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Abstract: Wildlife–vehicle collisions (WVCs) cause significant road mortality of wildlife and have led
to the installation of protective measures along streets. Until now, it has been difficult to determine
the impact of roadside infrastructure that might act as a barrier for animals. The main deficits are the
lack of geodata for roadside infrastructure and georeferenced accidents recorded for a larger area.
We analyzed 113 km of road network of the district Freyung-Grafenau, Germany, and 1571 WVCs,
examining correlations between the appearance of WVCs, the presence or absence of roadside
infrastructure, particularly crash barriers and fences, and the relevance of the blocking effect for
individual species. To receive infrastructure data on a larger scale, we analyzed 5596 road inspection
images with a neural network for barrier recognition and a GIS for a complete spatial inventory. This
data was combined with the data of WVCs in GIS to evaluate the infrastructure’s impact on accidents.
The results show that crash barriers have an effect on WVCs, as collisions are lower on roads with
crash barriers. In particular, smaller animals have a lower collision share. The risk reduction at
fenced sections could not be proven as fenced sections are only available at 3% of the analyzed roads.
Thus, especially the fence dataset must be validated by a larger sample number. However, these
preliminary results indicate that the combination of artificial intelligence and GIS may be used to
analyze and better allocate protective barriers or to apply it in alternative measures, such as dynamic
WVC risk-warning.

Keywords: wildlife–vehicle collision; traffic accident; fence; crash barrier; GIS; risk analysis; spatial
traffic analysis

1. Introduction

Heterogeneous parameters of the road environment contribute, to a greater or lesser extent, to the
cause of wildlife–vehicle collisions (WVCs). Land use, road structure, as well as traffic volume and
speed are already explored parameters with a significant impact on WVCs [1–3]. One aspect which
has been marginally researched is the road accompanying structure. This opens the question up as to
what extent the roadside infrastructure, such as crash barriers and fences, affect the local occurrence of
WVCs. Analyses in this context have been restricted in the past by data availability for WVCs, on the
one hand, and georeferenced and digital documentation of roadside infrastructures on the other hand.

For road documentation, camera-based inspections are made on a regular basis for most roads in
Germany, using a car as a carrier for up to four cameras (for the front, rear, left, and right side
of the driving direction). While camera data is georeferenced, we posed the question whether
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computer vision, in combination with GIS-based approaches, would be able to derive a georeferenced
infrastructure inventory from these images. This information could provide knowledge about different
risk types in the road environment, e.g., factors influencing the risk for wildlife crossings.

Relying on experiences on automatic extraction of road signs from images, (e.g. [4,5]) using artificial
intelligence and machine learning, (e.g. [6,7]), we based our research on the following hypothesis:

(1) Crash barriers and fences can be identified in a series of inspection images by an artificial neural
network (ANN).

(2) Using GIS, a georeferenced inventory of fences and barriers can be built.
(3) The barriers have a preventive measure while influencing animals’ behavior and, hence,

reduce accidents.

In this context, we want to especially consider the effect on different species. We restricted the study to
crash barriers and fences, which we will refer to as barriers in the following text.

At this preliminary research stage, the objective was to test individual steps, which could be
later combined to build an automated process chain from updating the inventory on basis of camera
data through machine learning and GIS-based documentation and analysis. As the majority of
German building authorities only have individual road construction plans with crash barriers and
fences, but not any comprehensive spatial barriers’ documentation available, we propose the machine
learning and GIS-driven approach for automatic identification and georeferencing using existing photo
material from official road inspections. The project is driven by the idea that a better understanding
of animals’ behavior and resulting accidents could help to better plan and place protective measures.
Also, a better warning for car drivers, e.g., through mobile applications, may be a potential opportunity
to increase road security with this combined GIS and machine learning approach.

In the first part of this paper, we introduce the state of the art in GIS-based WVC analysis,
considering, especially, the aspect of infrastructural effects. Additionally, potential approaches were
analyzed, such as how to integrate ANN for feature detection and GIS to build an infrastructure
inventory. Based on the material of WVCs and images of camera-based road inspections, we developed
a methodology, how to use barriers, derived from computer vision and artificial intelligence in
geospatial modelling. Afterwards, the relation of the occurred WVCs and the presence or absence
of both barrier types is evaluated statistically. After the presentation of our results showing the
species-specific effect, we draw conclusions and propose the next steps to include the abovementioned
results in a larger framework for WVC analysis and prediction.

2. State of Art of GIS-Based WVC Analysis

Thus far, GIS methods have been utilized by several studies about WVCs to compare the
accident occurrence with environmental, infrastructural, and traffic parameters (e.g., [8]). In order to
contribute to road safety efforts, the GIS studies analyzed WVC development and changes in landscape
structures [9], the placement of warning signs [10], delineating wildlife movement [11], or the impact
of landscape on WVCs [12]. Even though some studies ascertained that infrastructure has an impact
on WVCs [1,13], the number of studies dealing with specific infrastructure types is limited, and those
available are spatially restricted and have not been able to substantially quantify the effect of different
structures, such as barriers and fences, on WVCs [2,14–16]. To the best knowledge of the authors,
until now, no research on the impact of crash barriers has been undertaken at such a scale [14,15].

For fences, Seiler found out that “Traffic volume, vehicle speed and the occurrence of fences
were dominant factors determining MVC risks” [13] (MVC—moose vehicle collision). While fences
reduce the risk of WVCs, they also seem to shift parts of the risk to the end of the fence [13] and do not
exclude accidents inside the fenced area. As deer, for example, circumvent the fence [17], the collision
risk increases the fence endings by a higher concentration of crossing numbers. Colino-Rabanal et al.
identified in their data that “roadkill was proportionally higher along fenced highways than on similar
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major roads that lacked fences” [18], but they mainly see low traffic volumes along these unfenced
roads as the reason for the low numbers of WVCs.

So far, the availability of data has been restricted and has limited studies from drawing conclusions
about the connection between WVC and infrastructure. Now, camera-based road inspections provide a
huge amount of data to derive inventories from, offering data for the aforementioned limited research
efforts. Therefore, de Frutos et al. suggested to use smartphone-based cameras and apps for video
inspections [19], an alternative option to the more expensive terrestrial laser scanning [20]. Besides,
process chains to collect and evaluate image data using GIS-based handling of camera-based material
and frames have been recommended [21]. The extraction of infrastructure data can be achieved using
computer vision, which was already recommended for camera-based road inspections, but mainly
applied for pavement analysis and road sign detection [22]. The predominant applied example is,
in general, road sign detection [7,23,24], resulting in a vast number of approaches from classical
computer vision [7], via support vector machine [24] and neural networks [6]. The use of artificial
intelligence and neural networks have especially contributed to this domain. While transfer learning
improves the ability to rely on existing nets and focus the learning on specific aspects of a type of
images [25], image databases, such as ImageNet [26,27] and competitions [27,28], contribute to making
the approaches transferrable, systems comparable, and to provide a solid basis for transfer learning.

3. Material and Method

During the past eight years, Bavarian police recorded all reported WVCs, georeferenced the
location of the accidents, and documented the species of the animal involved in the accident. We used
an excerpt of this dataset for the district of Freyung-Grafenau, a rural accident hotspot in the Bavarian
Forest, Germany (Figure 1). The dataset contains 1571 accidents within the period of 2010–2017 at
secondary roads. As a lot of WVCs occur at overland roads of the secondary street class, we have
chosen a dataset with all three secondary roads B 12, B 85, and B 533 (national roads—Bundesstrasse)
for the analysis. To identify the relevant roadside infrastructure, we used 5596 images recorded
by camera-based inspections along the road, data from official road inspections from the Bavarian
Ministry of the Interior, for Building and Transport of the year 2015. While WVC data covers a period
of the past eight years, the barrier information is, due to the photo material, only a snapshot of the
situation in 2015. However, we assume that the changes in this type of infrastructure are minor and
will not have significant impact on the analysis.

For the investigation, we used information about animal- and human-preserving barriers (crash
barriers and fences) derived from an automatized image classification with the TensorFlow framework
and a GIS analysis (see Figure 2 for the concept and Figure 3 for the process chain). First, we manually
classified all images of the camera inspection. The basic ANN was constructed by using Inception V3
architecture. For the training, the transfer learning approach was used because the set of available data
was too small to train an own network. A pre-trained network, based on the ImageNet dataset [27],
was taken to support the training work. The output layers were removed, and the network was trained
again, using a set of roughly 800 inspection images.

Input data to the Inception V3 model are images with a size of 299 × 299 pixels. All input data
was automatically scaled by the TensorFlow framework. Monitoring of the training process showed
that 6000 training steps were sufficient, and further training steps did not increase the classification
quality. Two separate ANNs were used to classify fences and crash barriers. A total of 398 images
was split for fence detection. Manually pre-classified data from the left (211 images) and the right
camera (187 images) were taken, showing fences in comparison to 418 images without fences. For crash
barriers, we used 835 manually pre-classified images with 455 images showing a barrier, and 380
without a barrier. Eighty percent of images were used for training, 10% for validation, and 10% for
testing in the ANN. We shuffled training data to use left and right images alternately.
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For the first training of the ANN, we used camera data from the left and right side of the car.
Cameras were directed in the front right and front left direction. While the car was permanently
driving at the right side of the street, the consequence was that the distance between camera and the
border of the street, where fences are mainly located, was a minimum of 2 to 2.5 m on the right side
(strip of the street plus embankment and drainage system), but at a minimum 5.5 to 6 m at the left
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hand side (left lane of the street roughly 3.5 m plus embankment and drainage system). Consequently,
the images, especially those displaying fences, have different resolutions, due to the distance to the
camera. Thus, we adapted the methodology later on by only using images from the right side camera
with a higher resolution of depicted objects for training, resulting in a significantly higher classification
quality, as shown in Chapter 4.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  6 of 14 
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Figure 3. The artificial neural network (ANN) and GIS-based process to build a georeferenced barrier
inventory along roads.

For further GIS-based analysis, the image classification results are imported into ArcGIS (Desktop
ArcMap) using csv format. The result for each image (identified by ID and x and y coordinates) is
separated in four values: fence present (1) on the left road side, (2) on the right road side; crash barrier
present (3) on the left road side, (4) on the right road side (see Figure 2).
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Approximately 20 m is the distance between two image points giving information about the
absence or presence of a fence and a crash barrier. To get linear information about the length of both
barrier types, features with the attribute crash barrier = 1 (“available”) and fence = 1 are separately
selected and converted into lines. Feature points or, rather, image information, which are classified as
non-barrier location, are not considered further. The coordinates of each image point belong to the
original record point, indeed, and not the next few meters visible in the image, where the barrier may
be identified. Nevertheless, the approach is an easy approximation about where a barrier starts and
ends, with a minor uncertainty about the exact start and end point.

Lines with distances smaller than 10 m between two single image points were eliminated.
By testing and comparing with the point information, we found out that 10 m was the minimum for a
reasonable barrier line, deleting artefacts and very short lines of single wrong classified images (see the
case of Figure 6, zoom-in map). Instead, only barriers with more than two points (longer than 10 m)
were identified. We calculated the Euclidean distance between the points as an approximation to the
road network, and very similar to the road line because of the small image points (see also Figure 6).
If the distance between two image points was larger than 80 m, the line was also eliminated, as we
assumed that there is a gap in the barrier between the two points, or two discontinuous points have
been connected by the point-in-line calculation. As there was no other study available for comparison,
this threshold is an assumption which was approximated to the real situation to get a realistic barrier
line. Then, the individual files for left and right side barriers were merged, and a new file for the
remaining road sections without barriers was calculated using the erase function (including a 10 m
buffer for lines not lying exactly on the road line due to inaccurate GPS point data). Finally, the number
of WVCs that occurred on roads with and without barrier lines, was summed up separately.

4. Results

To better discuss the individual parts of the research, we split the presentation of the results
in three segments: First, presenting the underlying analysis of WVC data, second, looking at the
GIS-based results of barrier impact on WVCs, and third, critically reflect the ANN and its contribution
to provide the basic infrastructural data.

4.1. WVC Statistics

In the district of Freyung-Grafenau, a total of 1571 WVCs occurred on secondary roads in the
years 2010–2017. The increase of accidents over the past eight years correlates with the increase of this
accident type in Bavaria and Germany (Figure 4).
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The WVC distribution by species for the three secondary road sections shows that the vast majority
of accidents is caused by deer, followed by rabbits and foxes (Table 1).

Table 1. The annual distribution of WVCs per species.

Species 2010 2011 2012 2013 2014 2015 2016 2017

Rabbit 8 22 20 15 20 11 20 18
Deer 57 151 172 158 136 158 156 182
Other 2 3 3 11 5 8 10 15

Wild Boar 2 0 6 5 1 5 2 9
Fox 3 13 13 12 21 17 16 20

Badger 1 7 3 4 2 6 9 11
Wild Bird 2 3 3 1 1 7 2 3

4.2. GIS Results

Sixty-four percent of road segments are accompanied by crash barriers, and nearly three percent of
roads are protected by fences, as Figure 5 shows for the whole research area (a), and for one section (b).
In Tables 2 and 3, we compared the dependencies between WVCs, barriers, and fences for the manual
and ANN-based classification. The comparison of WVCs with areas protected by crash barriers results
in an equal number of the total 1571 accidents that happened in sections with barriers (776) versus
the accidents in areas without barriers (795). Due to the high classification quality, the manual and
automatic classification provided similar results. By considering the length of the sections with and
without barriers, the number of WVCs per length is 2.11 times higher in sections without crash barrier
(3.30 times higher using ANN classification) in comparison to sections without barriers or, the other
way around, the street section where one when WVC occurs is 2.11 times longer on average (WVC
proportion to street length).
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The distribution of WVCs shows that barriers have an impact on accidents. Especially crash
barriers seem to significantly influence the accident situation for all animals, particularly on special
species (see also Table 4). The impact of fences on WVCs needs to be discussed because current data
would support the hypothesis that fences would increase the risk of WVCs by the factor 3.08, or areas
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without fences would have 0.32 times lower risk of accidents. For a total of 113 km, we identified less
than 3 km of fenced road segments.

Table 2. Results of WVC numbers at roads with and without crash barriers for the road segments
identified by ANN in comparison to the manual classification.

Crash Barriers Total Number
of WVC Neural Network Manual Check

With
Barrier

Without
Barrier

With
Barrier

Without
Barrier

Number of WVC 1571 776 795 720 851
(%) (100%) (49.40%) (50.60%) (45.83%) (54.17%)

Street length (km) 86.257 26.746 72.489 40.514
Street Length / WVC 111.16 33.64 100.68 47.61

WVC Proportion to Street Length 3.30 0.30 2.11 0.47

Table 3. Results of WVC numbers at roads with and without fences for the road segments identified by
ANN in comparison to the manual classification.

Fences Total Number
of WVC Neural Network Manual Check

With
Fence

Without
Fence

With
Fence

Without
Fence

Number of WVC 1571 211 1360 109 1462
(%) (100%) (13.43%) (86.57%) (6.94%) (93.06%)

Street length (km) 5.429 107.574 2.668 110.335
Street Length/ WVC 25.73 79.10 24.48 75.47

WVC Proportion to Street Length 0.33 3.07 0.32 3.08

The hypothesis that animals will circumvent the fence and the number of WVCs will increase at
the end of a fenced section is supported by literature [17], and would help to better understand the
statistical result. For short fenced sections, also, the inaccuracies in fence positions as well as accident
positions may support this theory, because some of the accidents, marked as inside the fenced road
section, may have been located near the end of the fence, and could be explained by circumventing.

The effect of crash barriers and fences also depends on the species. Crash barriers seem to have an
even stronger retaining effect on badgers and foxes but, also, for the predominant deer population in
the area, street segments without crash barriers have a two-times higher (2.16) probability for accidents
in comparison to segments with crash barrier (Table 4). The numbers for rabbits indicate that especially
smaller animals, such as rabbits and “others”, seem not to be retained by fences at all. The two-times
higher probability for wild birds may explain that the effect on other species might affect the behavior
to search for carcasses.

Table 4. WVC per species proportional to street length for road segments with crash barriers and fences.

WVC Proportion to Street Length

Species Crash Barrier Fence

Rabbit 2.57 0.25
Deer 2.16 0.34
Other 1.61 0.21

Wild Boar 2.68 0.34
Fox 3.35 0.32

Badger 4.13 0.50
Wild Bird 2.15 0.51
All species 2.11 0.32
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We did not distinguish between different fence types (game fence, non-permanent pasture fence,
smaller barriers, and garden fences). Different types might retain some species and may have no effect
on others. Also, the length of fenced segments should be further analyzed as circumventing may play
a role for wildlife crossings and for the WVC risk. For further research, even larger datasets and a
better classification of fences will be necessary.

The large dataset of WVCs is a result of a long monitoring period (eight years), while barrier
data only represents a temporal snapshot from 2015. As a consequence, also, more time frames of
infrastructure are necessary to analyze changes of constructions.

Figure 6 (for crash barriers) and Figure 7 (for fences) are the resulting maps with the georeferenced
barrier inventory. The comparison of the automatized classification with the manually checked road
sections shows a high correspondence of crash barrier identification and the improving requirements
in the case of the fence digitization. The small zoom-in map of Figure 6 presents the advantage of the
ANN and GIS combination, as the share of correct identified road sections are increased by using the
GIS approach. However, it also shows that the accuracy of the automatic classification still needs to
be improved.
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4.3. ANN Results

The auto-classification by ANN resulted in a 92% classification rate to identify crash barriers and
a 63% rate for fences (Table 5). In particular, the low classification quality of fences may result from the
fragile structure of fences in combination with the differing resolution of images from the two different
cameras. We later analyzed this difference in resolution by first training the ANN with images from
both sides and, second, with images only from the right side, and used this trained ANN to classify
images from both sides of the road.

Table 5. Quality of auto-classification of images by the ANN.

Barrier Left Barrier Right Barrier Total Fence Left Fence Right Fence Total

False 7.72% 7.70% 7.71% 55.25 19.50% 37.37%
True 92.28% 92.30% 92.29% 44.75% 80.50% 62.63%

Results (Table 6) show that training data stemming from both cameras results in a significant
larger number of misclassifications. Training the ANN only with camera data from the right side
resulted in nearly 8% more correct positives (ANN identified fences, where fences are on the image) as
well as 12% more correct negative (ANN identified no fence, where no fences are). This may indicate
that for slim structures, such as fences, resolution is a key aspect for training that will also result in
positive classification results for images with a lower resolution of the object.

The classification results for crash barriers are significantly better than those for fences. Crash
barriers are, in general, located closer to the road and provide larger and more significant structures.
Fences are often located behind crash barriers or even far from the street, which means that fences are
below a resolution that could be detected by ANN, or can be mixed up with slim and elongate bushes
and small trees, such as birches or hazelnut.
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Table 6. Comparison of automatic image recognition using neural network with training of images of
both sides and only right side and the relative change.

Training on Images Relative Change
Of Both Sides Of Only Right Side

Fence No Fence Fence No Fence Fence No Fence

Right Correct 142 3507 153 3943 7.75% 12.43%
False 1837 105 1398 97 −23.90% −7.62%

Left
Correct 147 2064 166 2699 12.93% 30.77%
False 3343 37 2695 31 −19.38% −16.22%

Subsequently we can summarize that pre-trained ANN can be used through transfer learning to
identify barriers and fences as roadside infrastructure and create an inventory using GIS techniques,
building up an inventory and analyzing the occurrence and cause effect relationships between
infrastructure and WVC. Image resolution and the size of the dataset are essential factors for
the analysis.

5. Conclusions

In this study, we analyzed the impact of barriers (crash barriers and fences) on the risk of
WVCs. We followed the hypothesis that (1) crash barriers and fences can be identified in a series of
camera-based road inspection images by an ANN and that (2) a georeferenced inventory of fences and
barriers can be built using GIS. Based on this data, we found a preliminary answer to the question
of up to which extent barriers can have a preventive measure while influencing animals’ behavior to
reduce accidents and increase safety. While a barrier effect of crash barriers is visible, fence impacts
must be researched more precisely in the next step. Using ANN to identify barriers in the images
provided, in a first attempt, already adequate results, sufficient to delineate barriers in a GIS. GIS was
in this part able not only to build the polylines of these structures but also to compensate errors of the
ANN by restricting results to a spatially reasonable dataset.

Due to these new possibilities to derive the location and extent of road-accompanying barriers
from camera images, we were able to compare, in a preliminary study, 113 km of road network with
WVCs from an eight-year period. We found that crash barriers have a strong effect on wildlife and,
thus, reduce the risk of WVCs by one-half. For our test site, fences seem not to affect animals, but this
requires further testing with a larger region and an increased number of roadside fences. However, the
crash barrier information can already be considered in a new type of WVC warning system for car
drivers to better predict areas at risk, or to improve planning of protection measures.

From a methodological perspective, the combination of artificial intelligence with GIS provides a
new concept to make a study on a topic, where up-to-date quantitative research was not possible due to
a lack of data. The study still leaves some questions open and requires further consideration to improve
the quality of results as well as the accuracy of geodata with regard to completeness and precision
of location. The classification of fences needs to be developed further due to different fence types,
having differing visual appearance and effects on wildlife. There is a need to distinguish between
game fences, protection fences, as well as garden fences, and other possible subtypes. For this new
training material and, also, a larger test region, it will be necessary to increase the total available length
of fences and sections for different fence types. Additionally, the resolution of the inspection images
might contribute to a better quality of the ANN’s detection rate. We applied a standard resolution of
299 × 299 pixels to use an existing trained network for transfer learning. Using the available image
resolution and training an own neural network will increase the effort to manually classify sufficient
data but might also improve barrier—especially fence—recognition.

From a data perspective, three aspects should be considered in the future: (1) Infrastructure
developments over time. The length of the available time series (eight years for WVC) will require
consideration of the development of the built environment at and along a street in the future. This will
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increase complexity from a GIS perspective, to take into account spatiotemporal data. The problem
is, again, data availability due to missing documentation of these structures. While accidents are
documented on a daily basis, changes of infrastructure might be only considered depending on
inspection intervals. (2) Other types of barriers, such as noise protection barriers, dams, and hill
intersections with steep slopes, walls, or gullies were not considered in this study, but might also
impact animals’ behavior and movement patterns and, hence, WVC occurrence and risk. These types
of structures are also undocumented and can only partially be derived from photos. Mixed approaches,
combining inspection images and laser scanning data, might provide the necessary information. Then,
the presented methodology might be applied to these infrastructure types. (3) While past studies
only considered a small number of WVC-influencing factors, the current study and its applicability
to alternative barrier types indicates that a significant number of parameters needs to be considered
to explain WVC development. Besides road infrastructure and traffic as WVC-influencing factors,
a better understanding of habitats and wildlife behavior will also be necessary.

Approaches from artificial intelligence and big data might be used to better process these
heterogeneous datasets and consider a larger set of potentially influencing parameters. In the future,
results might be used for more effective warning of car drivers, substituting warning signs by more
precise spatial and temporal and, hence, highly dynamic warnings. To increase road safety in general,
this approach might also be applied to other types of accidents.
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