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Abstract: Current social-network-based and location-based-service applications need to handle
continuous spatial approximate keyword queries over geo-textual streaming data of high density.
The continuous query is a well-known expensive operation. The optimization of continuous query
processing is still an open issue. For geo-textual streaming data, the performance issue is more
serious since both location information and textual description need to be matched for each incoming
streaming data tuple. The state-of-the-art continuous spatial-keyword query indexing approaches
generally lack both support for approximate keyword matching and high-performance processing
for geo-textual streaming data. Aiming to tackle this problem, this paper first proposes an indexing
approach for efficient supporting of continuous spatial approximate keyword queries by integrating
min-wise signatures into an AP-tree, namely AP-tree+. AP-tree+ utilizes the one-permutation min-wise
hashing method to achieve a much lower signature maintenance costs compared with the traditional
min-wise hashing method because it only employs one hashing function instead of dozens. Towards
providing a more efficient indexing approach, this paper has explored the feasibility of parallelizing
AP-tree+ by employing a Graphic Processing Unit (GPU). We mapped the AP-tree+ data structure
into the GPU’s memory with a variety of one-dimensional arrays to form the GPU-aided AP-tree+.
Furthermore, a min-wise parallel hashing algorithm with a scheme of data parallel and a GPU-CPU
data communication method based on a four-stage pipeline way have been used to optimize the
performance of the GPU-aided AP-tree+. The experimental results indicate that (1) AP-tree+ can
reduce the space cost by about 11% compared with MHR-tree, (2) AP-tree+ can hold a comparable
recall and 5.64× query performance gain compared with MHR-tree while saving 41.66% maintenance
cost on average, (3) the GPU-aided AP-tree+ can attain an average speedup of 5.76× compared
to AP-tree+, and (4) the GPU-CPU data communication scheme can further improve the query
performance of the GPU-aided AP-tree+ by 39.4%.

Keywords: continuous query; spatial approximate keyword matching; indexing methods; GPU

1. Introduction

Traditional Geographic Information Systems (GIS) are well-adapted for offline algorithms over
static data. In an offline environment, a GIS application is expected to have complete information about
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the input static data to be processed [1]. With the proliferation of Global Navigation Satellite System
(GNSS)-equipped devices and wireless sensor networks, current GIS applications (e.g., location-based
services and webGIS) need to be much more suited to online processing to deal with large volumes
of highly dynamic geo-streaming data. A number of successful attempts have been made for the
challenge that current GIS applications face. For example, Galić et al. [2] presents a formal framework
consisting of data types and operations needed to support geo-streaming data. In [3], a spatio-temporal
query language is proposed to process semantic geo-streaming data. Furthermore, Moby Dick [4,5],
which is a distributed framework for GeoStreams, has been developed towards efficient real-time
managing and monitoring of mobile objects through distributed geo-streaming data processing on
large clusters. A more comprehensive introduction about processing GeoStreams is available in [6].

However, the above-mentioned literature only focuses on the spatial dimension of GeoStreams.
In fact, a GeoStream holds the textual property as well. Concretely, more recently massive amounts
of geo-textual data are generated including geo-tagged micro-blogs, photos with both tags and
geo-locations, points of interests (POIs) and so on [7,8]. For example, according to the descriptions in [9],
about 30 million users send geo-tagged data into the Twitter services, and 2.2% of the global
tweets (about 4.4 million tweets a day) provide location data together with the text of their
posts. These data often come in a rapid streaming fashion in many important applications such
as social networks (e.g., Facebook, Flickr, FourSquare and Twitter) and location-based services
(e.g., location-based advertising) [9]. Monitoring the geo-textual streaming data is critical to efficiently
support above-mentioned GIS applications. For instance, in tweeter applications, users often
subscribe some requests containing both location information and textual content. Thus, the GIS
applications need to monitor incoming geo-textual streaming data to discover matched messages
and notify the users during a period of time [7]. The continuous queries are an effective technique
for monitoring purposes over streaming data. These queries are issued once and then logically
are executed continuously over data streams to provide a prolonged perspective on the changes of
streaming data [10]. However, periodic query re-execution is a well-known expensive operation [11].
The optimization of continuous query processing is still an open issue in the community of data
stream management in the past two decades. For geo-textual streaming data, the performance issue of
continuous query is more serious since both location information and textual description need to be
matched for each incoming streaming data tuple.

The query indexing approaches are dominant for the optimization of continuous query processing,
since they can avoid expensive operations of index maintenances comparing to the data indexing
alternatives [12]. Recently, some query indexing methods have been proposed to address this
performance issue. The systems can quickly filter stream data tuples by index structure built over
spatial-keyword queries. These indexing methods have roughly been categorized into three classes:
the keyword-first indexing method (e.g., Ranked-key Inverted Quadtree (RQ-tree) [9]), the spatial-first
indexing method (e.g., Rt-tree [13] and Inverted File Quadtree (IQ-tree) [7]), and the adaptive indexing
method based on location information and textual information (e.g., Adaptive spatial-textual Partition
tree (AP-tree) [9]). However, existing continuous spatial-keyword query indexing approaches are faced
with two drawbacks for current applications. First, these existing indexing structures lack the support
of approximate keyword matching. The approximate keyword matching is necessary when users
have a fuzzy search condition, or a spelling error when submitting the query, or the strings in the
database contain some degree of uncertainty or errors. The keyword search for retrieving approximate
string matches often is required when searching geo-textual objects, according to the descriptions
in [14]. Meanwhile, because geo-textual streaming data tuples arrive rapidly from data sources,
high-performance data processing is a key requirement for current continuous query methods.
Therefore, there is a need for an efficient continuous query indexing approach for spatial approximate
keyword query over geo-textual streaming data.
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To address these research challenges, we first employ an approximate string search method to
enhance the AP-tree indexing structure to support approximate keyword matching. Furthermore,
a GPU platform is used to improve the query performance of our query indexing method.

The main contributions of this study are as follows:

1. We have introduced an advanced AP-tree indexing method called AP-tree+ to support continuous
spatial approximate keyword queries with efficiently embedding minimum-wise (min-wise)
signatures into the AP-tree structure based on one-permutation min-wise hashing [15].

2. We designed a parallel version of AP-tree+ on a GPU platform, which further improved
the performance of our indexing structure for fast processing geo-textual streaming data.
The GPU-aided method parallelized the approximate keyword matching of AP-tree+ based
on a min-wise parallel hashing algorithm [16].

3. We further employed a data streaming communication method [17] to optimize I/O overheads
between GPU and CPU during continuously processing geo-textual streaming data.

Additionally, this study only handled the range query amongst a variety of continuous queries
since our study is based on AP-tree and the spatial query related to AP-tree is range query.

This paper has been expanded from its previous conference version [18] to include one description
about a parallel scheme of approximate keyword matching, a data streaming communication method
between CPU and GPU in [17] that is used to optimize the performance of GPU-aided AP-tree+,
an additional data set for experiments, and more experiments for evaluating proposed indexing
methods. The remainder of this paper is organized as follows: Section 2 discusses work relating to
indexing methods for geo-textual data. Section 3 presents our materials and methods. Section 4 presents
the experimental results and discussions. Section 5 concludes with a summary.

2. Related Work

This section describes the most salient works along indexing methods for geo-textual data.
The indexing methods for geo-textual data can be roughly classified into two categories, i.e., for static data
and streaming data. The approaches for static data consider that all spatial objects have been stored in a
spatial database and each spatial object is described with a set of keywords. Thus, these methods indexed
both the location information and textual keywords of each spatial object to support spatial-keyword
queries. Among these methods, the R-tree has been widely extended to support geo-textual data.
For instance, authors in [19] proposed a hybrid indexing structure that maintains classical inverted lists
for rare document terms and additional extended R-trees for more frequent geo-textual terms. Similarly,
Zhang et al. proposed an Information Retrieval R-tree (IR-tree) [20] that is the combination of R-tree and
inverted files for searching geo-textual data. Some other spatial indexing structures have also been used
for geo-textual data. For example, an inverted linear Quadtree (IL-Quadtree) [21] based on the linear
Quadtree and inverted index was presented to deal with the problem of top-k spatial keyword search.
In [22] an inverted-KD tree was developed for indexing geo-textual data.

With the emergences of social networks and location-based services, these geo-textual data often
come in a rapid streaming fashion. The indexing solutions for static geo-textual data cannot directly
apply to the geo-textual streaming data. As a consequence, recently a few query indexing attempts,
which index continuous queries to filter geo-textual streaming data, have been devoted to address this
issue. These indexing methods have roughly been categorized into three classes: the keyword-first
indexing methods, the spatial-first indexing ones and the adaptive indexing ones. The representative
of keyword-first indexing method is RQ-tree [9]. The RQ-tree first uses ranked-key inverted list that
stores least frequent keywords to partition queries into the posting lists. Then multiple Quadtrees
are built based on each posting list. On the contrary, the spatial-first indexing methods prioritized
the spatial factor for the index construction regardless of the keyword distribution of the query set.
For example, IQ-tree [7] employs a Quadtree to organize queries so that each query is attached to
one or multiple Quadtree cells. Every query in each cell is assigned to the posting list of its frequent
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keyword by a ranked-key inverted list. Similarly, Rt-tree [13] first uses a R-tree to index queries based
on their search regions and then each R-tree node records the keywords of its descendant queries for
textual filtering purpose. The tree structures of both IQ-Tree [7] and Rt-tree [13] are only determined
by the spatial feature. Thus their overall performances are unavoidably deteriorated for different
keyword and location distributions of the query workload. So, zhang et. al proposed an adaptive
spatial-textual partition tree (AP-tree [9]) that uses f -ary tree structure so that the queries are indexed
in an adaptive and flexible way with respect to the query workload. However, current indexing
methods for continuous spatial-keyword queries lack the supports for approximate keyword search.

In [14], authors proposed a Min-wise signature with linear Hashing R-tree (MHR-tree) that is
the one by combining R-tree and min-wise signatures to deal with spatial approximate keyword
queries. Unlike MHR-tree, our indexing structure is towards continuous spatial approximate
keyword queries over streaming data while the MHR-tree is for one-pass queries over static data.
And then, the MHR-tree belongs to the spatial-first indexing scheme while our method is the
adaptive scheme according to query workload. Furthermore, the MHR-tree is based on a family
of ` min-wise independent permutations, which may incur high maintenance costs in the case of
dynamic continuous queries. Compared with the MHR-tree, our indexing approach can overcome
this issue by one-permutation hashing method in [15] to generate signatures instead of ` min-wise
independent permutations. Finally, our indexing approach considers the GPU platform.

In contrast to the existing indexing methods for the continuous spatial-keyword queries, this paper
focuses on the challenges of (1) approximate search of keywords and (2) enabling a high-performance
solution to maintain the computational performance of the proposed indexing approach for streaming
data. The proposed method is the first indexing method for parallel processing continuous spatial
approximate keyword queries.

3. Materials and Methods

In this section, firstly our problem is formulated, and the background knowledge about AP-tree
is provided, and then an advanced AP-tree called AP-tree+ is proposed. Finally, the GPU-aided
AP-tree+ is presented.

3.1. Problem Formulation

In the following content, firstly the notations of a geo-textual data stream are provided. Then,
the definitions about the continuous spatial approximate keyword query over the geo-textual data
stream are introduced. Finally, the problem is stated.

Definition 1 (Geo-textual tuple). A geo-textual tuple, denoted as t = (φ, loc, ts), is a textual message
with geo-location, where φ is a set of distinct keywords from a vocabulary set, loc is a geo-location, and ts is
the timestamp to label the creation time of the tuple.

Definition 2 (Geo-textual data stream). A geo-textual data stream, denoted as
S = {ti|i ∈ [1, +∞) ∧ ti.ts ≤ ti + 1.ts }, is an unbounded data set of geo-textual tuples in timestamp order.

Definition 3 (Continuous spatial approximate keyword query). A continuous spatial approximate keyword
query, defined as q = (ψ, r) where ψ is a set of distinct keywords, and r is a range region, is a long-running
query until it is deregistered. A geo-textual tuple t in S matches q if and only if the following two conditions
are satisfied: (1) the similarity between t.φ and q.ψ is enough (i.e., sim(t.φ, q.ψ) ≥ τ where τ is a similarity
threshold ∈ [0, 1]), and (2) the t.loc is within the q.r.

In this paper, given a set Q of continuous spatial approximate keyword queries, for each incoming
tuple t from a geo-textual data stream S, we aim to employ indexing technique over Q to rapidly deliver
t to approximate matching queries. Abbreviations summarizes the mathematical notations.
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3.2. AP-Tree

Adaptive spatial-textual Partition tree (AP-tree for short) is a f -ary tree where queries are
recursively divided by spatial or keyword partitions (nodes).

Given a set of spatial-keyword queries Q, an AP-tree is constructed by employing keyword partition
and spatial partition methods to recursively divide Q in a top-down manner. Under the assumption
that there is a total order among keywords in the vocabulary, the keyword partition method assigns
queries to a node N that is called as a keyword node and then partitions the queries into f ordered cuts
according to their Nl-th keywords, where Nl is the partition offset of the node N. An ordered cut is
an interval of the ordered keywords, denoted as [wi, wj], where wi and wj ( wi ≤ wj) are boundary
keywords and [wi, wi] is denoted as [wi] if there is only one keyword in the cut. The spatial partition
method recursively partitions the space region of a node N called as a spatial node into f grid cells
and pushes each query into corresponding grid cells whose space regions overlap the region of query.
One leaf node of AP-tree is called as a query node that holds at most θq queries.

As the AP-tree structure is constructed in an adaptive way to query workload by carefully choosing
keyword or spatial partitions, two partition methods are measured by a cost model shown in Formula (1).

C(P) = ∑
f
i=1 w(Bi)× p(Bi) (1)

where, P is a partition over a set of queries on one node. C(P) is the expected matching cost
about the partition P. Meanwhile B is a bucket of the partition, w(B) is the B’s weight which is
the number of queries associated to B, and p(B) is the probability that B is explored during the query
matching. Given the object workload can be simulated by query workload, p(B) can be introduced as
the following equation:

p(B) =


∑w∈B p(w) i f node is keywordnode
Area(B)
Area(N)

i f node is spatial node
No partition else

(2)

In Equation (2), p(w) = f req(w)
∑w∈P f req(w)

where f req(w) is the frequency of keyword w among all
queries in Q. Area(B) is the area of the bucket (i.e., cell)B and Area(N) is the region size of the node N.
The optimal keyword partition of and spatial partition can be achieved by a dynamic programming
algorithm and a local improvement heuristic algorithm introduced in [9], respectively.

In addition, for each keyword node N, a query q is assigned to a dummy cut if N cannot find a cut
as there is no enough query keywords, i.e., |q.ψ| < Nl . Similarly, each spatial node N has a dummy
cell for queries whose region contain the region of N.

An example is given for illustrating the structure of AP-tree in Figure 1. As we can see, given a set
of spatial-keyword queries Q shown in Figure 1a, an AP-tree (shown in Figure 1b) is constructed by
employing keyword partition and spatial partition methods to recursively divide Q in a top-down
manner. In our example, the spatial partition first is chosen to generate one spatial node S1-node with
four cells as the spatial partition is more beneficial to pruning data objects than keyword partition
based on the query workload in Figure 1a. Then, according to the queries assigned to C1 in S1-node
(i.e., q3, q4, q5, q6 and q10), one keyword node k1-node with three cuts (i.e., [W1], [W2,W3], and [W4])
is created by keyword partition. Meanwhile, a spatial node S2-node with four cells is generated based
on the queries in C2 (i.e., q1 and q8). In addition, the cell C3 and C4 link to two query nodes, respectively.

Furthermore, for the keyword node k1-node, [W1] links to a query node contains q5 and [W4] points
to another new query node holding q4. According to the workload of queries (i.e., q3, q6, and q10 ) in cut
[W2,W3], a new keyword node k2-node with two cuts (i.e., [W5] and [W6]) is created. The k2-node points
to two query nodes (i.e, one query node contains q6, and the other holds q3 and q10). For the spatial node
S2-node, the cell C2 and C4 also link to two query nodes, individually.
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(a) A set of spatial-keyword queries

s1-node

k1-node s2-node1

[W1] [W2,W3] [W4]

q4k2-node 2

[W5] [W6]

q8

C1

C2 C3

C4

C1

C2 C3

C4

q6,q10

q7,q9q2

q5

q3 q1

spatial node keyword node query node

(b) The AP-tree over queries

Figure 1. An example of Adaptive spatial-textual Partition (AP)-tree.

3.3. AP-Tree+

In this section, we introduce an advanced AP-tree called AP-tree+ to support the approximate
keyword matching between queries and streaming data tuples.

3.3.1. Developing AP-Tree+

The key issue in achieving approximate keyword matching is to define the similarity between
the set of query keywords and textual string of a streaming data tuple. The edit distance based on
q-grams has been widely applied for approximate string matching (e.g., in [23–26]). The main idea
behind these methods is to utilize q-grams as signatures to gain strings similar to a query only if they
share common signatures (i.e., q-grams) with the query.

In this paper, we attempt to incorporate q-grams into AP-tree to support approximate keyword
matching as well. We call the AP-tree embedding q-grams as AP-tree+. Since the textual
message of one query q in one query node is a set of distinct and ordered keywords represented
as {W1, W2,...,Wm}, one straightforward approach is to embed q-grams of all keywords in q represented
as {GW1, GW2,...,GWm} into AP-tree. In fact, for space saving, we do not have to store q-grams of
all keywords of q in a query node, due to the fact some keywords of one query have been indexed in
keyword nodes of AP-tree. To explain this issue, we first present a Lemma:

Lemma 1. Given a query q with a set of ordered keywords {W1, W2...,Wm} in one query node q-node,
the first n keywords (where 0 ≤ n ≤ m) in {W1, W2,...,Wm} can be found in keyword nodes if there are n
keyword nodes in q-node’s parent node and ancestor nodes.

Proof of Lemma 1. According to the construction of AP-tree (see Section 3.2. AP-tree), the query q may
at most be indexed by m keyword nodes. The indexing rule is as following: the first keyword W1 of q is
indexed in one of cuts in one keyword node if the keyword node exists, and then the following keyword node
stores the second keyword W2 of q if the keyword node exists and so on. At most, all keywords can
be stored in keyword nodes. For instance, in Figure 1, for a query q5 with keywords {W1, W2}, the first
keyword W1 has been indexed in k1-node, and for another query q3 with keywords {W2, W6}, W2 and W6

have been respectively indexed in k1-node and k2-node. Meanwhile, in the worst case, there is no one
keyword node that indexes any keyword of q. For example, for the query node storing q1, both its parent
node (i.e., S2-node) and ancestor node (i.e., S1-node) are spatial node.

Based on Lemma 1, we embed q-grams into one AP-tree using the following rules:
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1. For one query node q-node, if there is no one belongs to keyword node in q-node’s parent node
and ancestor nodes belong to keyword node, we store q-grams of its all keywords for each
query in q-node.

2. For one query node q-node, if there are n nodes belongs to keyword node in q-node’s parent
node and ancestor nodes, we hold q-grams of the last m-n keywords for each query with m
keywords in q-node.

3. We store q-grams of keywords in each cut in every keyword node.

3.3.2. Improving AP-Tree+

As can be observed, AP-tree+ can effectively support approximate keyword matching by
embedding q-grams into query nodes and keyword nodes. However, according to the description in [14],
the problem with q-grams is that it may introduce high storage overhead and increase the query
cost for large sets of keywords. In our setting, this problem also exists when most indexing nodes in
AP-tree+ are keyword nodes and there are many cuts in most keyword nodes. To address this issue,
we first employ a min-wise signature-based [27] method in [14] to reduce the storage cost caused by
holding large amount of q-grams. Then, we introduce how to accelerate the procedure of generating
the large number of min-wise signatures.

Reducing Storage Cost with Min-Wise Signatures

According to [14], given a family of min-wise independent permutations F, for a set X and any
element x ∈ X, when π is chosen at random from F, the following equation holds:

Pr(min{π(X)} = π(x)) = 1
|X| (3)

where, π(X) is a permutation of X and π(x) is the location value of x in the resulted permutation,
and min { π (X)} = min{π(x)|x ∈ X}. With ` min-wise independent permutations from F,
the min-wise signature of X is defined as:

S(X) = {min{π1(X)}, min{π2(X)}, ..., min{π`(X)}} (4)

Thus, the set resemblance of two sets A and B defined as ρ(A, B) can be estimated by the similarity
of their min-wise signatures S(A) and S(B) defined as ρ̂(S(A), S(B)). That means ρ(A, B) can be
computed by the following equation:

ρ(A, B) = ρ̂(S(A), S(B)) = |{i|min{πi(A)}=min{πi(B)}}|
`

(5)

Noted that, since the actual permutation constitutes an expensive operation, a two-universal (2U)
hash function in [28] is used to simulate such permutations.

In our setting, the implementation of ` min-wise independent permutations is as following:

1. gain a set of all keywords SK from the query workload.
2. extract a universe set of ordered q-grams U with D dimensions from SK.
3. randomly generate ` permutations {π1, ..., π`} from U.

Additionally, for k sets A1,...,Ak, the min-wise signature of union of A1,...,Ak can be computed by
combining the min-wise signature of individual sets (see, Equation (6)).

S(A1 ∪ ...∪ Ak)[i] = min{S(A1)[i], ..., S(Ak)[i]} (6)

Using Equation (4), we can only store the min-wise signature of q-grams of each keyword instead
of q-grams to reduce the storage cost of AP-tree+. However, for the case that there are multiple
keywords in one cut of one keyword node, there still exist multiple min-wise signatures. We can
further reduce the space cost by merging multiple min-wise signatures into one min-wise signature
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based on Equation (6). Let GW be a q-gram set of keyword W, the scheme is illustrated in Figure 2.
We store min-wise signatures of q-grams of keywords in query nodes and keyword nodes. For example,
for one query node holding q5 with a keyword set W1, W2, we only store S1 that represents the min-wise
signature of GW2 since W1 has been indexed in k1-node. Similarly, for anther query node holding q1

with a keyword set W1, W2, due to the reason there no any keyword node that hold W1 and W2 among
its parent node and ancestor nodes, we store min-wise signatures of both GW1 and GW2 (i.e., S7 and S8)
into this query node. On the other hand, for keyword nodes, we directly store the min-wise signature of
q-grams of the keyword if there is only one keyword in one cut, while the min-wise signature of union
of q-gram sets of these keywords is held if there are more than one keyword in one cut. For instance,
k2-node has two cuts (i.e., [W5], [W6]), thus we input the min-wise signature of GW5 (i.e., S2) and W6

(i.e., S3) into k2-node. For k1-node with three cuts (i.e., [W1], [W2,W3], [W4]), we input three min-wise
signatures (i.e., S4, S5, S6). Among three signatures, S4 is the min-wise signature of GW1 , S5 is the one
of GW2

⋃
GW3 , and S6 is the min-wise signature of GW4 .

s1-node

k1-node s2-node1

[W1] [W2,W3] [W4]

q4k2-node 2

[W5] [W6]

q8

C1

C2 C3

C4

C1

C2 C3

C4

q6,q10

q7,q9q2

q5

q3 q1

spatial node keyword node query node min-wise signature 
of q-gram

S1 S2 S3

S4 S5 S6

S7 S8

Figure 2. An example of AP-tree+.

Accelerating The Generation of Min-Wise Signatures

In the aforementioned method, we employ a family of ` min-wise independent permutations F to
create min-wise signatures of q-grams. However, the major drawback of this min-wise hashing method
is the expensive preprocessing cost, as the method requires applying a large number of permutations
on the data [29]. For example, in [14] ` = 50 permutations have been used for constructing a MHR-tree.
According to our previous works, the continuous queries hold dynamic property [30], thus AP-tree+

may suffer from frequent updates, as a result, the min-wise signatures need to be frequently recomputed
as well. To address this problem, we used an one-permutation min-wise hashing method in [15]
to generate signatures instead of ` permutations. The one-permutation method breaks the space evenly
into ` bins, and stores the smallest nonzero in each bin, instead of only storing the smallest nonzero in
each permutation and repeating the permutation ` times. For example in Figure 3 , consider two sets
of q-grams S1, S2 ⊆ U with D = 12, a sequence of index of one permutation π from U is defined as
I = {0,1,...,11}, V1, V2 are two binary (0/1) data vectors for representing locations of the nonzeros in π.
We equally divide the sequence I into three bins and find the smallest nonzero element in each bin to
generate π(V1) = [0, 5, 8] and π(V2) = [1, 6, 8]. Finally, we can get three min-wise signatures of S1 from
π(V1) (i.e., 0, 5, 8 ) and three min-wise signatures of S2 from π(V2) (i.e., 1, 6, 8).
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0 1 2 3 4 5 6 7 8 9 10 11

bin 1 bin 2 bin 3

1 0 1 1 0 1 0 0 1 1 1 0

0 1 1 0 0 0 1 0 1 0 0 0

π(V1): 

π(V2): 

Figure 3. An example of one-permutation min-wise hashing.

3.4. The GPU-Aided AP-Tree+ Indexing

This section develops an indexing approach aided by GPU. First, we map an AP-tree+ into
the GPU’s memory to form a G-AP-tree+. Then, we employ a GPU-aided approach for set
similarity join to accelerate approximate keyword matching of G-AP-tree+. Finally, a CPU-GPU data
communication scheme is used for efficiently processing geo-textual streaming data with G-AP-tree+.

3.4.1. Data Structure for G-AP-tree+

Operations on matrices, vectors and arrays naturally suit for the GPU architecture [31].
Our design intends to use a variety of one-dimensional arrays to organize different components of
AP-tree+ including spatial node, keyword node, query node, and ordered keyword trie. Furthermore,
to effectively support approximate keyword matching of G-AP-tree+, we utilize a compact
characteristic matrix in [16] to represent q-grams of all keywords in AP-tree+.

The structure of G-AP-tree+ is illustrated in Figure 4. As we can see in Figure 4, a spatial node array,
a keyword node array, and a query node array are respectively used to store all spatial nodes, keyword nodes
and query nodes in AP-tree+. The root node in AP-tree+ may be a spatial node or a keyword node,
thus we define a root node in G-AP-tree+ as an array holds two index entries (i.e., index 1 and index 2)
where index 1 points to the spatial node array and index 2 links to the keyword node array. The value of
index 2 is set to−1 and the value of index 1 is an index of spatial node array if the root node is spatial node,
while the value of index 1 is set to −1 and the value of index 2 is an index of keyword node array if
the root node is keyword node.

For each spatial node, m cells are in turn input into the spatial node array. Each cell consists of one
region reflects its spatial area and one index that points to one corresponding child. Since one child
node in AP-tree may be one spatial node, keyword node or query node, the index in the spatial node array
may represent one index in the spatial node array, keyword node array or query node array. Similarly,
for each keyword node, l cuts are in sequence filled into the keyword node array. Since keyword nodes are
generated based on an ordered keyword trie, we also map an ordered keyword trie into GPU memory.
Concretely, we use m one-dimensional arrays to store m levels of one ordered keyword trie. Thus,
every cut in the keyword node array holds a pair of <index, triple>. The index has the same function as
the index in spatial node array. The triple is denoted as (L, Ws, We), where L presents the level, Ws is
the lower boundary keyword and We is the upper boundary keyword in the L-th level of ordered
keyword trie. Furthermore, for each query node, n queries at most can be filled into a query node array.
Each query holds two parts: a region that represents its spatial area and a word list contains a set of
keywords. Noted that, all keywords in both query node array and keyword node array are represented by
min-wise signatures as well.
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Figure 4. Illustrating the structure of G-AP-tree+.

To support approximate keyword matching, we employ a compact matrix structure
characteristic matrix in [16]. As we can see in Figure 4, a characteristic matrix assigns the value as
1 when a q-gram represented by a row belongs to a keyword represented by a column, and 0 when it
does not. Since the characteristic matrix is highly sparse, we employs Compressed Sparse Row (CSR)
format mentioned in [16] to compress our characteristic matrix to fit the GPU memory. Noted that we
have made order for all keywords and q-grams in advance. Thus, we only hold index of keywords and
q-grams in the GPU memory. Meanwhile, we dynamically maintain the characteristic matrix based on
the keywords in the query workload in host side, and then transfer the compact characteristic matrix
into the GPU memory.

3.4.2. Parallelising Approximate Keyword Matching

Once the G-AP-tree+ is constructed in the GPU memory, we can constantly input data segments
(see Definition 4) from a geo-textual data stream into GPU, and then use a G-AP-tree+ to filter data
tuples in a segment in parallel.

Definition 4 (Segment). A segment, denoted as g ={s1,...,sm}, is a set of m spatial-textual tuples in
timestamp order.
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During the parallel computing procedure, however, the efficiency of similarity computing of
keywords between queries and data tuples based on min-wise hashing is a problem. We proposed
a parallel scheme for solving this issue. The parallel scheme is shown in Figure 5. For simplification, we
assume that each data tuple si (1≤ i≤m) has two keywords. Thus, we first construct m signature matrices
in parallel based on the first keywords of si and the keywords from the characteristic matrix of G-AP-tree+.
Each signature matrix stores min-wise signatures of q-grams of keywords from both the streaming data
tuple and queries in G-AP-tree+. All signature matrix are constructed in parallel as well. The construction
procedure of one signature matrix is shown in Algorithm 1.
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Figure 5. Illustrating the parallel scheme of approximate keyword matching.
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Algorithm 1: Constructing a signature matrix on GPU

1 Construction_Procedure (w, T) /* Input : w is one keyword of data tuple, T is a
G-AP-tree+ */

/* Output: M is a signature matrix */
/* Construct a q-gram-keyword matrix */

2 Retrieve n min-wise signatures of keywords from T for matching w.
3 Transfer n min-wise signatures into n q-gram-keyword vectors (v1, v2,..., vn) with the

characteristic matrix.
4 Compute the min-wise signature of w and transfer it to a q-gram-keyword vector l with the

characteristic matrix.
5 Assemble one signature matrix M = {l, v1, v2,..., vn}.

Furthermore, we can simultaneously execute the approximate matching of signatures between
the first keyword of the streaming data tuple and the keywords of queries in G-AP-tree+ by computing
the similarity among the min-wise signatures in one signature matrix. After then, we execute the same
procedure for the second keywords of all streaming data tuples.

3.4.3. A Communication Scheme for Processing Geo-Textual Streaming Data with G-AP-Tree+

In our setting, a G-AP-tree+ is utilized to continuously filter data segments from a geo-textual
data stream S. However, some issues complicate the efficient use of GPU for the streaming data
filtering. First, CPU and GPU have separate memories, we have to explicitly partition the streaming
data into segments and copy them into the GPU memory. Nevertheless, the efficient partitioning is not
always straight-forward. Then, the PCI-E link that connects the two memories has limited bandwidth
can often be a bottleneck, starving GPU cores from their data. Finally, the high bandwidth of GPU
memory can only be exploited when GPU threads executing at the same time access memory in a
coalesced fashion, where the threads simultaneously access adjacent memory locations. For efficient
streaming data filtering, we applied “BigKernel” [17] that is a data communication scheme between
CPU and GPU to address the above issues. BigKernel can use a four-stage pipeline with an automated
prefetching method to (i) optimize CPU-GPU communication and (ii) optimize GPU memory accesses.

In our setting, to filter a segment g, which is represented by an array, the four-stage pipeline
is as following:

1. Prefetch address generation: transforming the read accesses to the g array to instead store
the addresses in a CPU-side address buffer

2. Data assembly: using a CPU thread to fetch the corresponding data element from the g array
for each address in the address buffer and placing it in one prefetch buffer, which also must be
a pinned buffer.

3. Data transfer: the data transfer stage is executed by the GPU streaming engine, transferring data
from CPU-side prefetch buffer to GPU-side data buffer.

4. Kernel computation: filtering data tuples in data buffer using G-AP-tree +.

For a data stream S ={g1, g2, g3, g4, ... }, the four-stage pipeline is illustrated by Figure 6.

stage 1 stage 2 stage 4

Time

...

stage 3

stage 1 stage 2 stage 4stage 3

stage 1 stage 2 stage 4stage 3

stage 1 stage 2 stage 4stage 3

D
ata stream

g1

g2

g3

g4

Figure 6. Illustrating the communication scheme of the four-stage pipeline.
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4. Results and Discussion

We first provided an experimental setup, then evaluated and discussed the performances of
AP-Tree+, and the GPU-aided AP-Tree+ against geo-textual streaming data using a NVIDIA GPU.

4.1. Experimental Setup

The data sets used in this paper come from TWEETS [13] and AIS. TWEETS is a
real-life dataset collected from Twitter. The dataset contains 12 million tweets with geo-textual
information from May 2012 to August 2012. AIS holds the geo-locations from Chorochronos
Archive (http://www.chorochronos.org) and keywords from Newsgroups (http://people.csail.mit.
eduljrennie120Newsgroups). The statistics of two datasets are summarized in Table 1.

Table 1. Datasets.

Set Name # of Objects Vocabulary Average # of Keywords in Objects

TWEETS 12.7 M 1.7 M 9

AIS 5.7 M 81 K 50

For query workload, like [9], we randomly select 5M geo-textual objects from the dataset. For each
selected object, k terms are randomly picked as query keywords and k is a random number between
1 and 5. The query region is set to a rectangle, and the region size is uniformly chosen between 0.01%
and 1% of the universe data space.

All experiments were executed on one computer equipped with a GPU (GTX TITAN X),
and the configurations are presented in Table 2.

Table 2. Configurations of the computer.

Specifications of CPU Platforms Computer

OS Ubuntu14.04
CPU i7-5820k (3.3 GHz, 6 cores)

Memory 32 GB DDR4

Specifications of GPU Platforms GTX TITAN X

Architecture Maxwell
Memory 12 GB DDR5

Bandwidth Bi-directional bandwidth of 16 GB/s
CUDA SDK 7.0

4.2. Evaluating and Discussing AP-Tree+

In this section, we evaluate space cost, index maintenance cost and query performance of AP-tree+

over a geo-textual data stream.
For comparison, we used a state-of-the-art indexing structure MHR-tree [14] due to the reason

that MHR-tree can support spatial approximate keyword queries. We directly employ the MHR-tree to
process continuous spatial approximate keyword queries in our setting. For AP-tree+, the partition
threshold θq and the fanout factor f are set to 200 and 40 respectively, which are better trade-off
between index size and matching performance according to the experimental results in [9]. Meanwhile,
for both AP-tree+ and MHR-tree, the q-gram length is 2 and the edit distance threshold is τ = 2.

http://www.chorochronos.org
http://people.csail.mit.eduljrennie120Newsgroups
http://people.csail.mit.eduljrennie120Newsgroups
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4.2.1. Space Costs

In this experiment, we investigate storage cost of AP-tree+. AP-tree and MHR-tree are used
for comparison. For MHR-tree, the number of min-wise hashing functions ` = 50 according to
the experiments in [14], while the AP-tree+ used one-permutation min-wise hashing method.

As shown in Figures 7a and 8a, both AP-tree+ and MHR-tree take more storage overheads than
AP-tree, due to the additional min-wise signatures. Moreover, as the number of queries N increases from
1 M to 2 M, 3 M, 4 M, and 5 M, the storage cost of AP-tree+ is respectively about 88.5% for TWEETS and
89.9% for AIS of MHR-tree, on average. The major reason of space saving lies in that we only need to
embed signatures into the q-nodes and k-nodes of AP-tree+ while MHR-tree has to append signatures for
all nodes. The Figures 7b and 8b can illustrate the fact. As we can see, the size of signatures of AP-tree+ is
about 78.9% and 79.8% of one of MHR-tree, respectively for TWEET and AIS datasets.
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Figure 7. The space cost of AP-tree+ based on TWEET dataset.
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Figure 8. The space cost of AP-tree+ based on AIS dataset.

4.2.2. Maintenance Overheads

In the experiment, we compared the maintenance costs between AP-tree+ and MHR-tree. We built
an AP-tree+ and a MHR-tree based on datasets from TWEETS and AIS, respectively. Then we maintain
the two indexing structures by updating datasets. One update is treated as a combination of a separate
deletion and insertion. We first measure the CPU runtime incurred by updating various numbers of
queries in indexing structures.

Figure 9 shows that AP-tree+ outperforms MHR-tree in terms of maintenance cost. As N changes
from 1 M to 5 M, the ratio of update time of AP-tree+ to the one of MHR-tree is 53.15% and 63.52% on
average, respectively for TWEETS and AIS. The great performance gains lie in that MHR-tree used
` = 50 min-wise hashing functions to generate signatures while AP-tree+ only employed one hashing
function to do so during the update procedure of indexing structure.
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We also compared the maintenance cost of AP-tree+ with MHR-tree using various number of
min-wise hashing functions, by updating a set of 500K queries. Figure 10a shows that the ratio of
update time of AP-tree+ to the one of MHR-tree is 59.0%, 39.4%, 27.6%, 21.3%, 16.9%, and 14.6% for
TWEETS, as the number of functions increases from 50, 60, 70, 80, 90, to 100. The experimental result
indicates that AP-tree+ has an obvious superiority over MHR-tree in the case that the number of hash
functions is large. The reason is that the cost of updating one signature for MHR-tree is multiplied
by the number of min-wise hashing functions, while the one for AP-tree+ retains a constant due to
the employment of one-permutation hashing function. Figure 10b reflects the similar results.
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Figure 9. The maintenance cost of AP-tree+ with various numbers of queries.
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Figure 10. The maintenance cost of AP-tree+ comparing with MHR-tree with various numbers of
min-wise hashing functions.

4.2.3. Query Performance

Like in [14], we also first employ the evaluation metric recall to measure the query accuracy of
AP-tree+. Then, we evaluate the CPU runtime of AP-tree+ filtering streaming data. The MHR-tree
is employed as one baseline. We use a TWEETS query set Q with |Q| = 500 K for these experiments.
Since we run multiple continuous queries over a data stream with N data tuples in our case, the recall
is defined as Formula (7).

recall = ∑N
i=1 ax

i
∑N

i=1 ai
(7)

where, ai is the number of continuous queries that the ith streaming data tuple correctly satisfied and ax
i

is the number of continuous queries returned by AP-tree+ or MHR-tree for the ith streaming data tuple.
We first compared the recall of AP-tree+ with the one of MHR-tree with 50 min-wise hashing

functions over a data stream (see Figure 11a). Then, given a streaming data segment whose size = 1 M,
we also measured the recalls of both AP-tree+ and MHR-tree with various numbers of min-wise
hashing functions (see Figure 11b, the number of min-wise hashing functions L ranges from 50, 60, 70,
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80, 90, to 100). Figure 11a,b show that AP-tree+ has one comparable recall with the one of MHR-tree.
The reason is that the one-permutation-based min-wise hashing can achieve similar or even better
accuracies compared with the multi-permutations-based min-wise hashing algorithm.
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Figure 11. The recall of AP-tree+ comparing with MHR -tree.

Meanwhile, we measured CPU runtime of filtering a stream with N data tuples using AP-tree+
and MHR-tree. S means second in Figure 12. Figure 12 reflects that AP-tree+ can achieve about 5.64×
performance gain comparing to MHR-tree for various sizes of streaming data. The reason for such
experimental results lies in that AP-tree+ has a much better spatial-textual filtering capability due to
inheriting the adaptability to spatial-textual query workload from AP-tree, while the construction of
MHR-tree is based on the spatial-first scheme.
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Figure 12. The CPU runtime of AP-tree+ comparing with MHR-tree.

4.3. Evaluating and Discussing the GPU-Aided AP-Tree+

For GPU-aided AP-tree +, we made three observations: (1) the space cost of G-AP-tree+,
(2) the query performance of G-AP-tree+ with the algorithm of parallel keyword approximate matching
when handling streaming data, and (3) the impact of the communication scheme on query performance
of G-AP-tree+.

4.3.1. Space Costs

In this experiment, we investigate the storage cost of G-AP-tree+ based on TWEETS dataset.
According to the structure of G-AP-tree+ in Figure 4, we can know that the space cost of one G-AP-tree+

consists of three parts:
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1. Node arrays—a root node array , a keyword node array, a spatial node node array, and a query
node array.

2. Ordered keyword trie arrays—m one-dimensional arrays to store m levels of one ordered
keyword trie.

3. One characteristic matrix—a compact characteristic matrix with CSR format.

Thus, we observed the GPU memory overheads of these three parts, respectively, for various
sizes of query workloads. Figure 13 shows that part 1, part 2, and part 3 averagely account for 85.5%,
4.0% and 10.5% of the total storage cost, respectively. That means we need about 14.5% auxiliary space
overhead to map G-AP-tree+ in the GPU memory.
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Figure 13. Evaluating the space cost of G-AP-tree+.

4.3.2. Query Performance

We made the following observation: the query performance of G-AP-tree+ with the algorithm
of parallel keyword approximate matching when handling streaming data. We map an AP-tree+

with a TWEETS query set Q whose size |Q| = 500 K into the GPU memory to form a G-AP-tree+,
and then investigate the runtime of filtering a stream with N data tuples. According to the experimental
results in Figure 14, as the number of streaming data N increases, G-AP-tree+ gains an average speedup
of 5.76× than AP-tree+. The results indicate that the GPU-aided indexing method has been useful for
significantly accelerating the procedure of filtering geo-textual streaming data.vspace
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Figure 14. Evaluating the query performance of G-AP-tree+.

4.3.3. The Effect of Communication Scheme

In this experiment, we measure time overhead of G-AP-tree+ with the communication scheme
(denoted as G-AP-tree++comm). We again map an AP-tree+ with a TWEETS query set Q whose
size |Q| = 500 K into the GPU memory to form a G-AP-tree+. Then, we compared the runtime
of filtering a stream with N data tuples of G-AP-tree+ and G-AP-tree++comm. According to the
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experimental results in Figure 15, as the number of streaming data N increases, G-AP-tree++comm
can improve the query performance by 39.4% compared to G-AP-tree+. The reasons that the
communication optimization can accelerate the procedure of filtering streaming data are because
of overlap between computation and data communications, the volume reduction of CPU-GPU data
communications and coalesced accesses to GPU memory by placing the input data of consecutive
threads in interleaved data segments.
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Figure 15. Evaluating the query performance of G-AP-tree+ with the communication scheme.

5. Conclusions

It is a basic requirement for many current applications to support continuous spatial-keyword
queries. However, existing spatial-keyword query indexing approaches generally do not apply for
approximate keyword matching. To address this problem, this paper first proposes an indexing
approach for efficient supporting of continuous spatial approximate keyword queries by integrating
min-wise signatures to AP-tree, namely AP-tree+. AP-tree+ can employ one-permutation min-wise
hashing method to efficiently support approximate keyword matching. Towards providing a more
efficient indexing approach, this paper has explored the feasibility of paralleling AP-tree+ with
GPU. The experimental results show that (1) AP-tree+ can reduce the space cost by about 11%
compared with MHR-tree, (2) AP-tree+ can hold a comparable recall and 5.64× query performance
gain compared with MHR-tree while saving 41.66% maintenance cost on average, (3) the GPU-aided
AP-tree+ was 5.76× faster on average than AP-tree+, and (4) the GPU-CPU data communication
scheme could further improve the query performance of GPU-aided AP-tree+ by 39.4%. At present,
our approach for continuous spatial approximate keyword queries only focuses on a geo-textual data
stream. In the future, we plan to extend our approach to distributed geo-textual data streams based on
Apache Storm or Spark.
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Abbreviations

The following abbreviations are used in this paper:

t a geo-textual tuple
t.φ a set of keywords for tuple t
t.loc a geo-location for tuple t
t.ts a timestamp to label the creation time of tuple t
S a geo-textual data stream
q a continuous spatial approximate keyword query
q.ψ a set of keywords for query q
q.r a range region for query q
sim(t.φ, q.ψ) the similarity between t.φ and q.ψ
τ a similarity threshold ∈ [0, 1]
Q a set of continuous spatial approximate keyword queries
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