segmentations in Section 2 and explain how our work differs from the state-of-the-art.
In Section 3, we present our general framework, the confidence score, the expert priors, and discuss
possible ways to exploit the confidence map. In Section 4 we describe the experiments, including the
dataset, parameter settings, and the results we obtained with partial and full segmentation, as well
comparing our strategy with other fusion strategies. In Section 5 we present our conclusions and
future research directions.

2. Related Works

Combining multiple, possibly contradictory segmentations is not simple. Indeed, segmentation is
an ill-posed problem and no perfect generic segmentation method or parameter settings are suitable
for use in all situations. So the problem of combining multiple segmentations to find an optimal
partition has received considerable attention and various methods have been proposed, usually
in the form of modeling input segmentations as region adjacency graphs (RAG) [14] and careful
analysis of similarities between neighboring regions in order to identify the unitary regions that
need to be merged into larger ones. In [16], a general framework is proposed to combine multiple
segmentations of a single image by generating and filtering super-pixels, building multiple clusterings
of super-pixels and identifying a consensus clustering from which a single segmentation is derived.
Among the optimization schemes, Markov Random Fields (MRF) have been used to embed global
priors (e.g., related to the number of regions expected in the output segmentation) [17] while a bag of
super-pixels has been analyzed in [18] using bipartite graph clustering.

However, most of these methods rely to a great extent on the raw features (e.g., color, texture)
provided by an input image to drive the combination process, or at least they assume a single input
image from which multiple segmentations are derived. Most of these input segmentations are obtained
by considering color images, usually using various parameter settings of the same segmentation
method, e.g., RAG in [14], Texture and Boundary Encoding-based Segmentation (TBES) and/or
Ultrametric Contour Map (UCM) in [16], Mean-Shift and Felzenszwalb in [18]. Transformation of the
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color image into different color spaces before applying K-Means clustering was used in [17]. If the input
segmentations come from very different input data (different dates, sources or modalities) and not only
from different methods applied over the same input image, priority could go to some segmentations
in the combination process, since the inputs are not necessarily equally reliable.

To obtain extractions from optical remote sensing images [19], multiple segmentations are used
to extract vegetation, shadow and rectangular areas. These segmentations are then merged using
MRF over the RAG, considering the co-occurrence of adjacent segments and color features in the
optimization process. Other examples of processing multispectral images include [20,21] who propose
respectively an unsupervised and semi-supervised framework to find an optimized segmentation in a
single remotely-sensed image to use as input.

The fusion of multiple segmentations has been widely addressed in the field of computer vision,
through coclustering [22] or cosegmentation [23]. However, these methods assume the input images
contain one (or a few) foreground objects over a background, which does not correspond to the
contents of remote sensing data. Expert knowledge can be exploited in interactive frameworks when
the user scribbles over the foreground and background [24].

Among the methods that do not depend on the input data is a recent approach reported in [25] in
which several multiscale segmentations are combined into one. More precisely, the authors consider
each input multiscale segmentation as a binary partition tree structure in which pairs of the most
similar regions are iteratively merged. The initial regions are the same for all trees and a majority vote
procedure makes it possible to derive a single merging sequence (and hence multiscale segmentation)
from these multiple series. While this approach does not make any assumption concerning the input
data, it is limited to input segmentations obtained using a binary partition tree, and is not suitable for
the wide range of segmentation techniques that are available.

In contrast to existing methods that rely on the original data (before segmentation) to combine the
multiple segmentation maps, we propose a simple generic framework that considers only segmentation
maps. This makes sense particularly when the maps are the result of different input data, with no
prior knowledge of the kind of data sources that fed the combination process. Indeed, in the context of
remote sensing, when combining multiple sources (e.g., LiDAR, optical imagery, SAR, etc.) or multiple
dates, it is not always possible to determine a priori the underlying criterion (e.g., color, elevation)
to fuse input maps. While the proposed framework is fully unsupervised, since it is based only on
local consensus between segmentations, we still allow the expert to input prior knowledge through
a weighting scheme that can be applied globally or locally. Finally, we discuss how to deal with the
consensus score beyond its direct use to derive a unique segmentation result.

3. Method

As mentioned in the introduction, our goal is to build an optimal segmentation map from
a set of inputs. Our method is not a segmentation technique per se, but rather aims to merge
existing segmentation maps. Such maps can be derived from various data sources (e.g., optical
images and DSM), various dates, various segmentation techniques (e.g., thresholding, edge-based
and region-based techniques), and defined from various parameter settings, as shown in Figure 1.
In the following subsections, we describe the general framework and discuss the confidence measure,
the integration of prior knowledge, and the possible use of the confidence map that is the output of
our combination framework.
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Figure 1. Our generic framework to combine multiple segmentations in the GEOBIA paradigm.
Segmentations can come from different data sources (e.g., optical and radar sensors) and be acquired at
different dates. They may also be produced using different methods (e.g., region-based or edge-based)
relying on different parameter values.

3.1. Overall Framework

The proposed framework for combining prior segmentations comprises the four following steps:

1. build the initial segmentations (multiple sources, methods and parameters);
2. build a very fine partition by intersecting the input segmentations;
3. assign a confidence measure to each region;
4. use the confidence map to build a consensual result.

Steps 1 and 2 are straightforward and consist in building a single oversegmentation map made
of super-pixels generated from an initial segmentation ensemble. At this stage, we do not make any
assumptions concerning the coherence between the different input segmentations that may originate
from different images/sources/dates (here we assume no changes in the scene between the different
dates; otherwise we can use the confidence score to detect any changes, see discussion in Section 3.2),
different methods or settings, that could lead to conflicting segments. We only assume these input
segmentations share the same spatial resolution and coverage footprint. This is required to extract
intersecting super-pixels. If this condition is not fulfilled, a resampling step is applied to ensure all
segmentations are spatially comparable. Overlapping segments are then merged following the most
restrictive strategy: adjacent pixels are combined in the same super-pixel if and only if they belong to
the same segment in all the input segmentation maps.
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3.2. Confidence Measure

Super-pixels are generated by intersecting all the segmentations that are fed to the framework.
To illustrate this process, Figure 2a–f shows some sample segmentations built from an input satellite
image (Pleiades multispectral image, Figure 2g). Figure 2h illustrates the resulting oversegmentation
built by intersecting the input maps. The combination framework proposed here makes it possible to
derive a confidence value for each super-pixel, as shown in Figure 2i.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 2. From input segmentations to confidence map: input segmentations (a–f) extracted from a
single data source (g), their intersection into super-pixels (h) and the resulting confidence value map
(i). Pseudo-colors are randomly generated from region labels providing one different color per region.
In the confidence value map, brighter color corresponds to a higher confidence score, and darker color
indicates a lower confidence score. The single data source (g) was extracted from an optical Pleiades
multispectral image acquired on 12 October 2013.

The confidence measure is a core element of our framework. We rely on the measures proposed by
Martin [26] that were used to evaluate results in the well-known Berkeley Segmentation Dataset. Such
measures have recently been used in an optimization scheme for segmentation fusion [17]. First we
recall the definitions provided in [26], before defining the confidence measure used in this paper.

Let us first consider two input segmentations S1 and S2. Writing R(S, p) the set of pixels in
segmentation S that are in the same segment as pixel p, we can measure the local refinement error
E(S1, S2, p) in each pixel p of the image space through the following equation:

E(S1, S2, p) =
|R(S1, p) \ R(S2, p)|

|R(S1, p)| , (1)
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where | · | denotes cardinality and · \ · set difference. Since this measure is not symmetric, Martin
proposed several global symmetric measures: the Local Consistency Error (LCE), the Global
Consistency Error (GCE), the Bidirectional Consistency Error (BCE) respectively computed as

LCE(S1, S2) =
1
n ∑

i
min {E(S1, S2, pi), E(S2, S1, pi)} , (2)

GCE(S1, S2) =
1
n

min

{
∑

i
E(S1, S2, pi), ∑

i
E(S2, S1, pi)

}
, (3)

and
BCE(S1, S2) =

1
n ∑

i
max {E(S1, S2, pi), E(S2, S1, pi)} . (4)

The latter has been further extended considering a leave-one-out strategy, leading to

BCE?(Sj) =
1
n ∑

i
min
k 6=j

{
max

{
E(Sj, Sk, pi), E(Sk, Sj, pi)

}}
, (5)

and we rely on this idea in our proposal, as described further on in this section. Let us recall that these
measures were not used to merge segmentations, as a variant using an average operator is proposed
in [17] to achieve this goal:

GCE?(S1, S2) =
1

2n

{
∑

i
E(S1, S2, p) + ∑

i
E(S2, S1, p)

}
. (6)

In contrast to previous metrics, we consider the scale of super-pixels. Consequently, we assign
a score to each super-pixel that measures the degree of consensus between the different input
segmentations in the same super-pixel. S = {S1, . . . , Sm} denotes the set of m input segmentations,
from which we derive a single set of n super-pixels defined as P = {P1, . . . , Pn}. Each super-pixel is
obtained by intersecting the input segmentations, i.e., two pixels p and q are in the same super-pixel Pi
if and only if q ∈ R(Sj, p) ∀Sj ∈ S . In order to counter the directional effect of the local refinement
error at the pixel scale, we propose the following measure:

E?(S1, S2, p) =


|R(S1, p) \ R(S2, p)|

|R(S1, p)| if |R(S1, p)| < |R(S2, p)|

|R(S2, p) \ R(S1, p)|
|R(S2, p)| otherwise.

(7)

In other words, we measure the ratio of the smaller region that does not intersect (or is not
included in) the larger region. It differs considerably from the bidirectional definitions given in [17,26]
that do not distinguish between each pair or regions.

Since our goal is not to aggregate this error at the global scale of an image like with BCE? (or a pair
of images with LCE, GCE, BCE, GCE?), but rather to measure a consistency error for each super-pixel,
we define the Super-pixel Consistency Error as:

SCE(Pi, p) = max
j,k, k 6=j

{
E?(Sj, Sk, p)

}
(8)

that is by definition equal for all p ∈ Pi, so we simply write SCE(Pi) instead of SCE(Pi, p). Since
our revised local refinement error is bidirectional in (7), we can add the constraint j < k in (8)
to reduce computation time. Finally we define the confidence value of each super-pixel Pi with
C(Pi) = 1− SCE(Pi). Furthermore, the computation is limited to super-pixels instead of to the original
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pixels, leading to an efficient algorithm. For the sake of comparison, we recall that the maximum
operator in (8) was replaced by an average operator at the image scale in [17].

Our framework assigns a high confidence value when the regions that make up a super-pixel
resemble each other, and a low confidence value in the case of locally conflicting segmentations, as
shown in Figure 2i. The figure shows that such conflicts appear mostly at the edges of the super-pixels,
since these parts of the image are more likely to change between different segmentations. A more
comprehensive close-up is provided in Figure 3, in which three different scenarios to combine six
segmentations Figure 3a are compared. For the sake of visibility, a single object is considered and
the overlapping segments in the input segmentations are provided. In the first case Figure 3b, all
the regions share a very similar spatial support and the confidence in the intersecting super-pixel is
consequently high. Conversely, there is a notable mismatch between overlapping regions in Figure 3c,
leading to a low confidence score. Finally, we avoid penalizing nested segmentations such as those
observed in Figure 3d, thanks to our definition of the local refinement error (7) that focuses on the ratio
of the smaller region that does not belong to the larger one.

(a) (b) (c) (d)
Figure 3. Different consensus scenarios: (a) input segmentations (left and right), (b) high confidence
(consensus between regions of the two segmentations), (c) low confidence (mismatch between regions),
(d) high confidence (regions are nested within others). Pseudo-colors are randomly generated from
region labels providing one different color per region.

By relying on the consensus between the different input segmentation maps, our combination
framework provides a single feature when dealing with multiple dates as inputs. Indeed, in a change
detection context, high confidence will be assigned to stable regions (i.e., regions that are not affected
by changes) since they correspond to agreements between the different inputs. Conversely, areas of
change will lead to conflicts between the input segmentations and thus will be characterized by a low
confidence score. The (inverted) confidence map could then be used as an indicator of change, but this
possibility is left for future work.

3.3. Prior Knowledge

In the GEOBIA framework, expert knowledge is often defined through rulesets, selection of
relevant attributes or input data. Here, we consider that while the framework might be fed with many
input segmentations, some prior knowledge about the quality of such segmentations may be available
and is worth using.

More precisely, it is possible to assess the quality of the segmentation at two different levels.
On the one hand, a user can assign a confidence score to a full segmentation map. This happens in
some cases where specific input data (or a set of parameters) do not provide accurate segmentation
(e.g., a satellite image acquired at a date when different land cover cannot be clearly distinguished
or the image has a high cloud cover). Conversely, there are situations in which we can assume that
a given segmentation will produce better results than others, e.g., due to a higher spatial resolution
(i.e., a level of detail that fit the targeted objects) or a more relevant source (e.g., height from nDSM is
known to be better than spectral information to distinguish between buildings and roads). In both
cases, the weight remains constant for all the regions of a segmentation.
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On the other hand, such confidence can be determined locally. Indeed, it is possible that a
segmentation is accurate for some regions and inaccurate for others. In this case, the user is able to
weight specific regions of each input, either to express confidence in the region considered or to identify
regions of low quality. Note that the quality assessment could originate either from the geographical
area (e.g., the presence of relief) or from the image segments themselves.

In order to embed such priors in the combination framework, we simply update our local
refinement error defined in (7):

Eω(S1, S2, p) = E?(S1, S2, p) ·ω(S1, p) ·ω(S2, p) (9)

with ω(S, p) denoting the weight given to R(S, p), i.e., the segment of S containing p. If the prior
is defined locally, then two pixels p, q belonging to the same region in S will have the same weight,
i.e., ω(S, p) = ω(S, q). If it is defined globally, then it is shared among all pixels of the image
ω(S, p) = ω(S). By default, we set ω(·, ·) = 1, and only expert priors change the standard behavior
of the framework. If one region or one image is given high confidence, then its contribution to local
refinement error will be higher, and it will thus have a strong effect on the super-pixel consistency
error (the region lacks consensus with other regions). Conversely, if one region or image is given
low confidence, then the local refinement error will be low, and the region/image will not drive
the computation of the super-pixel consistency error. Since the local refinement error compares
two individual regions, we include both related weights in the computation (while still keeping a
symmetric measure). Finally, note that while all measures discussed in Section 3.2 are defined in [0, 1],
the weighting by ω ∈ R+ leads to confidence measures also defined on R+. A normalization step is
required before computation of the confidence map to insure it remains in [0, 1]. When illustrating the
confidence map in this paper, we consider only the unweighted version and rescale it into gray levels.

From a practical point of view, assigning weights to prioritize some segmentation maps or some
regions in a segmentation is an empirical task that relies on heuristics (knowledge of data and metadata,
knowledge of the study site, expertise on segmentation algorithms). The pairwise comparison matrix
inspired by the Analytical Hierarchy Process [27] is one way to rank criteria related to segmentations
(data source, date, method, parameters) and to define quantitative weights.

3.4. Using the Confidence Map

We have presented a generic framework that is able to combine different segmentations and
derive a confidence score for each super-pixel. Here we discuss how the confidence score can be further
used to perform image segmentation, and we distinguish between partial and full segmentation.

3.4.1. Partial Segmentation

Let us recall that in each super-pixel, the confidence map measures the level of consensus between
the different input segmentations. Super-pixels with a high confidence level most likely represent
robust elements in the segmentation map, and thus need to be preserved. Conversely, super-pixels
with a low confidence level denote areas of the image where the input segmentations do not match.
Such regions could be reasonably filtered out by applying a threshold (α in Equation (10)) on the
confidence map. Figure 4 illustrates the effect of confidence thresholding with various thresholds,
as follows:

Cα(Pi) =

{
C(Pi) if C(Pi) > α

0 otherwise.
(10)

where super-pixels with confidence lower levels than α are discarded (shown in black).
This process leads to partial segmentation, which provides only super-pixels for which the

consensus was high. All the regions in the image that correspond to some mismatch between the
input segmentations are removed and assigned to the background. This strategy is useful when the
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subsequent steps of the GEOBIA process have to be conducted on the significant objects only (here
defined as those leading to a consensus between the input segmentations).

(a) (b) (c) (d)
Figure 4. An illustration of the confidence map (a) and the subsequent partial segmentation obtained
with a threshold of (b) α = 0.3, (c) α = 0.6, and (d) α = 0.9. The brighter tone corresponds to higher
confidence, and darker tone to lower confidence.

3.4.2. Full Segmentation

In order to obtain a full segmentation from the partial segmentation discussed above, background
pixels have to be assigned to some of the preserved super-pixels. Several strategies can be used.

For instance, it is possible to merge each low-confidence super-pixel with its most similar neighbor.
However this requires defining an appropriate criterion to measure the so-called similarity. While the
similarity might rely on the analysis of the input data, it can also remain independent of the original
data by assigning each low-confidence super-pixel to the neighbor with the highest confidence, or with
which it shares the most border. Note that if a discarded super-pixel is surrounded by other super-pixels
whose confidence levels are also below the threshold, the neighborhood has to be extended.

More advanced filtering and merging methods are reported in the literature [28], such as region
growing on a region adjacency graph of super-pixels (called quasi-flat zones in [28]). Filtering is then
based on the confidence of super-pixels rather than on their size. The growing process in [28] requires
describing each super-pixel by its average color. Any of the available data sources can be used, leading
to a process that is not fully independent of the input data (note that such input data are only used
to reassign the areas of the image where the consensus is low, not to process the complete image).
Otherwise, geometric or confidence criteria can be used.

Figure 5c highlights the super-pixels with low confidence levels (shown in white) that have to
be removed and merged with the remaining ones (shown in black). As might have been expected,
super-pixels in which input segmentations disagree actually correspond to object borders Figure 5b.
Such areas are known to be difficult to process. Indeed, most of the publicly available contests in
remote sensing apply specific evaluation measures to tackle this issue, e.g., eroding the ground truth
by a few pixels to prevent penalizing the submitted semantic segmentation or classification map with
inaccurate borders.

Finally, it is also possible to retain all super-pixels but to use their confidence score in a subsequent
process. In the context of geographic object-based image analysis, such a process might consist of
a fuzzy classification scheme, in which the contribution of the super-pixel samples in the training
of a prediction model will be weighted by their confidence. Since the focus of this paper is on the
combination of segmentations and not their subsequent use, we do not explore this strategy further
here, but we do include some preliminary assessments in the following section.
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(a) (b) (c)
Figure 5. Object borders are characterized with low confidence: (a) reference segmentation map,
(b) borders of the reference objects, and (c) super-pixels with low-confidence.

4. Experiments

Here we report several experiments conducted on the ISPRS 2D Semantic Labeling dataset
to assess the relevance of the proposed generic framework for the combination of segmentations.
The dataset is provided for the purpose of classification. In our GEOBIA context, we will thus evaluate
our framework in terms of its ability to provide objects relevant for the subsequent classification. We
first present the dataset and explain how we built the input segmentations, before presenting and
discussing the results obtained for partial and full segmentation.

4.1. Dataset and Experimental Setup

In this paper, we consider one of the 2D Semantic Labeling Contest datasets [29], the Vaihingen
region in Germany. The dataset contains a true color orthophoto (with red (R), green (G), and near
infrared (NIR) channels) acquired with a ground resolution of 9 cm, as well as a Digital Surface Model
(DSM) generated by interpolating the point clouds acquired by an airborne laser scanner (Leica ALS50
system) of the same region.

To complete the original data, like many other authors, we compute nDSM (normalized DSM) by
subtracting DTM (Digital Terrain Model) from DSM. DTM is derived from DSM using progressive
morphological filtering [30]. We then obtain nDSM, which stores information on the height of each
pixel above the estimated ground. We also extract the popular NDVI feature computed from Near
Infrared and Red bands.

As the ISPRS dataset is provided for classification purposes, the ground truth for six different
classes was also provided: impervious surfaces, buildings, low vegetation, high vegetation, cars,
and background. Here, we will measure the classification accuracy provided by the combination of
segmentations. To do so, we use one tile #3 for testing, and all others for training a random forest
classifier made of 10 decision trees. We describe each pixel using five features: height from nDSM,
vegetation index from NDVI, and original color bands (R, G, and NIR) from the orthophoto. Since we
want to measure accuracy at the object level, we first classify each pixel in a super-pixel, then assign
the class to the super-pixel using the majority vote of its pixels.

Finally, as far as input segmentations are concerned, we build four maps by crossing two
well-known algorithms (Felzenszwalb [31] and Mean-shift [32]) and two data sources (orthophoto and
nDSM built from LiDAR).
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Figure 6 shows the tile #3 of the dataset, the orthophoto and the derived NDVI, the DSM and the
derived nDSM, the reference classification and its associated segmentation, as well as the four input
segmentations, the intersecting super-pixels and the associated confidence map. All segmentation and
super-pixels maps are given in random pseudo-colors.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)
Figure 6. Ilustration of ISPRS dataset (tile #3 of Vaihingen): (a) False color orthophoto, (b) NDVI,
(c) DSM, (d) nDSM, (e) reference map, (f) reference segmentation, (g,h) Felzenszwalb IRRG and
nDSM, (i,j) Mean-shift IRRG and nDSM, (k) super-pixels, (l) confidence map. All segmentation and
super-pixels maps are given in random pseudo-colors.

We conducted two additional experiments to compare the results provided by our method with
the results of more traditional approaches. The first experiment was a post-classification fusion
of four classification maps based on (1) Felzenszwalb segmentation of IRRG, (2) Felzenszwalb
segmentation of nDSM, (3) mean-shift segmentation of IRRG and (4) mean-shift segmentation of
nDSM. The fusion providing the final classification was based on a majority vote. The second approach
was a before-segmentation fusion (i.e., a stack of IRRG+nDSM images). A first classification map
was generated from this source after a mean-shift segmentation. A second classification map was
derived from a Felzenszwalb segmentation. In all cases, the classifications were based on the random
forest algorithm.

4.2. Results and Discussion

4.2.1. Partial Segmentation

In the first of the two additional experiments, we aim to evaluate the quality of the partial
segmentations obtained with different α thresholds (from 0.1 to 0.9 by step of 0.1). We thus measure
the quality of the retained super-pixels in terms of classification accuracy considering the F1 score.
Figure 7 shows the F1 score vs the confidence value threshold plot per class. It shows that setting a high
threshold for the confidence value yields fewer super-pixels but higher accuracy, which was expected.
Nevertheless, we can also see that in some cases, the high-confidence super-pixels are incorrectly
classified, thus leading to a lower overall score. However, it should be noted that such effects are
observed with a small number of super-pixels, and consequently F1 score statistics are less significant.
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Figure 7. Accuracy of the super-pixels (F1 score; y-axis) in each class according to the confidence value
threshold (x-axis).

4.2.2. Full Segmentation

In the second experiment, we consider full segmentation. We previously discussed several
strategies to build a full segmentation from a partial one. In order to draw generic conclusions from
our experimental study, here we decided to keep all super-pixels (and their associated confidence map).
First, using the previously described setup, we compare an object-based classification and a pixel-wise
classification. Figure 8 illustrates the relevance of the GEOBIA paradigm, with—for instance—less salt
and pepper noise in the classification map and more accurate borders in our method (Figure 8b) than
when pixel values are used directly (Figure 8a).

(a) (b) (c)
Figure 8. (a) Pixelwise Classification, (b) Super-pixelwise classification, (c) Reference map. The color
legend for the classes is as follows: building (blue), low vegetation (cyan), tree (green), impervious
surface (white), car (yellow).

Furthermore, considering all super-pixels in the accuracy assessment avoids possible artifacts
due to lack of statistical significance, as observed in the previous section. We thus introduce a novel
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evaluation protocol that modifies the computation of the underlying confusion matrix in order to
weight each individual contribution of an element by its confidence level. Tables 1 and 2 list the
unweighted (original) and weighted (proposed) confusion matrices, where the unit is the number of
pixels (but a similar conclusion can be drawn using the number of super-pixels). The values between
those matrices cannot be compared directly due to the weighting by the confidence value, which
lowers the values in Table 2 w.r.t. Table 1.

To compare the matrices, we compute F1 scores for each class in both cases, and provide a
comparison in Table 3. The systematic improvement of the weighted version over the unweighted
one is clear. The car class is the only class for which there is no improvement in the F1 score, and this
is probably due to the fact that the objects are small and difficult to classify. The F1 score of all the
other classes is higher when accounting for the confidence level, i.e., the super-pixels resulting from a
consensus are more likely to be well-classified than others. This supports our final proposal of using
the super-pixels with their confidence level in a fuzzy classification framework.

Table 1. Unweighted confusion matrix.

Predicted Labels

Road Building Grass Tree Car

Tr
ue

La
be

ls Road 1,812,150 73,769 145,054 20,263 8132
Building 69,888 1,474,283 57,644 22,326 8119

Grass 238,132 31,334 822,025 60,352 5314
Tree 33,338 9,238 326,643 757,780 395
Car 35,797 1333 1626 14 17,093

Table 2. Weighted confusion matrix.

Predicted Labels

Road Building Grass Tree Car

Tr
ue

La
be

ls Road 1,127,264 21,814 42,877 5951 3657
Building 26,820 797,137 20,789 7818 2974

Grass 125,425 9691 417,472 19,074 1389
Tree 9877 1974 102,051 295,965 69
Car 22,185 411 854 2 10,110

Table 3. F1 score of each class and average calculated from the original (unweighted) and proposed
(weighted) confusion matrices.

Classes F1 Scores

Unweighted Weighted

Road 85.31 89.71
Building 91.51 94.53

Grass 65.50 72.16
Tree 76.23 80.13
Car 36.02 39.06

Average 69.44 75.12

4.3. Comparison with Other Fusion Strategies

In this paper, we chose to focus on fusion at the object level. When several data sources are
available, it is also possible to conduct fusion at the pixel level (i.e., before segmentation) or at the
decision level (i.e., after classification). We compare our approach with these two strategies, following
the same classification scheme based on random forest.

Figure 9 illustrates the classification maps produced with the different strategies. In the case of
post-classification fusion, we combine four maps (obtained with all combinations of two segmentation
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methods applied on two data sources) through a majority voting procedure (see Figure 9a). In contrast,
Figure 9b,c show the use of Felzenszwalb and mean-shift segmentation methods respectively, when
applied to a stack made of the two available sources, namely IRRG and nDSM data (pre-classification
fusion). Visual comparison with our method (see Figure 8b), enables us to make several remarks.

The post-classification fusion greatly underestimates two out of the five classes (low vegetation
and cars are often incorrectly classified as impervious surface). By stacking IRRG and nDSM into a
single data source, pre-classification fusion leads to irregularly shaped object with the Felzenszwalb
method. The results are more accurate with mean shift, emphasizing the sensitivity of the classification
results to the segmentation method used (recall that as segmentation is an ill-posed problem, we
cannotfind a perfect universal segmentation method). The results are somewhat similar to our method,
showing that the combination process is able to rely on the most relevant segmentation map (or, by
extension, the most relevant data sources) among those available.

These visual results are completed by quantitative evaluation (Tables 4–7). The first one (Table 4)
shows the F1 scores obtained for each class and averages obtained with the different segmentation
strategies. Our method obtained the highest average F1-score, as well as the best results for the road
and cars classes. The following tables provide deeper insights with confusion matrices measured
between the different classes for each individual strategy. We can see the misclassification between
grass and roads or cars and roads, as already shown visually.

Table 4. F1 score of each class and average calculated using our proposed method and other fusion
strategies (post- and before-segmentation, see Figure 9).

Classes
F1 Scores

Proposed Post-Segmentation Before-Segmentation Before-Segmentation
Felzenszwalb Mean-Shift

Road 85.30 77.10 78.34 83.37
Building 91.51 93.03 85.67 91.11

Grass 65.50 41.36 58.94 68.72
Tree 76.23 79.38 64.13 81.01
Car 36.02 6.26 21.81 23.33

Average 70.91 59.43 61.78 69.51

Table 5. Confusion matrix obtained for post-classification fusion (Figure 9a).

Predicted Labels

Road Building Grass Tree Car

Tr
ue

La
be

ls Road 1,876,342 68,953 93,686 13,133 1003
Building 86,541 1,441,028 21,494 11,628 1040

Grass 769,732 81,053 429,557 98,647 940
Tree 60,505 23,658 144,800 679,796 52
Car 107,510 8189 7814 692 4249

Table 6. Confusion matrix obtained for classified Felzenszwalb segmentation based on a before-
segmentation fusion (Figure 9b).

Predicted Labels

Road Building Grass Tree Car

Tr
ue

La
be

ls Road 1,611,352 102,908 226,633 106,109 6115
Building 84,709 1,365,769 65,998 43,300 1955

Grass 243,531 113,157 798,564 222,330 2347
Tree 41,723 34,033 224,861 608,051 143
Car 79,150 10,794 13,694 7802 17,014
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Table 7. Confusion matrix obtained for classified mean-shift segmentation based on a before-segmentation
fusion (Figure 9c).

Predicted Labels

Road Building Grass Tree Car

Tr
ue

La
be

ls Road 1,765,178 80,131 186,022 16,650 85,778
Building 57,142 1,452,785 37,781 12,198 10,779

Grass 256,808 68,420 925,928 126,871 13,044
Tree 16,402 15,210 151,951 725,169 711
Car 85,778 10,779 13,044 79 18,142

(a) (b) (c)
Figure 9. (a) Post-classification fusion of four individual classifications derived from Felzenszwalb and
mean shift segmentations on IRRG and nDSM respectively, (b) classified Felzenszwalb segmentation
based on a before segmentation fusion of IRRG+nDSM, (c) classified mean shift segmentation based on
a before segmentation fusion of IRRG+nDSM. The colors used for the classes are as follows: building
(blue), low vegetation (cyan), tree (green), impervious surface (white), car (yellow).

5. Conclusions

In the present paper, we deal with the combination of segmentations for which we propose a
generic framework. This is a very topical issue, with numerous works in image processing, computer
vision, as well as remote sensing. In the context of GEOBIA, segmentation is a critical element and
there is no universal and optimal segmentation method able to deal with the different situations
(multiple sensors, multiple dates, multiple spatial resolutions, etc.). Our framework builds upon
previous work in relying on the super-pixels produced by intersecting input segmentations. However
in contrast to existing methods, we do not rely on the original data but only on the segmentation
maps, thus making it possible to use heterogeneous data sources. Furthermore, we propose a way
to embed prior knowledge through a local or global weighting scheme. We define a new confidence
score in each super-pixel that measures the local consensus between the different input segmentations
and allows for possible multiple scales between them. We have demonstrated the relevance of this
confidence score and illustrated how it can be used in different experimental setups, based on a
publicly available dataset.

While these experiments provide initial insights into the proposed confidence measure, we still
need to compare our framework with existing solutions for segmentation fusion. Nevertheless, let us
recall that unlike existing methods, our framework is generic in the sense that it does not assume a
single data source from which multiple segmentations are derived. Our confidence measure is based
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on a single criterion (revised local refinement error). Recently, some attempts have been made in
segmentation fusion using multiple criteria [33], that are worth monitoring. Finally, the proposed
weighting scheme relies on manual settings (based on the user’s prior knowledge). We believe the
method will gain in robustness if those weights could be computed automatically (e.g., through
machine learning).
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