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Abstract: Road extraction is a unique and difficult problem in the field of semantic segmentation
because roads have attributes such as slenderness, long span, complexity, and topological connectivity,
etc. Therefore, we propose a novel road extraction network, abbreviated HsgNet, based on high-order
spatial information global perception network using bilinear pooling. HsgNet, taking the efficient
LinkNet as its basic architecture, embeds a Middle Block between the Encoder and Decoder. The Middle
Block learns to preserve global-context semantic information, long-distance spatial information and
relationships, and different feature channels’ information and dependencies. It is different from other
road segmentation methods which lose spatial information, such as those using dilated convolution
and multiscale feature fusion to record local-context semantic information. The Middle Block consists
of three important steps: (1) forming a feature resource pool to gather high-order global spatial
information; (2) selecting a feature weight distribution, enabling each pixel position to obtain
complementary features according to its own needs; and (3) inversely mapping the intermediate
output feature encoding to the size of the input image by expanding the number of channels of the
intermediate output feature. We compared multiple road extraction methods on two open datasets,
SpaceNet and DeepGlobe. The results show that compared to the efficient road extraction model
D-LinkNet, our model has fewer parameters and better performance: we achieved higher mean
intersection over union (71.1%), and the model parameters were reduced in number by about 1/4.

Keywords: road extraction; remote sensing; CNN; high-order spatial information; global feature

1. Introduction

This paper addresses the problem of extracting road regions [1,2] from remote sensing images.
Road segmentation based on remote sensing images has a wide range of applications in digital
map generation, updating road networks, urban planning, automatic driving, path planning, road
navigation, road damage detection, emergency rescue, and other fields.

The semantic segmentation of roads is a very challenging task. Unlike the extraction of road
skeleton information [3–5], each pixel belonging to a road needs to be labeled as a road, and the
remaining should be labeled as a background. This belongs to the problem of binary semantic
segmentation. Compared with general semantic segmentation objects, road segmentation extraction is
unique and difficult. The factors affecting road extraction (Figure 1) are as follows: (1) Roads are slender
and long. Although they occupy a small proportion of the whole image, they often span the whole
image. (2) Their geometric features are similar to those of rivers, railways, and gullies, and it is difficult
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even for professionals to distinguish them. (3) Texture features are easily confused with the surrounding
background environment. (4) The extracted road is obscured by trees, buildings, shadows. (5) The
complexity of the topological connectivity is reflected in the intersection and connectivity of multiple
roads, which is a challenge for accurate road extraction. These factors make it difficult to extract
roads from remote sensing images and also make the applicability of many semantic segmentation
methods weak.
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misidentified, (c) texture, and other features were extremely similar to the surrounding environment, 
(d) tree obscuration, and (e) a complex topological connectivity led to roads being unrecognized. 

Recently, many common semantic segmentation methods have been developed, and relatively 
few of them have been used in road extraction. Fully convolutional networks (FCN) [6] realize pixel-
level prediction by using three techniques—convolution, up-sampling, and a skip structure—and 
were the first to have complete end-to-end supervision and pretraining. FCN is constrained by 
smaller effective perception domains to capture partial spatial information and context semantic. In 
addition, many researchers have proposed efficient multiscale context semantics fusion modules, 
such as Deeplab's dilated convolution [7] and Pyramid Scene Parsing Network’s (PSPNet's) pyramid 
pooling module [8]. Encoder–decoder networks such as U-Net [9], LinkNet [10], and D-LinkNet [11] 
have been proposed to effectively fuse low-dimensional and high-dimensional features at different 
resolutions. In particular, D-LinkNet [11] won first place with 0.6342 mean intersection over union 
(mIoU) in the 2018 DeepGlobe Road Extraction Challenge. D-LinkNet uses dilated convolution to 
expand the field of perception and fuse context semantic information at multiscale. At present, D-
LinkNet is still a classic and efficient method in comprehensive performance of road extraction. 
However, there are two potential problems worthy of comparative study in this paper. Firstly, the 
use of dilated convolution causes not all pixels to participate in the convolution calculation because 
of the discontinuity of kernels; thus, continuity and wholeness of the information are lost. Secondly, 
the multiscale feature fusion module increases the number of model parameters. Considering that 
the network model needs to be used in practical applications, the accuracy and forward computing 
time of the model must be taken into account when constructing the road extraction network; the 
former should be as high as possible and the latter should be as low as possible.  

Apparently, the above methods represented by D-LinkNet can promote the development of 
semantic segmentation, whether using multiscale context semantic fusion or multidimensional, 
multiresolution feature fusion. However, the common characteristic of the above methods is that they 
learn only part of the spatial information to acquire local association features, leading to spatial 

Figure 1. Illustrating the uniqueness and difficulty of road extraction. The first row: original DeepGlobe
test images. The second row: the road extracted using LinkNet. The green represents the areas that were
marked as roads but were not predicted or were misidentified by LinkNet. (a) The slenderness road,
(b) the geometric features being similar to those of a gully led to a road being misidentified, (c) texture,
and other features were extremely similar to the surrounding environment, (d) tree obscuration, and (e)
a complex topological connectivity led to roads being unrecognized.

Recently, many common semantic segmentation methods have been developed, and relatively few
of them have been used in road extraction. Fully convolutional networks (FCN) [6] realize pixel-level
prediction by using three techniques—convolution, up-sampling, and a skip structure—and were the
first to have complete end-to-end supervision and pretraining. FCN is constrained by smaller effective
perception domains to capture partial spatial information and context semantic. In addition, many
researchers have proposed efficient multiscale context semantics fusion modules, such as Deeplab’s
dilated convolution [7] and Pyramid Scene Parsing Network’s (PSPNet’s) pyramid pooling module [8].
Encoder–decoder networks such as U-Net [9], LinkNet [10], and D-LinkNet [11] have been proposed to
effectively fuse low-dimensional and high-dimensional features at different resolutions. In particular,
D-LinkNet [11] won first place with 0.6342 mean intersection over union (mIoU) in the 2018 DeepGlobe
Road Extraction Challenge. D-LinkNet uses dilated convolution to expand the field of perception and
fuse context semantic information at multiscale. At present, D-LinkNet is still a classic and efficient
method in comprehensive performance of road extraction. However, there are two potential problems
worthy of comparative study in this paper. Firstly, the use of dilated convolution causes not all pixels
to participate in the convolution calculation because of the discontinuity of kernels; thus, continuity
and wholeness of the information are lost. Secondly, the multiscale feature fusion module increases
the number of model parameters. Considering that the network model needs to be used in practical
applications, the accuracy and forward computing time of the model must be taken into account when
constructing the road extraction network; the former should be as high as possible and the latter should
be as low as possible.

Apparently, the above methods represented by D-LinkNet can promote the development of
semantic segmentation, whether using multiscale context semantic fusion or multidimensional,
multiresolution feature fusion. However, the common characteristic of the above methods is that
they learn only part of the spatial information to acquire local association features, leading to spatial
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information loss; this is not conducive to the road extraction with long span, complex background, and
difficult topological connectivity, and other influencing factors.

In this paper, we aim to improve the accuracy of road extraction via learning global spatial
information to ensure information integrity and establish long-distance context semantic associations.
Of course, we need to minimize the number of model parameters so as to support and adapt to the
wide applications of road segmentation. Therefore, we propose a road extraction network, abbreviated
HsgNet, that can automatically achieve higher-order spatial information global perception.

The specific contributions of this paper are as follows:

• A novel encoder–decoder network, HsgNet, is proposed for road extraction; this only replaces
the center dilation part of D-LinkNet with a higher-order global spatial information perception
module, named Middle Block in Section 3.

• We introduce bilinear pooling to model the Middle Block, including three important steps
presented in Section 3.2. The Middle Block based on bilinear pooling not only makes full use of
the global spatial information but also preserves the high-order (second-order) information and
dependencies of different feature channels.

• To validate our proposed methods, we conducted experiments on two open datasets,
DeepGlobe [12] and SpaceNet [13]. The experiment results show that our proposed road extraction
approach achieves the expected goals: better performance and fewer parameters than the excellent
lightweight D-LinkNet.

This paper is organized as follows: In Section 2, related work is introduced. The proposed method
of road extraction based on the global perception of high-order spatial information is detailed in
Section 3. The experiments and their results are presented in Section 4. Finally, conclusions are drawn
in Section 5.

2. Related Work

It is difficult to extract road regions from remote sensing images, but there have been
some achievements with the continuous development of traditional methods and deep learning
(a hotspot direction).

In traditional methods, finite element models designed by hand are used to enhance road
connectivity by combining context and prior information, such as in high-order conditional random
fields (CRF) [14] and junction-point processes [15]. Liu et al. [16] proposed a road extraction method
based on remote sensing images and geometric feature inference combined with a knowledge base
of rural road geometry to try to solve the extraction problem for rural roads, characterized by
diverse materials, large curvature change, and serious obscuration. Song and Civco [17] proposed
a method to detect road regions using shape index features and support vector machines (SVM).
Das et al. [18] designed a multilevel framework using two distinct features of roads to extract
roads from high-resolution multispectral images using probabilistic SVM. Alshehhi and Marpu [1]
proposed an unsupervised road extraction method based on hierarchical image segmentation. With the
continuous development of neural networks and in-depth learning, these design methods based on
prior knowledge also open the way to self-learning.

In deep learning, Mnih and Hinton [19] took the lead in using restricted Boltmann machines
(RBMs) as basic blocks to construct a deep neural network to segment road regions from high-resolution
remote sensing images and to improve the segmentation accuracy by combining preprocessing and
postprocessing. Unlike Mnih and Hinton, Saito [20] used a convolutional neural network (CNN) to
extract roads directly from original images and got better results on the Massachusetts Roads Dataset.
RoadTracer [21], proposed by Bastani, uses an iterative search process based on CNN decision function
to output the network directly from CNN. Xia et al. [22] also directly used deep convolutional neural
network (DCNN) to extract roads and tested it on GaoFen-2 satellite (GF-2) images. Some scholars
have considered using road topological features to improve the accuracy of road extraction [23] and
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initially attempted to generate topologically connected road networks using constrained models.
The encoder–decoder deep neural network provided a new research direction for road semantics
segmentation. For example, U-Net [9] and LinkNet [10] splice feature maps with different resolutions
to integrate low-level detail information and high-level semantic information; this is different from
FCN [6], which uses a skip connection. Zhou et. al. [11] put forward D-LinkNet, which uses dilated
convolution to expand the field of perception, preserve spatial information, and fuse context semantic
information at multiscale. As mentioned in the introduction, although D-LinkNet is still an excellent
method in road extraction, there is still room for improvement because of the information loss caused
by dilated convolution.

However, we found few studies on road extraction based on global information learning using the
above methods. Of course, a few scholars have realized the importance of global information in image
segmentation [24] and road extraction [25]. At this time, bilinear pooling [26] attracts our attention.

Our work is primarily motivated by Lin et al [26], who proposed bilinear CNN models for
fine-grained classification in 2015. These have been continuously optimized in ways such as
dimensionality reduction [27], multimodal feature fusion [28], low-rank reconstruction [29–31], etc.
Bilinear pooling continues to evolve and has been applied to visual recognition and classification [32,33].
In visual recognition tasks, second-order information is considered to perform better than first-order
information [34]. Carreira [35] was the first to propose second-order pooling to capture second-order
information by aggregating two identical feature maps to improve the accuracy of object recognition.
Bilinear pooling can aggregate the features of two different feature maps to obtain second-order
information. In this paper, we use this difference to extract roads via a proposed road extraction
method based on bilinear pooling to achieve global perception of high-order spatial information and
further improve the accuracy of road extraction.

3. Methods

3.1. HsgNet

Architecture: The architecture of HsgNet includes an Encoder, Middle Block, and Decoder
(Figure 2). HsgNet takes LinkNet as its basic architecture for the good performance in terms of memory
and computation. And at the same time, it is convenient for HsgNet to compare D-LinkNet which has
excellent comprehensive performance. HsgNet firstly gathers the key features of the whole space into
a compact feature resource pool through an Encoder; the introduction of the Middle Block enhances
the global information learning ability during road extraction and models the spatial context semantics
and dependencies. The output is reversely mapped to the input image via the Decoder to recover
the size.

The Encoder adopts ResNet34 [36], pretrained on the ImageNet [37] data set, to improve the
convergence speed of the model through migration learning. Yosinski and Bengio et al. [38] proved
that with the deepening of the neural network, the common, transitional, and specific features of the
learning objects are studied separately. We focused on the specific feature extraction layer, which
plays a decisive role in the final coding stage; meanwhile, considering the long span, slenderness,
connectivity, and complexity of roads, we introduce the Middle Block.

The Middle Block is a high-order spatial information global perception module for full-pixel
computing. Based on bilinear pooling, the feature distribution of the spatial information with
weighting is obtained, global and second-order spatial information is recorded, long-distance context
semantics and dependencies among different feature channels are aggregated adaptively, and the road
segmentation feature representation ability is improved (Section 3.2).

The Decoder is consistent with that of LinkNet [10]. Transposed convolution [39] is used for
up-sampling, and the resolution of the feature map is restored from 32*32 to 1024*1024.
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inspired by popular attention mechanisms [40,41] and models, i.e., the cross attention network [42], 
dual attention network [43], squeeze and excitation network [44], especially nonlocal neural networks 
[45], and double attention networks [46].  

The Middle Block consists of three parts (Figure 3). Firstly, the feature resource pool, the source 
motivation of the road segmentation task, is generated by using the outer product computation 
method based on bilinear pooling [26] to capture the global, second-order, and long-distance spatial 
information and the dependencies of different feature channels. Secondly, the complementary 
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allocation—so that the local position can also get the global relationship. Thirdly, the feature matric 
is reversely mapped to the size of the input feature map.  

Figure 2. The architecture of HsgNet. The blue rectangle represents the multichannel features map,
and the yellow rectangle represents the high-order spatial information global perception module.
The model is divided into three parts: an Encoder, Middle Block, and Decoder. ResNet34 was used as
the encoder, and the decoder used the original decoder part of LinkNet. D-LinkNet uses several dilated
convolution layers as the intermediate module, while HsgNet uses a high-order spatial information
global perception module as the intermediate module.

3.2. Middle Block: High-Order Spatial Information Global Perception

In this paper, we inserted a Middle Block based on bilinear pooling into the middle of LinkNet
between the encoder and decoder to form HsgNet (Figure 2). The design of the Middle Block was
inspired by popular attention mechanisms [40,41] and models, i.e., the cross attention network [42], dual
attention network [43], squeeze and excitation network [44], especially nonlocal neural networks [45],
and double attention networks [46].

The Middle Block consists of three parts (Figure 3). Firstly, the feature resource pool, the source
motivation of the road segmentation task, is generated by using the outer product computation method
based on bilinear pooling [26] to capture the global, second-order, and long-distance spatial information
and the dependencies of different feature channels. Secondly, the complementary function is selected
according to the needs of each location—that is, the weighted feature space allocation—so that the
local position can also get the global relationship. Thirdly, the feature matric is reversely mapped to
the size of the input feature map.
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Figure 3. The Middle Block between the Encoder and Decoder.It contains three convolutions.
All convolution kernel sizes are 1 × 1. First, we use bilinear pooling to capture the second-order
statistics of features and generate feature resource pool. Then, a set of attention coefficients is used
to recover the features of each position from feature resource pool. We inserted this module into the
middle part of LinkNet to form HsgNet (Figure 2).

Let X ∈ Rc×h×w be the input tensor of the spatial–temporal convolution layer, where c is the number
of channels, h and w are the spatial dimensions of the input feature map, and each input position is
represented by i = 1, . . . , hw. Feature arrays A and B are generated by different 1× 1× 1 convolutions
on the input feature array X. The first of the three parts of the Middle Block uses bilinear pooling to
generate a second-order global feature resource pool Fg−bilinear, which is obtained by the outer product
of all feature vector pairs (ai, bi) of two input feature images A and B in the pool. The equation can be
formulated as follows:

Fg−bilinear(A, B) = AB> =
∑
∀i

aibi
>, (1)

where A = [a1, . . . , ahw] ∈ Rm×hw and B = [b1, . . . , bhw] ∈ Rn×hw. A and B are two different feature maps,
i.e., A = φ

(
X; Wφ

)
and B = so f tmax(θ(X; Wθ)), with parameters Wφ and Wθ.

In the second of the three parts of the Middle Block, according to the needs of each local feature
vi, the features collected from the whole space zi =

∑
∀ j

vi jFg j = Fg−bilinearvi are allocated to each

input vi. A subset of feature vectors is selected from Fg−bilinear =
[
Fg1 , . . . , Fgn

]
∈ Rm×n to realize the

complementary feature of each location feature selection vi and the current feature and to learn to
capture more complex relationships. The equation is given by the following expression:

zi =
∑
∀ j

vi jFg j = Fg−bilinearvi, (2)

where
∑
∀ j

vi j = 1. We apply the so f tmax function to normalize vi to 1 so as to give better convergence.

In feature selection, we use the vector of feature weights V = so f tmax(υ(X; Wυ)) with parameter Wυ.
Combining Equation (1) with Equation (2), we define a general equation for the feature output Z

of the model:
Z = φ

(
X; Wφ

)
so f tmax(θ(X; Wθ))

>so f tmax(υ(X; Wυ)). (3)

In the third part of the Middle Block, an additional feature array ψ
(
Z; Wψ

)
is added to expand the

number of feature channels for the output features Z, and that is encoded to the size of the input X to
get the final output features Y:

Y = X +ψ
(
Z; Wψ

)
. (4)
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4. Experiments and Results

4.1. Data Sets

DeepGlobe [12]: This dataset come from pixel-level annotations of three different regions; each
image resolution is 1024 × 1024, and the road resolution is 0.5 m/pixel. From the original DeepGlobe
training set, we randomly allocated 4971 images to the training set, 622 images to the verification set,
and 622 images to the test set in a ratio of 8:1:1.

SpaceNet [13]: This dataset provides imagery from four different cities with ground resolution of
30cm/pixel and pixel resolution of 1300 × 1300. Its annotations are the center lines of the roads, and
these are expressed in the form of line strings. We converted 11-bit images into 8-bit images, created
Gaussian road masks, and generated a new dataset, including 2213 training images and 567 test images.
To augment the training set we create crops of 650 × 650 with overlapping region of 215 pixels, for
validation set we use the crops of same size without overlap. Finally, we got about 35K training images
and about 2K test images. Since our network is based on LinkNet, 5 times of downsampling will be
carried out in the encoding phase, and the size of the feature map output by encoder is 1/32 of the
input image, so the size of the input image needs to be a multiple of 32. Then, we scale the images
from 650 × 650 to 512 × 512.

We adopted horizontal flip, vertical flip, diagonal flip, ambitious color jittering, image shifting,
and scaling data enhancement on both open data sets. Our experiments were conducted in DeepGlobe
and SpaceNet.

4.2. Implementation Details

In this paper, BCE (binary cross entropy) + dice coefficient loss was used as the loss function,
and Adam was chosen as the optimizer [11,47]. We let the batch size be 16 and the initial learning
rate be 2 × 10−4. When the loss of the training set was larger than the optimal training loss for three
consecutive epochs, the learning rate was divided by 5. Training was terminated if either of the
following two situations occurred: (1) the learning rate was less than 5 × 10−7 after adjustment, or
(2) the output loss of the training set was greater than that of the historical best training set on six
consecutive occasions. All models were trained and tested on an NVIDIA Tesla V100 32GB and an
ubuntu 18.06 operating system.

4.3. Metric

We used the evaluation metric given in article [13] as the main evaluation method. In that paper,
the pixel-wise intersection over union score (IoU) was defined in Equation (5):

IoUi =
TPi

TPi + FPi + FNi
, (5)

mIoU =
1
n

n∑
i=1

IoUi. (6)

Here, Ti is the number of pixels that are correctly predicted as road pixels, Fi is the number of
pixels that are wrongly predicted as road pixels, and FNi is the number of pixels that are wrongly
predicted as nonroad pixels for image i. Assuming there are n-many images, the final mIoU (mean
intersection over union) score is defined as the average IoU among all images (Equation (6)).

In addition, we used the general evaluation indices precision and recall to evaluate our model.
Precision (P) is defined as p = TP

TP + FP , while recall (R) is defined as R = TP
TP + FN . The F1 measure (F1)

comprehensively considers both precision and recall, F1 = 2 * P ∗ R
P + R . The higher the F1 score, the more

effective the model. We also used the forward time and model size to prove that our model has fewer
parameters and lower computation requirements.
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4.4. Results

A comparison of the results of tests on DeepGlobe and SpaceNet is shown in Table 1. The P–R
curve proving that HsgNet is superior to D-LinkNet in terms of correctness and completeness is
shown in Figure 4. We can observe that HsgNet outperformed the compared methods on the two
open datasets and achieved comparable performance on most evaluation indices, where the network
parameters were about 1/4 fewer than those of D-LinkNet and the running time was also slightly lower.
Of course, we can see that both the runtime and the model parameters of HsgNet and D-LinkNet were
higher than LinkNet’s. This is reasonable as they both have as their basic architecture LinkNet, which
performs efficiently in terms of computation and memory [10].

Table 1. A comparison of HsgNet with three other deep learning methods on DeepGlobe and SpaceNet
in terms of precision (P), recall (R), F1 measure (F1), mean intersection over union (mIoU, %), time (ms),
and model size (MB).

Methods
DeepGlobe (input size 1024*1024) SpaceNet (input size 512*512)

Model Size
P R F1 mIoU time P R F1 mIoU time

U-Net [9] 78.6 79.7 79.2 65.3 36 80.9 79.8 80.3 67.1 15 158.0
LinkNet [10] 81.7 81.7 81.7 69.1 54 81.9 82.1 81.9 69.3 20 86.7

D-LinkNet [11] 82.6 82.6 82.6 70.5 59 82.4 82.9 82.6 70.1 29 124.5
HsgNet 83.0 82.8 82.9 71.1 57 81.6 84.5 83.0 71.0 29 88.9
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Figure 4. The precision–recall curves of D-LinkNet and HsgNet on DeepGlobe.

The visualization results tested on DeepGlobe are shown in Figure 5. From the experimental
visual results, we can make the following observations. (1) Road extraction based on global high-order
spatial information outperformed the common methods of road extraction based on local information
learning. (2) Learning global high-order spatial information is helpful for road extraction in complex
scenes such as those with tree and building obscuration (first row), slender roads (second row), similar
color and texture of the road and background (third row), and complex road topological connectivity
(fourth row).
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in Figure 6 the t-distributed stochastic neighbor embeddings (t-SNE) of the road extractions with D-
LinkNet features and HsgNet features, respectively. We made the following observations: (1) the 
road feature (purple) clustering effect was better and more obvious, and the background feature 
(yellow) clustering results were relatively divergent; (2) the road feature clustering using HsgNet was 
better than that using D-LinkNet. Both these observations can explain the superior performance of 
HsgNet over D-LinkNet: (1) implies that the diversity of background information increases the 
difficulty of road extraction, and (2) implies that HsgNet is more capable of learning and can better 
distinguish road and background features.  

Figure 5. The visualization of results on the DeepGlobe test set: (a) input images; (b) ground truth;
(c) U-Net; (d) LinkNet; (e) D-LinkNet; (f) HsgNet. The red box indicates the location where our method
was a significant improvement over the other methods.

4.5. Analysis

Feature clustering: To demonstrate the effectiveness of the HsgNet learned features, we plotted
in Figure 6 the t-distributed stochastic neighbor embeddings (t-SNE) of the road extractions with
D-LinkNet features and HsgNet features, respectively. We made the following observations: (1) the
road feature (purple) clustering effect was better and more obvious, and the background feature
(yellow) clustering results were relatively divergent; (2) the road feature clustering using HsgNet
was better than that using D-LinkNet. Both these observations can explain the superior performance
of HsgNet over D-LinkNet: (1) implies that the diversity of background information increases the
difficulty of road extraction, and (2) implies that HsgNet is more capable of learning and can better
distinguish road and background features.ISPRS Int. J. Geo-Inf. 2019, 8, 571 10 of 14 
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Feature Matrix: To further demonstrate the effectiveness of HsgNet, we provide a visualization of
the multichannel feature information in Figure 7. We made the following observation: compared with
D-LinkNet (Figure 7a), HsgNet’s learned road features were more abundant and clearer, and there was
less redundant information (Figure 7b). These observations (1) further illustrate that it is more efficient
to learn the global high-order spatial information and dependencies of different feature channels, and
(2) show that the methods based on dilated convolution can learn and collect spatial information from
a few surrounding pixels but cannot actually generate dense contextual information, which affects the
semantic segmentation effect. This view has been confirmed by other scholars [43,48,49]. A further
explanation is as follows: in dilated convolution, four convolution layers with respective expansion
rates of 1, 2, 4, and 8 are added. 3*3, 7*7, 15*15, and 31*31 sensory fields are obtained, respectively,
and then feature maps of different scales are fused, which has both advantages and disadvantages.
The addition of dilated convolution enlarges the receptive field to a certain extent and preserves
some spatial information, but the discontinuity of kernels causes that not all pixels are used in the
convolution calculation.ISPRS Int. J. Geo-Inf. 2019, 8, 571 11 of 14 
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Figure 7. The visualization of different channels’ features: (a) before (first row) and after (second row)
adding dilated convolution based on D-LinkNet, and (b) before (first row) and after (second row)
adding the Middle Block of HsgNet. Each image represents a feature map of different channels, and
different brightness levels represent the sizes of activation values.
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5. Conclusions

Roads have the characteristics of slenderness, topological connectivity, complexity, long span,
etc. Because of this, it is necessary to learn how to preserve global, second-order, long-distance
context semantic information and the dependencies among different feature channels. In this paper,
we proposed a novel road extraction network, HsgNet, based on bilinear pooling. We confirmed that
global perception of high-order spatial information is more effective than using dilated convolution for
compensating the disadvantages of information loss. HsgNet consists of an Encoder, Middle Block,
and Decoder. The Middle Block carries out three important steps. Firstly, based on bilinear pooling,
the feature resource pool is formed by using the outer product, and the second-order, global, and
long-distance spatial context semantic information and dependencies of different feature maps are
gathered. Secondly, selective feature weight distribution enables each pixel position to obtain features
according to its own needs. Thirdly, the final features are encoded to the size of the input image via an
extra convolution layer that is added in the end of the Middle Block to expand the number of feature
channels for the middle output features. In Section 4.4 where we apply our methods to DeepGlobe [12]
and SpaceNet [13], we compared and analyzed the lightweight LinkNet series of models, such as
U-Net, LinkNet, and D-LinkNet. In particular, when comparing with the D-LinkNet model, which
has excellent comprehensive performance in road segmentation, we achieved 71.1% mIoU, the model
parameters were reduced by about 1/4, and the running time was slightly lower. Of course, our design
is also effective for the semantic segmentation of other objects.

However, in order to improve road topological connectivity, and further enhance the accuracy of
road extraction, we will focus on the difficult problem of long-distance context semantic differences
caused by the obscuration, similar texture, etc. We will use graph theory or multisource data fusion to
enhance reasoning ability in future work.
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