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Abstract: Frequent and rapid spatially explicit assessment of socioeconomic development is critical
for achieving the Sustainable Development Goals (SDGs) at both national and global levels. Over the
past decades, scientists have proposed many methods for estimating human activity on the Earth’s
surface at various spatiotemporal scales using Defense Meteorological Satellite Program Operational
Line System (DMSP-OLS) nighttime light (NTL) data. However, the DMSP-OLS NTL data and
the associated processing methods have limited their reliability and applicability for systematic
measuring and mapping of socioeconomic development. This study utilized Visible Infrared Imaging
Radiometer Suite (VIIRS) NTL and the Isolation Forest machine learning algorithm for more intelligent
data processing to capture human activities. We used machine learning and NTL data to map gross
domestic product (GDP) at 1 km2. We then used these data products to derive inequality indexes
(e.g., Gini coefficients) at nationally aggregate levels. This flexible approach processes the data in an
unsupervised manner at various spatial scales. Our assessments show that this method produces
accurate subnational GDP data products for mapping and monitoring human development uniformly
across the globe.
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1. Introduction

The United Nations has established a set of sustainable development goals to achieve a better
future for people and the planet. Building on the success of the Millennium Development Goals (MDGs),
the 2030 Agenda for Sustainable Development aims to promote and stimulate a series of actions to
transform our world. The 17 Sustainable Development Goals (SDGs) with 169 associated targets will
unite and mobilize efforts from countries across the world to tackle and address urgent development
issues like poverty, inequality, and climate change [1–4]. Although significant progress has been made
towards the achievement of these goals, some of the actions and policies have not been implemented
effectively because of the complexity of the Earth system and human–environment interactions. In other
words, global climate change is progressing at a quick pace and many people are still living in poverty.
Therefore, it is important to understand the global distribution of wealth, characterize socioeconomic
well-being, and predict environmental change at appropriate spatiotemporal resolutions to facilitate
the implementation of policies and the achievement of SDGs [5].

Measuring socioeconomic data in a timely and accurate manner is important for evaluating current
socioeconomic status and assessing policy effectiveness. Doing this well helps countries achieve many
of the SDGs including sustainable development, eradication of poverty, and reduction of inequality
and exclusion. It also helps practitioners, scientists, and policymakers compare levels of development
across the globe to inform efforts toward achieving the SDGs. However, collecting these data can be
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costly and challenging for many less-developed countries. In recent years, the availability of remotely
sensed images has greatly helped scientists monitor human activity on the Earth [6]. For instance,
nighttime light (NTL) data are widely used for estimating and evaluating socioeconomic activities
since they can capture the artificial light on the Earth’s surface [7–9]. Remote sensing technology
and satellite imagery have provided us with global and regional economic data to understand and
evaluate the relationship between human development and nature [10]. There are many difficulties
associated with collecting traditional census data for measuring human well-being. For example,
accurate information about the size and distribution of the human population is not available for many
regions of the world and sometimes these data are of poor quality [11]. Hence, remote sensing data
can be an alternative way for scientists to study and monitor human activities in a timely, consistent,
and affordable way. NTL data are different from other remote sensing data as they capture the artificial
light on the Earth’s surface and offer a unique view of human activity [9,12–16]. For example, NTL
imagery has been used to generate and demonstrate the quantitative relationships between the NTL
and population and energy consumption in the USA [17,18].

The Visible Infrared Imaging Radiometer Suite (VIIRS) platform is a new and improved vehicle
for developing global NTL data products. Prior to VIIRS, the Defense Meteorological Satellite Program
Operational Line System (DMSP-OLS) was primarily designed and developed for cloud cover image
detection. Researchers discovered that DMSP-OLS nighttime images of the visible and near-infrared
(VNIR) band could help scientists observe and detect the VNIR emission sources (e.g., city lights,
auroras, gas flares, and fires). Thus, the DMSP-OLS NTL data have been used in many fields including
(1) the measuring of human settlements, (2) urban population and socioeconomic activity, (3) energy and
electricity consumption, (4) the monitoring of gas flaring, (5) forest fires, and (6) the impacts of military
actions and natural disasters [19]. In recent years, the Visible Infrared Imaging Radiometer Suite
(VIIRS) sensor, which is equipped with the Day/Night Band (DNB), has outperformed its predecessor
DMSP-OLS in many ways. In general, VIIRS exceeds DMSP-OLS including greater dynamic range,
finer spatial resolution, and lower detection limits [20,21].

Over the past decades, scientists have proposed many methods to estimate GDP at national and
subnational levels using NTL [19,22–24]. For example, Sutton et al. [25] estimated the marketed and
non-marketed economic value on a global scale and discovered that the GDP was correlated with the
amount of light energy emitted by that country based on DMSP-OLS NTL. Shi et al. [26] used VIIRS
NTL to estimate GDP and electricity power consumption and concluded that it can be a strong tool
to evaluate socioeconomic indicators. Nevertheless, some researchers found that using NTL alone is
insufficient to capture the spatial heterogeneity of GDP at subnational levels. First of all, NTL is not
a direct measurement of socioeconomic activities. In addition to that, in many developing regions
like Sub-Saharan Africa, a large portion of the population are engaged in agricultural activities. Thus,
using NTL alone cannot estimate GDP accurately in these regions [27]. Therefore, some researchers
have started to estimate various socioeconomic indicators using NTL based on urban and rural regions
separately in order to capture the different levels of productivity [28].

This paper presents an approach that utilizes the VIIRS NTL data for estimating the socioeconomic
development metrics for the world. We mainly studied socioeconomic development with a focus
on the measurement of inequality as these indicators can reflect the socioeconomic status and the
current level of development. Rising levels of economic inequality can lead to a series of consequences
including lower rates of economic growth, happiness, and higher rates of crime, health, and poverty
problems [29]. Moreover, to improve the current data processing method to achieve better results,
we separated GDP estimation based on rural and urban regions using land cover classification data.
In addition to that, we also used a machine learning-based data processing method for filtering the
NTL outliers that were not related to socioeconomic activities to capture spatial heterogeneity of
GDP distribution at the pixel level. We adopted the unsupervised Isolation Forest (iForest) machine
learning model to help us automatically detect and remove irrelevant NTL data so as to improve model
accuracy [30]. We applied this method to develop two NTL-based indexes including (1) NTL-Gini,
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which is adapted from the Gini coefficient and developed based on the cumulative share of population
and gross domestic product (GDP) and (2) NTL-2020, which is adapted from the 20:20 ratio and used
to show how much richer the top 20% of populations are to the bottom 20% based on the cumulative
distribution of GDP and population. We produced the two NTL-based indexes to investigate and
estimate the current development progress for countries around the world [31].

This paper is organized as follows. Section 2 describes the data and methods we used for
developing NTL-based indexes and the model that was developed for evaluating social and economic
status. In Sections 3 and 4, we present and evaluate the results and compare them with the actual data.
Finally, we summarize the results and draw conclusions in Section 5.

2. Materials and Methods

2.1. Data Collections

The datasets used in this study are described in Table 1. This study used multisource geospatial
data in tandem with aggregate national socioeconomic data to develop NTL-based inequality indexes.
We used the stable, cloud-free VIIRS NTL (vcm-orm-ntl) product which is produced by the National
Oceanic Atmospheric Administration (NOAA) and the National Aeronautics and Space Administration
(NASA). We selected the “vcm-orm-ntl” data to calculate the sum of total NTL intensity in the urban
region for each of the administrative units to estimate the development in the urban regions. The
NTL can be used to estimate economic activities contributed by commercial and industrial activities.
This product improves our estimates of socioeconomic data, since it contains cloud-free average
radiance values and the outliers caused by fires and other ephemeral light have been removed.
The administrative boundary file was collected from the Database of Global Administrative Areas
(GADM) [32]. We mainly used the country (level 0) and subdivision level (levels 1 and 2) data for
national and subnational data processing. Additionally, population distribution and settlement data
at the 1 km2 level were obtained from the Global Human Settlement (GHS) datasets, which contain
location, population, and urban extent information for the human presence on the planet from 1975 to
2015. Human settlement information was obtained from the GHS Settlement Model grid (SMOD),
which contains urban center (densely populated areas), urban clusters (towns and suburbs), and rural
grid cells (rural areas) that can help us separate urban regions from rural regions. The population data
of GHS contain the distribution and density of population and they are expressed as the number of
people in each cell. For example, Figure 1 shows the NTL, SMOD, and population data distribution in
mainland China and Afghanistan. Socioeconomic statistics were obtained from the World Bank and
United Nations Development Programme (UNDP) databases. We used income classification data to
group countries and agriculture, forestry, and fishing with value added (% of GDP) for calculating the
proportion of GDP in rural regions to estimate the agriculture activity.

Table 1. Table of data inputs for estimating GDP and inequality indexes.

Dataset Description Sources

Population Global spatial information for the human presence on the planet in 2015 with
1 km2 spatial resolution. GHS [33]

Human Settlement Global spatial information for the human settlement (urban and rural) in 2015
with 1 km2 spatial resolution. GHS [34]

VIIRS VIIRS Cloud Mask-Outlier Removed-Night-Time Lights (vcm-orm-ntl) annual
data from 2015 with a spatial resolution of 15 arc-second. NOAA/NASA [35]

Global
Administrative Areas Global administrative areas of countries including the sub-divisions (v3.6). GADM [32]

Productivity Ratios Agriculture, forestry, and fishing with value added (% of GDP) from 2015 at
national level. The World Bank [36]

National GDP 2015 National GDP at purchasing power parity in constant 2011 U.S. dollars. The World Bank [36]

Gini Index Gini index estimates based on household survey data from 2015 at national level. The World Bank [36]

Income Quintile
Ratio

Ratio of the average income between the richest 20% and the poorest 20% of the
population. Only 2013 income quintile ratios are available. UNDP [37]
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2.2. Data Pre-Processing

Results from previous studies show that using NTL alone is insufficient to accurately measure the
GDP at subnational levels [27]. In order to assess the different levels of socioeconomic development in
the country, we separated the data into urban and rural data to capture the different levels of industrial,
commercial, and agricultural activities on a subnational scale using level 0, 1, and 2 administrative
districts from GADM. The data preparation consisted of three steps (Figure 2). In step 1, we converted
GHS population raster data to points in ArcGIS Pro 2.4.1 and used the converted population data
points to sample and extract the values of human settlement information and NTL intensity values
based on SMOD data and VIIRS NTL. Therefore, all data points contained attribute information
of population, nighttime light value, SMOD, administrative districts information at different levels,
income classification (based on country), and unique point identifier. In step 2, we separated population
data into urban and rural data based on the SMOD value. In step 3, we applied the iForest method to
identify NTL outliers in urban regions that were not related to socioeconomic activities and reclassified
them as 0.

Although we selected the “vcm-orm-ntl”, irrelevant light sources that are not filtered by the
product processing algorithm still remain due to its sensitivity [28]. Moreover, NTL is not directly
measuring socioeconomic activities and contains irrelevant data that can greatly affect the GDP
estimates especially at the 1 km2 level [38,39]. Therefore, we adopted a series of measures to remove
these irrelevant data in step 3. Since we were only using NTL to measure GDP in the urban regions,
we first filtered the data by selecting the data points in the urban regions based on their attributes
(SMOD value >20). Then, we used the unsupervised machine learning model of iForest to detect
the anomalies for the urban pixels based on the population and NTL attributes of urban data points.
Over the past decades, many anomaly detection models have been developed based on classification,
clustering, and statistical methods. Some researchers have used the DMSP data as a mask to extract
the VIIRS data or build a normal profile for the NTL data in order to remove outliers based on the
range of NTL intensity value distribution. However, it is very difficult to apply this method globally
due to the variations among countries. Furthermore, some of the methods can only be applied to
data of low dimensionality and smaller size. By contrast, the iForest machine learning model can
automatically detect irrelevant NTL outliers [30] because it is (1) not reliant on the distribution profile
of NTL data, (2) more suitable for processing large datasets, and (3) specifically designed to detect
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anomalies. Studies have demonstrated that the iForest method can outperform many other existing
model-based, distance-based, and density-based methods [30]. It is also more suitable for processing
large datasets compared to traditional methods like the density-based spatial clustering of applications
with noise (DBSCAN) [40]. We used data points for all countries as input so that iForest could detect
outliers based on the population and NTL values’ patterns. For instance, points with extremely high
NTL value and low population were identified as anomalies (Figure 3). The identified NTL outlier
values were changed to 0. Since we had already used a filtered VIIRS NTL product, only a small
proportion (about 0.1%) of NTL outliers were detected.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 5 of 17 
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2.3. GDP and Inequality

The Gini coefficient is a statistical measure of economic inequality based on income
distribution [41,42]. A higher Gini coefficient value indicates a higher degree of income inequality,
whereas a lower value indicates a lower degree of income inequality. Elvidge et al. [12] developed the
night light development index (NLDI) based on the Lorenz curve analysis to analyze the co-distribution
of NTL and population by sorting the NTL values in an ascending order. Nevertheless, this index may
not be sufficient to capture the distribution of economic activity as it cannot accurately represent the
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spatiotemporal variation of income distribution since NTL is not a direct measure of income or wealth.
Therefore, we combined the NTL values (nanoWatts/cm2/sr) with the actual agricultural production
ratios and population distribution in order to improve this characterization of economic activity. We
used (1) the urban data points (SMOD value >20) with NTL values to measure the distribution of
economic activity in the urban regions and (2) the rural data points (SMOD value <20) with population
density to measure the distribution of economic activities in the rural regions. We obtained the
aggregate GDP in each district based on the sum of rural and urban GDP (in constant 2011 U.S. dollars)
for that district. We defined the urban (UVj) and rural pixel value (RVj) of GDP as follows:

UVi =
SnNTL∗(1−AgRatio)∗GDP ∗ PopVi

TotNTL ∗ TotUrPop
(1)

RVi =
PopVi∗AgRatio ∗GDP

TotRuPop
(2)

where i is the unique identification of population pixel (derived from the GHS population layer),
SnNTL is the total NTL in the district, TotNTL is the total NTL for the country, PopVi is the population
count of the corresponding pixel, TotRuPop and TotUrPop are the total rural and urban population
for the country, AgRatio is the proportion of agriculture production of the total GDP, and GDP is the
national GDP at purchasing power parity (in 2011 constant U.S. dollars) data obtained from the World
Bank database. Based on the procedures described above, we produced a gridded GDP product at the
1 km2 level for countries around the world (Figure 4). The subnational GDP calculation was based on
the aggregate NTL and population using level 2 GADM districts. In addition, for countries without
AgRatio data, we used the total rural population divided by the total national population to calculate
the estimated AgRatio.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 7 of 17 

 

 

Figure 4. Gridded GDP product at 1 km2 level. 

NTL-Gini and NTL-2020 ratios were calculated based on the accumulative distribution of 

aggregate GDP at level 1 and 2 districts for countries around the world. We sorted the aggregate GDP 

data at district level in an ascending order to construct a GDP distribution profile for each country 

based on the fraction of population and the cumulative share of GDP at the subnational levels and to 

plot the Lorenz curve (Figure 5). The NTL-Gini coefficient is equal to the area marked A divided by 

the sum of the areas marked A and B in Figure 5a (Gini index = Area A/(Area A + Area B)). 

 

Figure 5. Lorenz curve for Gini and 20:20 ratios estimation. Calculation of (a) NTL-Gini and (b) NTL-

2020 ratios based on the Lorenz curve, and (c) sample Lorenz curve for China based on the cumulative 

distribution of population and GDP. 

Moreover, we also calculated the 20:20 ratio based on the distribution of NTL GDP at district 

level to measure inequality (Appendix A). Higher 20:20 ratios indicated higher income inequality 

[43–45]. The 20:20 ratio can be more revealing than the Gini coefficient since it compares how much 

wealthier the top 20% of the population is to the bottom 20% of the population. Many studies have 

shown that this can be a more useful measure to evaluate other development issues like health and 

social problems. In order to calculate the 20:20 ratio, we used the same distribution profile for each 

country and calculated the ratio between the total GDP for the top 20% of the population and total 

GDP for the bottom 20% of the population. 

  

Figure 4. Gridded GDP product at 1 km2 level.

NTL-Gini and NTL-2020 ratios were calculated based on the accumulative distribution of aggregate
GDP at level 1 and 2 districts for countries around the world. We sorted the aggregate GDP data at
district level in an ascending order to construct a GDP distribution profile for each country based on
the fraction of population and the cumulative share of GDP at the subnational levels and to plot the
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Lorenz curve (Figure 5). The NTL-Gini coefficient is equal to the area marked A divided by the sum of
the areas marked A and B in Figure 5a (Gini index = Area A/(Area A + Area B)).
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NTL-2020 ratios based on the Lorenz curve, and (c) sample Lorenz curve for China based on the
cumulative distribution of population and GDP.

Moreover, we also calculated the 20:20 ratio based on the distribution of NTL GDP at district level
to measure inequality (Appendix A). Higher 20:20 ratios indicated higher income inequality [43–45].
The 20:20 ratio can be more revealing than the Gini coefficient since it compares how much wealthier
the top 20% of the population is to the bottom 20% of the population. Many studies have shown
that this can be a more useful measure to evaluate other development issues like health and social
problems. In order to calculate the 20:20 ratio, we used the same distribution profile for each country
and calculated the ratio between the total GDP for the top 20% of the population and total GDP for the
bottom 20% of the population.

3. Results

3.1. Subnational GDP Validation

The performance of NTL-based development indexes was evaluated using the actual GDP data
from the Organisation for Economic Co-operation and Development (OECD) Regional Statistics and
Indicators, the Gini coefficient data from the World Bank databank, and the 20:20 Ratios from UNDP.
We first compared and validated the subnational GDP products by using the 249 regional GDP (Large
regions TL2) data from OECD administrative units that matched the level 1 districts from GADM.
Regional total GDP results of the NTL-based GDP were aggregated using the zonal statistics tool
in ArcGIS Pro based on the 1 km2 gridded NTL GDP product. We produced the cross-sectional fit
comparing the NTL-based GDP against the actual GDP from OECD regions. In Figure 6, the overall
result shows that NTL-based subnational GDP has a high coefficient of determination (R2 = 0.761).
In addition, since many researchers have studied the relationship between total NTL values within
regions with GDP [26,46] based on simple linear regression, we also produced the cross-sectional fit
comparing the sum of NTL within districts against the actual GDP from OECD regions (R2 = 0.684).
Results in Figure 6 show that NTL GDP can better reflect the actual GDP values. Nevertheless, due to
the small size of validation data (n = 246), it is difficult for us to evaluate the results’ accuracy globally
at various spatial scales.

We also compared our data based on the electricity accessibility [47] and the Gridded GDP
datasets [48]. Figure 7 shows that because the Gridded GDP datasets only contain GDP per capita
information for Uganda at the national level, the GDP data (Figure 7c) is mainly dependent on
population density (Figure 7a). Therefore, it fails to show the subnational variation of economic
activities in urban and rural regions. Figure 7b shows the electricity access estimation (distribution
of people without access to electricity) near Kampala, Uganda [47]. Both the NTL GDP data and the
electricity access rate show that the Gridded GDP dataset [48] overestimates GDP in many regions
outside Kampala despite the fact that these regions have a low electricity access rate and are less
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developed. This is possibly because the Gridded GDP product is incapable of differentiating levels
of productivity within districts and fails to capture the spatial heterogeneity of GDP at various
spatial scales.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 8 of 17 

 

3. Results 

3.1. Subnational GDP Validation 

The performance of NTL-based development indexes was evaluated using the actual GDP data 

from the Organisation for Economic Co-operation and Development (OECD) Regional Statistics and 

Indicators, the Gini coefficient data from the World Bank databank, and the 20:20 Ratios from UNDP. 

We first compared and validated the subnational GDP products by using the 249 regional GDP (Large 

regions TL2) data from OECD administrative units that matched the level 1 districts from GADM. 

Regional total GDP results of the NTL-based GDP were aggregated using the zonal statistics tool in 

ArcGIS Pro based on the 1 km2 gridded NTL GDP product. We produced the cross-sectional fit 

comparing the NTL-based GDP against the actual GDP from OECD regions. In Figure 6, the overall 

result shows that NTL-based subnational GDP has a high coefficient of determination (R2 = 0.761). In 

addition, since many researchers have studied the relationship between total NTL values within 

regions with GDP [26,46] based on simple linear regression, we also produced the cross-sectional fit 

comparing the sum of NTL within districts against the actual GDP from OECD regions (R2 = 0.684). 

Results in Figure 6 show that NTL GDP can better reflect the actual GDP values. Nevertheless, due 

to the small size of validation data (n = 246), it is difficult for us to evaluate the results’ accuracy 

globally at various spatial scales. 

 

(a) (b) 

Figure 6. (a) Scatterplot of Organisation for Economic Co-operation and Development (OECD) 

regional GDP and sum of NTL values within districts, and (b) scatterplot of OECD regional GDP and 

district-level NTL GDP (n = 246 subnational districts). 

We also compared our data based on the electricity accessibility [47] and the Gridded GDP 

datasets [48]. Figure 7 shows that because the Gridded GDP datasets only contain GDP per capita 

information for Uganda at the national level, the GDP data (Figure 7c) is mainly dependent on 

population density (Figure 7a). Therefore, it fails to show the subnational variation of economic 

activities in urban and rural regions. Figure 7b shows the electricity access estimation (distribution of 

people without access to electricity) near Kampala, Uganda [47]. Both the NTL GDP data and the 

electricity access rate show that the Gridded GDP dataset [48] overestimates GDP in many regions 

outside Kampala despite the fact that these regions have a low electricity access rate and are less 

developed. This is possibly because the Gridded GDP product is incapable of differentiating levels 

of productivity within districts and fails to capture the spatial heterogeneity of GDP at various spatial 

scales. 

Figure 6. (a) Scatterplot of Organisation for Economic Co-operation and Development (OECD) regional
GDP and sum of NTL values within districts, and (b) scatterplot of OECD regional GDP and district-level
NTL GDP (n = 246 subnational districts).ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 9 of 17 

 

 

Figure 7. Comparisons of population distribution, electricity accessibility [47], Gridded GDP at the 1 

km2 level [48], and NTL GDP data around Kampala, Uganda. (a) Population data, (b) electricity access 

data, (c) GDP data from Gridded global datasets, (d) NTL-based GDP. 

3.2. Inequality Validation 

To evaluate whether NTL-based GDP distribution can predict inequality accurately, we 

compared the NTL-based inequality indexes against the actual Gini index and 20:20 ratios data using 

root mean square error (RMSE) and mean absolute error (MAE) (Figure 8). We normalized all 

inequality data into the range of 0 to 1. We also compared the data by categorizing the countries 

based on the income level classification. The overall RMSE and MAE for all countries without using 

income classification were also compared. The inequality validation results show that there is an 

overall smaller deviation between the NTL-2020 ratios and the actual data from UNDP, indicating 

that using NTL and population data can better capture the differences of wealth distribution for the 

top and bottom 20% of the population in urban and rural regions. Both of the NTL-based Gini 

coefficient and NTL-2020 have similar RMSE and MAE for high-income and low-income countries, 

whereas the NTL-2020 ratios have smaller RMSE and MAE for upper-middle and lower-middle 

countries. This shows that the overall GDP distribution profile may be more accurate for developed 

and less-developed countries as they tend to rely more on tertiary industry (that can be captured by 

NTL) and primary industry (captured by population density). For many developing countries (with 

upper-middle and lower middle incomes), where there tends to be greater socioeconomic inequality, 

the NTL-2020 ratios can better capture this unequal distribution of income and opportunity. For 

instance, studies [27] have shown that the correlation between light intensity values and economic 

activity is much weaker for countries that are dependent on agriculture. This is probable since most 

of these countries are developed countries or industrialized countries that have advanced their 

technology infrastructures and developed their economies. Therefore, it is harder to measure the 

socioeconomic development in these countries. 

Figure 7. Comparisons of population distribution, electricity accessibility [47], Gridded GDP at the
1 km2 level [48], and NTL GDP data around Kampala, Uganda. (a) Population data, (b) electricity
access data, (c) GDP data from Gridded global datasets, (d) NTL-based GDP.

3.2. Inequality Validation

To evaluate whether NTL-based GDP distribution can predict inequality accurately, we compared
the NTL-based inequality indexes against the actual Gini index and 20:20 ratios data using root mean
square error (RMSE) and mean absolute error (MAE) (Figure 8). We normalized all inequality data into
the range of 0 to 1. We also compared the data by categorizing the countries based on the income level
classification. The overall RMSE and MAE for all countries without using income classification were
also compared. The inequality validation results show that there is an overall smaller deviation between
the NTL-2020 ratios and the actual data from UNDP, indicating that using NTL and population data
can better capture the differences of wealth distribution for the top and bottom 20% of the population
in urban and rural regions. Both of the NTL-based Gini coefficient and NTL-2020 have similar RMSE
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and MAE for high-income and low-income countries, whereas the NTL-2020 ratios have smaller RMSE
and MAE for upper-middle and lower-middle countries. This shows that the overall GDP distribution
profile may be more accurate for developed and less-developed countries as they tend to rely more on
tertiary industry (that can be captured by NTL) and primary industry (captured by population density).
For many developing countries (with upper-middle and lower middle incomes), where there tends to
be greater socioeconomic inequality, the NTL-2020 ratios can better capture this unequal distribution
of income and opportunity. For instance, studies [27] have shown that the correlation between light
intensity values and economic activity is much weaker for countries that are dependent on agriculture.
This is probable since most of these countries are developed countries or industrialized countries that
have advanced their technology infrastructures and developed their economies. Therefore, it is harder
to measure the socioeconomic development in these countries.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 10 of 17 
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4. Discussion

The NTL global GDP data at 1 km2 can be aggregated into different subnational levels to support
analysis at multiple spatial scales. In general, the NTL data collected by the VIIRS can help us not
only monitor the light sources but also study various human activities. By using the multisource
data, we developed an NTL-based index to estimate different levels of socioeconomic development in
urban and rural regions in an efficient and accurate manner. The VIIRS data were capable of capturing
commercial and industrial activities more accurately than DMSP-OLS. Although DMSP-OLS NTL
data have been widely used due to their detection of anthropogenic lighting sources to study human
activities, they still present many significant problems. For instance, the data have deficiencies such
as coarse spatial resolution, saturation, lack of in-flight calibration, and lack of low-light imaging
spectral bands suitable for discriminating lighting types [8]. Elvidge et al. [20] compared capabilities of
DMSP-OLS and VIIRS and concluded that VIIRS is superior to DMSP-OLS in many ways. Therefore,
as more VIIRS products are released (monthly and annual), there is a great potential to capture human
development at various spatiotemporal scales. Furthermore, the NTL imagery can potentially become
an alternative method for scientists to measure and assess socioeconomic development to achieve
SDGs. First, there are many limitations for collecting and calculating traditional inequality data. NTL
can help us generate reliable estimates to evaluate if cities have achieved the sustainable goals on a
global scale. Second, NTL estimates can be combined with multisource data to help people understand
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the current water, energy, and food security nexus to evaluate and manage the capacity of our growth.
Third, it is important to develop different measures based on various sources of data and evaluate the
nation’s sustainable development based on multiple indexes. The current method is also limited by
the availability of accurate data for model optimization and validation. For example, in our model, we
assumed that the rural region was mainly dependent on agricultural activities. However, there are also
other labor-intensive activities that can contribute to the rural GDP like mining, oil extraction, and
refinery. Therefore, it is also important to collect more accurate socioeconomic data on various spatial
scales to improve the accuracy of GDP estimates.

5. Conclusions

Our approach is suitable for measuring the distribution of GDP on both subnational and national
levels. The NTL-based GDP estimation using urban and rural separation helped us capture the spatial
heterogeneity of GDP distribution compared to the simple linear regression method based on NTL
values only. By utilizing the iForest machine learning solution, it was easier for us to detect outliers
from the urban NTL data to better estimate GDP distribution at the pixel level (1 km2). Furthermore,
the NTL-based indexes were useful for estimating a variety of inequality indicators. Nevertheless, due
to the different levels of development, the performance of NTL-based indexes was also affected. In the
future, several options can take this research to another level: (a) incorporating an advanced machine
learning model or hybrid model to improve the model performance; (b) collecting more historical
socioeconomic data to analyze development changes based on the trend and make forecasts for the
future; (c) estimating the inequality at subnational levels and validating the results using ground-truth
data; and (d) incorporating more variables to train the model so that it can be customized and adjusted
for different inequality evaluation purposes. Moreover, monthly VIIRS NTL products are now also
available. There is a great potential for us to understand the dynamics of human population changes
within cities, assess our ecological footprints, estimate the demand of resources, and evaluate the limit
of our growth [49–51].
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Appendix A

Table A1. NTL-Gini and NTL-2020 results.

Country NTL-Gini NTL-2020

American Samoa 0.010 1.057

Solomon Islands 0.018 1.100

San Marino 0.035 1.161

Cyprus 0.039 1.202

New Caledonia 0.053 1.291

Belize 0.054 1.353

Guam 0.078 1.498

Bermuda 0.079 1.409

Tonga 0.082 1.789

Qatar 0.103 1.580
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Table A1. Cont.

Country NTL-Gini NTL-2020

Spain 0.109 1.747

Cayman Islands 0.120 2.619

Virgin Islands (U.S.) 0.121 1.788

Libya 0.123 1.854

Trinidad and Tobago 0.123 1.901

Italy 0.131 2.010

Greece 0.137 1.844

Israel 0.141 1.994

Liechtenstein 0.149 2.013

Belgium 0.152 2.268

Saudi Arabia 0.156 2.141

Singapore 0.158 2.099

Bosnia and Herzegovina 0.167 2.466

Finland 0.167 2.420

Iceland 0.168 4.659

Malta 0.168 2.175

Chile 0.171 2.431

Bahamas, The 0.173 2.877

Kuwait 0.181 2.563

Albania 0.189 2.698

Bahrain 0.190 2.540

Barbados 0.190 4.441

Uruguay 0.197 2.965

Argentina 0.198 2.878

St. Vincent and the Grenadines 0.202 3.381

Kyrgyz Republic 0.202 3.158

Jamaica 0.204 2.934

France 0.206 3.050

Hong Kong SAR, China 0.212 2.718

Sierra Leone 0.214 2.793

Nepal 0.215 2.863

Jordan 0.216 2.728

Japan 0.220 3.224

Korea, Rep. 0.222 3.103

Dominican Republic 0.223 3.647

United Kingdom 0.224 3.161

Latvia 0.226 3.747

Armenia 0.227 2.915

Puerto Rico 0.228 3.541

New Zealand 0.233 4.454
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Table A1. Cont.

Country NTL-Gini NTL-2020

Morocco 0.235 3.296

Serbia 0.239 4.004

Malaysia 0.245 3.873

Turkmenistan 0.254 3.671

Togo 0.254 3.840

Mongolia 0.256 4.181

Montenegro 0.259 5.175

Iran, Islamic Rep. 0.259 3.299

Czech Republic 0.262 3.669

Egypt, Arab Rep. 0.262 3.541

Canada 0.263 4.361

Bangladesh 0.265 4.117

Switzerland 0.266 4.482

Belarus 0.268 4.785

Ireland 0.269 4.082

Brazil 0.276 5.263

Germany 0.277 4.293

Australia 0.279 4.875

Peru 0.279 6.108

Pakistan 0.280 4.334

Lebanon 0.280 3.699

Tajikistan 0.282 4.011

Ecuador 0.288 5.204

Portugal 0.289 9.392

Hungary 0.291 5.646

Tunisia 0.294 4.615

Turkey 0.296 4.884

United States 0.297 6.125

Andorra 0.299 113.727

Costa Rica 0.299 5.939

Algeria 0.301 4.461

Antigua and Barbuda 0.302 35.927

Luxembourg 0.304 18.170

Bolivia 0.307 6.176

North Macedonia 0.308 4.890

Comoros 0.311 7.412

South Africa 0.311 6.693

Colombia 0.311 7.124

Côte d’Ivoire 0.312 4.120

China 0.314 4.654
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Table A1. Cont.

Country NTL-Gini NTL-2020

Uzbekistan 0.314 5.460

Oman 0.316 4.982

Venezuela, RB 0.316 4.780

West Bank and Gaza 0.317 6.818

Mexico 0.317 6.849

Mauritius 0.318 5.428

United Arab Emirates 0.319 5.260

Cuba 0.320 5.631

Sweden 0.320 7.993

Mali 0.321 5.199

Guyana 0.322 5.355

Paraguay 0.324 5.810

Indonesia 0.326 5.033

Guinea-Bissau 0.326 5.975

Bulgaria 0.332 14.342

Georgia 0.335 7.281

Lesotho 0.336 7.861

Liberia 0.336 4.940

Austria 0.337 7.776

Poland 0.343 6.219

Isle of Man 0.345 94.870

Panama 0.353 17.050

Dominica 0.356 5.079

Lithuania 0.362 11.281

Honduras 0.366 7.189

Iraq 0.367 9.034

Suriname 0.368 8.129

Denmark 0.369 7.777

El Salvador 0.371 7.590

Ghana 0.371 6.551

Slovak Republic 0.374 6.704

Myanmar 0.375 6.744

India 0.381 7.201

Syrian Arab Republic 0.383 9.901

Gambia, The 0.388 7.404

Ukraine 0.399 6.813

Russian Federation 0.399 10.015

Azerbaijan 0.402 8.961

Croatia 0.409 27.197

Vanuatu 0.409 5.782
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Table A1. Cont.

Country NTL-Gini NTL-2020

St. Lucia 0.411 15.134

Grenada 0.416 7.682

Nicaragua 0.417 14.450

Brunei Darussalam 0.423 19.773

Thailand 0.428 9.299

Burkina Faso 0.428 8.286

Benin 0.429 8.287

Haiti 0.439 10.196

Fiji 0.446 15.726

Ethiopia 0.456 8.087

Congo, Rep. 0.456 33.783

Cameroon 0.457 12.810

Senegal 0.460 11.864

Equatorial Guinea 0.463 33.041

Angola 0.466 21.985

Moldova 0.468 10.032

Djibouti 0.468 81.186

Niger 0.472 9.449

Botswana 0.473 12.043

Rwanda 0.477 9.348

Norway 0.477 69.563

Vietnam 0.477 10.579

Slovenia 0.479 55.003

Central African Republic 0.480 9.520

Philippines 0.481 11.231

Kazakhstan 0.487 14.438

Madagascar 0.490 9.834

Sudan 0.499 17.698

Mauritania 0.511 14.726

Tanzania 0.514 13.423

Samoa 0.514 16.265

Kenya 0.516 10.632

São Tomé and Príncipe 0.522 13.227

Romania 0.523 26.556

Zambia 0.526 22.972

Guinea 0.532 14.223

Cambodia 0.534 12.629

Estonia 0.537 38.572

Mozambique 0.537 18.714

Guatemala 0.541 17.937
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Table A1. Cont.

Country NTL-Gini NTL-2020

Sri Lanka 0.547 19.815

Gabon 0.548 17.021

Chad 0.550 23.489

Netherlands 0.550 12.488

Zimbabwe 0.553 34.817

Malawi 0.560 10.926

Somalia 0.577 36.880

Nigeria 0.595 23.318

Afghanistan 0.618 40.357

Uganda 0.624 21.898

Seychelles 0.624 92.991

Lao PDR 0.633 17.154

Namibia 0.636 33.687

Eswatini 0.639 27.596

Burundi 0.642 41.806

Korea, Dem. Rep. 0.642 21.546

Bhutan 0.647 16.960

Eritrea 0.680 72.123

Congo, Dem. Rep. 0.708 64.175

Timor-Leste 0.736 35.984

Cabo Verde 0.746 166.356

St. Kitts and Nevis 0.755 351.285

Papua New Guinea 0.790 651.035

Yemen, Rep. 0.804 562.975

South Sudan 0.831 336.357
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