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Abstract: Building information model (BIM) data are digital and geometric-based data that are 
enriched thematically, semantically, and relationally, and are conceptually very similar to 
geographic information. In this paper, we propose both the use of the international standard ISO 
19157 for the adequate formulation of the quality control for BIM datasets and a statistical approach 
based on a binomial/multinomial or hypergeometric (univariate/multivariate) model and a multiple 
hypothesis testing method. The use of ISO 19157 means that the definition of data quality units 
conforms to data quality elements and well-defined scopes, but also that the evaluation method and 
conformity levels use standardized measures. To achieve an accept/reject decision for quality 
control, a statistical model is needed. Statistical methods allow one to limit the risks of the parties 
(producer and user risks). In this way, several statistical models, based on proportions, are proposed 
and we illustrate how to apply several quality controls together (multiple hypothesis testing). All 
use cases, where the comparison of a BIM dataset versus reality is needed, are appropriate situations 
in which to apply this method in order to supply a general digital model of reality. An example of 
its application is developed to control an “as-built” BIM dataset where sampling is needed. This 
example refers to a simple residential building with four floors, composed of a basement garage, 
two commercial premises, four apartments, and an attic. The example is composed of six quality 
controls that are considered simultaneously. The controls are defined in a rigorous manner using 
ISO 19157, by means of categories, scopes, data quality elements, quality measures, compliance 
levels, etc. The example results in the rejection of the BIM dataset. The presented method is, 
therefore, adequate for controlling BIM datasets  

Keywords: BIM datasets; Quality control; Hypothesis tests 
 

1. Introduction 

From an informational point of view, a Building information model (BIM) refers to digital 
model-based geometric information, which is enriched thematically, semantically, and relationally; 
managed by the right software tools, a BIM allows for the smarter management of buildings and 
facilities. The cornerstone of BIMs is to understand the relationships between materials, objects, 
assemblies, and projects [1]. All these elements are managed by a BIM tool as objects, in the same 
sense as object-oriented programming [2]. This means that materials, objects, assemblies, and projects 
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have properties, methods, events, and relationships. However, objects are not only the way 
information is handled by database programs; objects are also a way to understand and organize the 
world. In a BIM, objects carry information about identity, appearance, behavior, use, age, location, 
components, restrictions, or rules, etc. All this information is managed by the BIM tool as a database. 
Even though Weigant [1] stated that BIM tools are “little more than a database management system” 
almost 10 years ago, much has happened since then, enabling designers to work smarter today 
through improved interoperability, automation, visual programming, simulation, etc. From this 
point of view, BIM tools are directly linked to advanced Geographic Information Systems (GIS) and 
BIM data to spatial data (geographic information). In this way, Sun et al. [3] showed that close links 
exist between spatial data and BIM data, and Song et al. [4] indicated the need for, and potential 
profits from, the integration of BIM and GIS. 

In some countries, there is a legal requirement for the use of BIMs for certain types of 
investments or public works (e.g., the United Kingdom, Netherlands, Denmark, Finland, and 
Norway), and for the European Union, it is regulated by Directive 2014/24, EU 2014, which mandates 
the use of BIM in construction projects financed by EU public funds. Under these regulations, the 
interchange of BIM datasets between agents (contractors, material manufacturers, producers, 
architects, end users, asset managers, etc.) will be more relevant and problematic [5]. In this, 
framework the data quality of BIM datasets is relevant, and the BIM Community 
(www.bimcommunity.com/) has developed a publication series that includes a guide centered on the 
quality assurance of BIM projects [6]. This document proposes and develops several quality controls, 
mainly devoted to checking logical consistency issues (e.g., topological rules, the domain consistency 
of attributes, format consistency, etc.), and the use of software is proposed for examining clashes 
between building elements. 

Puyan et al. [7] highlight the interest and importance of the quality of BIM data for facility 
management purposes and present six examples of errors in BIM data that are very similar to those 
that occur in spatial data. In any case, the most relevant contribution is the proposal of a detailed 
framework for creating and performing BIM information quality assurance tests for asset and space 
management purposes. Donato et al. [8] proposed a quality assurance procedure for the architectural 
design process based on customized checklists and queries. Park et al. [9] executed rule-based and 
visualization-based checking procedures as a method for quality control centered on resolving 
building safety issues. Automatic routines for the quality control of BIM have been proposed by 
Cheng [10] and many other authors. Additionally, several software tools for this purpose have been 
developed, such as iTWO by RIB [11] and Solibri by Solibri (www.solibri.com); BIM Tree Manager 
by Agacad (www.aga-cad.com); and Verity by ClearEdge (www.clearedge3d.com). All these controls 
are based on aspects of logical consistency that, in most cases, can be automated. Therefore, statistical 
methods based on sampling and statistical tests are not required. However, this is a clear limitation 
because the aforementioned automated controls are not able to verify the delivery of a BIM database 
against reality (i.e., the situation “as is”). This BIM database can result from the BIM design process 
or from a survey of attributes and geometries from existing construction. 

Neither of the previously mentioned documents or tools develop or propose a method for 
statistical quality control, nor is there any mention of quality control standards from the industrial 
field (e.g., the ISO 2851 or ISO 3851 series). Within this statistical perspective, Cheok et al. [12–14] 
proposed a statistical model adopted by the National Institute of Standards and Technology (NIST) 
of the United States, which is based on a binomial model. This proposal was created to manage the 
3D captures of more than 1600 buildings and the production of BIM models by the General Services 
Administration [12]. This study only considers measures of the dimensions of elements that are 
converted to binomial variables by means of the simultaneous application of two criteria. Here, it is 
interesting to note that the binomial model, which is characteristic of qualitative variables (e.g., non-
numerical values as the presence or absence of elements), is applied to quantitative variables (e.g., 
the numerical values of measurements). This offers greater simplicity in statistical processes. When 
comparing a dataset against the real world, the control process cannot be automated, and a 
representative sample from reality is required. Thus, the NIST control method requires an analysis 
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of reality to determine dimensional errors. To execute the control, a random sampling of size 𝑛 is 
carried out after the total of the observed items is checked and the total measurements outside 
tolerance are determined against a value given by tables. If the total observed measurements outside 
tolerance exceed the value indicated in the tables for a given population and sample size, the 
specifications are not met. Nevertheless, this method uses a confidence interval perspective and does 
not use a hypothesis test approach 

The situation described above indicates the existence of several aspects that require research 
attention. For example, all aspects whose quality must be controlled in BIM datasets must be 
formalized. Additionally, an appropriate method must be available so that the acceptance/rejection 
of BIM datasets can be carried out on a statistical basis when sampling is needed (e.g., as a built 
perspective). In this work, proposals are made in these two categories. Thus, our objective is to 
propose how to adequately formulate quality control for BIM datasets and how to approach statistical 
control. In this work, we focus on the case of “as built” models. In this case, quality control based on 
hypothesis testing and statistical sampling is required. This situation is more complex than 
performing automated controls on 100% of the elements, so a general statistical model is needed. 
Considering a model of a building, this work is of interest to both the producers of BIM datasets and 
the recipients (users of the BIM model), as it offers a framework for the acceptance/rejection of BIM 
data products. 

This paper is organized as follows, after this introduction, the adopted ISO 19157 [15] model for 
dealing with data quality elements is presented, in which a new data quality element is defined. After 
this, the fundamentals of quality control (hypothesis testing), based on counting, are presented. Next, 
we present several explanations to facilitate the applicability of the statistical methods to actual cases 
where quantitative and qualitative elements are jointly presented, but also where the seriousness of 
defects and joint controls are a common occurrence. An actual example is then shown, taking into 
account the most important issues (e.g., the definition of categories of interest, scopes, etc.), where six 
controls are performed jointly, and three different base statistical models are considered. Finally, the 
conclusions are presented. Additionally, two appendices are included (A and B). Appendix A shows 
the statistical models for working with a single category (binomial and hypergeometric models) or 
with multiple categories (multinomial and multivariate hypergeometric models), depending on 
whether the population to be controlled can be considered infinite (binomial and multinomial cases) 
or finite (hypergeometric cases). Appendix B shows a calculation example that is valid for a 
multivariate hypergeometric case. Finally, a list of acronyms has been added.  

2. BIM Data Quality Elements  

As indicated by Yang et al. [16], data quality is somewhat difficult to define precisely, as it means 
different things to different user communities. For this reason, in the field of data quality, there are 
several models/frameworks used to address different realities. For example, there are several 
international ISO standards offering different perspectives on data quality. The model established by 
ISO 8000 standards [17–18] allows the industrial data perspective to be approached, an appropriate 
perspective for assembly (e.g., in the military, aerospace, or naval industries). ISO/IEC 25012 [19] 
defines a general data quality model for data within computer systems, and ISO/TR 21707 [20] 
handles the quality of data being exchanged between the agents of the intelligent transportation 
system domain. The International Standard ISO 19157 [15] establishes the principles for describing 
the quality of spatial data. 

BIM data are similar to spatial data because they must be integrated into a geographical 
framework (the actual location of the building), integrated into the environment (the surrounding 
geographical-topographic reality), and must collect the presence, dimensions, positions, and exact 
attributes of the elements of interest. This resemblance is both conceptual (data models) and factual 
(e.g., the capture and processing procedures), and also refers to exploitation (thematic, topological, 
temporal consultations, modeling, etc.). This proximity facilitates an advantageous approximation 
since, in the field of geographic information, there is greater emphasis placed on data quality. For 
instance, Sun et al. [3] showed the close links between spatial data and BIM data and presented a 
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review of the standards and methods currently used for ensuring quality in spatial data and BIM in 
Sweden (mainly), as well as internationally. For this reason, we adopt this international standard as 
the basis for our proposal. 

The International Standard ISO 19157 establishes the principles for describing the quality of 
spatial data. This is achieved by defining the data quality elements, data quality measures, and a 
general procedure for assessing and reporting data quality. 

As a way of handling diverse perspectives of data quality, ISO 19157 proposes so-called data 
quality elements (DQEs). A DQE relates to the specific aspects of data quality that can be measured 
and evaluated through different measures and methods. DQEs are related to intrinsic data quality 
cues and can be organized into logically grouped categories (e.g., all DQEs related to logical 
consistency conform to a category). In accordance with the stated objective of focusing on the control 
of “as built” cases (that is, the BIM database versus reality), the following proposal is made for 
categories and DQEs that must be verified against reality: 
• Completeness of data: This category (DQ_Completeness) refers to the presence and absence of 

objects, their attributes, and relationships. Lack of completeness is important when working 
with data that reflect reality. For example, a door or window cannot be missing in BIM data. In 
this case, two DQEs can be considered: 
o Commission: The presence of excess data within the BIM Data. This means that some objects 

appearing in the BIM data do not exist in the real world. 
o Omission: The absence of certain data within the BIM data. This means that some objects not 

included in the BIM model exist in the real world. 
• Metric accuracy: This category name does not appear in ISO 19157, where it appears instead as 

positional accuracy (DQ_PositionalAccuracy). Our current proposal is broad, however, and 
allows the scheme developed in ISO 19157 to be generalized. In this case, the following DQEs 
are proposed: 
o Absolute positional accuracy: The precise location in the geographical space of buildings and 

civil works is fundamental. We believe that BIMs should be understood as fully integrated 
with geographic information and geoservices (e.g., spatial data infrastructures, virtual 
balloons, etc.). This means that absolute positional accuracy is a critical aspect, and a 
coordinate reference system and projection is required, if necessary. For example, absolute 
positional accuracy will be a requirement to properly integrate a BIM model with its cadastral 
plot and place it correctly in virtual balloons. 

o Relative positional accuracy: This DQE means that the BIM data must accurately collect the 
relative positions between objects or parts of real-world objects (e.g., the distance between a 
door D and a window W, or the distance between the wall M1 and another wall M2). 

o Accuracy of shapes (fidelity in shape): This DQE does not appear in ISO 19157, but its 
inclusion is proposed to consider all the geometric aspects related to the object itself, as 
opposed to the positional relationships between an object and its environment (e.g., absolute 
or relative positional accuracy). Fidelity in shape includes, among others, manufacturing 
tolerance. Therefore, depending on the aspect (e.g., roughness, roundness, etc.), different 
measures can be defined. 

• Thematic accuracy: This category of DQEs is proposed to incorporate all aspects of accuracy that 
have a thematic component, whether quantitative or qualitative. The following elements are 
proposed in ISO 19157: 
o Classification correction: This refers to the correct assignment of classes to objects in the BIM 

data. 
o Correction of non-quantitative attributes: This refers to the correction of the values registered 

as attributes of the objects. Thus, there is an error if the material of a plinth, which is registered 
as granite, is actually marble and there is no attribute error if you register a RAL (Reichs–
Ausschuß für Lieferbedingungen und Gütesicherung) color for a window, and the color 
matches the one that actually has the window in reality  
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o Accuracy of quantitative attributes: Objects can have quantitative attributes (e.g., thermal or 
light transmissivity values). This element means that the values that are registered must be 
as accurate as possible. 

 
ISO 19157 includes DQEs related to logical consistency (conceptual consistency, domain 

consistency, format consistency, and topological consistency), but these DQEs can be controlled 
automatically via software routines.  

Before executing quality control, the population of the elements of interest must be defined, 
which is carried out by means of a scope. This scope is a filter based on time, location, classification, 
attributes, or, in general, any other criteria that establish an element selection rule. The scope is 
usually defined by a category of elements of interest (e.g., windows, walls, pipes, etc.), but it can also 
be defined by a set of categories of elements of interest that share some aspect of common interest 
(e.g., windows, doors and walls, when the interest is correcting the finish’s color). We call each set of 
categories of elements of interest a “category of interest” (CoI). The combination of one or more CoIs 
and a DQE is known as a data quality unit (DQU) in the parlance of ISO 19157. Therefore, the same 
CoI can be linked to different DQEs in order to control several perspectives of data quality (e.g., those 
for all the DQEs). Additionally, the same DQU can be assessed by different data quality measures 
(DQM) and by different evaluation methods. ISO 19157 defines more than 70 standardized data 
quality measures (see Annex D of ISO 19157), but only a general evaluation method. The last is not 
problematic because ISO 19157 allows the use of whatever evaluation method is considered adequate 
for the assessment purpose (e.g., ISO 28590 [21], ISO 3951 [22], etc). Finally, the quality control of a 
product is a statistical decision on the acceptance or rejection of a product with respect to its 
specifications; for this purpose, a quality level (QL), or conformity level, must be established. This 
QL must be expressed using the same methods and units as the DQM used for the DQE under 
consideration. In this way, quality control is well defined if a DQU (= DQE + scope) and its 
corresponding QL (= DQM) and evaluation method are properly stablished. These are the elements 
that must be managed to unequivocally establish quality control when using the ISO 19157 
framework. 

This part of the proposal is generic and can be applied at any point in the BIM process. In addition, 
the DQEs are generic and can be combined by means of the usability data quality element defined by 
ISO 19157, and new DQEs can be defined as needed; for this reason, they are applicable for any possible 
use case of BIM data. In general, we consider the pertinent DQUs to represent aspects of fitness for 
use in the data set being analyzed. 

3. Count-based Quality Control 

A statistical method for the quality control of BIM data is proposed below. This method is 
general and is appropriate for cases where sampling is required. These cases include those in which 
automated control processes are not possible, in which the population sizes are large, or in which 
complete inspection is not economically possible or viable. Among the many use cases of BIM (see 
Reference [23]), the comparison of BIM data versus reality is an appropriate situation under which to 
apply this method. This can be done at the final delivery of the BIM dataset, but it can also be applied 
under different phases of construction execution (e.g., structures, facilities, etc.). In the field of 
construction and civil engineering, statistical quality controls are applied to materials such as steel, 
concrete, etc. This framework is equivalent (only the purpose changes) and is used here to ensure the 
quality of the data. 

Products are defined by their specifications, so nonconformity represents the non-fulfilment of 
a specified requirement. A defect is considered to be the non-fulfilment of an intended usage 
requirement. A nonconforming item (or defective item) is an item that carries one or more 
nonconformities (or defects). Quality control can be focused on defective items or nonconformities. 
For example, a specification can be the following: 95% of the instances of BIM data must carry the 
correct attributes with respect to their value in reality. The presence of nonconforming/defective 
items is then quantified, and a decision is made about the compatibility of this amount with respect 
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to the conformity level. This decision must be made in a statistical context, under which the risks of 
the parties are controlled. The appropriate statistical tool for this process is a hypothesis testing 
framework. A hypothesis test is a statistical tool that allows us to make a decision about the validity 
of a previously raised hypothesis, called a null hypothesis (for more information, see Reference [24]). 
Thus, adopting a hypothesis (the distribution and value) on the behavior of nonconforming items by 
taking a sample (of a given sample size n), this statistical technique allows a decision to be made, 
where the producer's risk (Type I error) and the user's risk (Type II error) are controlled. In the 
industrial field (e.g., the industries of equipment goods, electronics, automobiles, etc.), Type I errors 
should be in the order of 5% (α) and Type II errors should be in the order of 10% (β). 

In the quality control of goods, services, and data, it is commonplace to distinguish between 
controls by means of variables or attributes. The "by variables" control consists of controlling the 
values for continuous variables that are assumed to follow normal distributions (e.g., discrepancies 
in measurements). Control by "attributes" entails controlling the presence or absence of properties by 
means of counts or proportions (e.g., the number of times that one is outside a given tolerance), for 
which hypergeometric and binomial distributions are assumed, according to each case. All these 
elements are applied in the ISO 3951 and ISO 2859 series of international standards, the first of which 
is dedicated to cases of quantitative variables and the second to cases of attributes or qualitative 
variables. These standards are widely applied in the control of spatial data [15]. 

As said before, in our approach, we adopt the criterion of controlling by means of qualitative 
variables, which also allow the control of quantitative variables if tolerances are established (see 
Reference [25]). Thus, the statistical proposal involves the realization of a hypothesis contrast based 
on binomial distribution (see Appendix A). In this way, the null hypotheses ℍ଴  and alternative ℍଵ are raised: ℍ଴: The population of elements belonging to the DQU meets the quality level (QL). ℍଵ: The population of elements belonging to the DQU does not meet the quality level (QL). 

In order to determine the tests needed to make a decision about the quality of the DQU, two 
situations can be implemented, depending on the hypothesis to be contrasted. 

3.1. Single Proportion 

This is the usual case for performing a pass/fail test, which can be considered a quality control 
test. In this case, the QL must be expressed in terms of the maximum acceptable probability π଴ of 
nonconforming items in the DQU. In this way, the null and alternative hypotheses can be 
reformulated in terms of π଴, as expressed in Equation (1): 

 ℍ଴: 𝜋 ≤ 𝜋଴ ℍଵ:𝜋 > 𝜋଴. (1). 

In this way, the null hypothesis will be rejected when it can be stated, with a fixed Type I error, α, that in a sample of observed items, the proportion of non-conforming items is greater than π଴—in 
other words, the product does not achieve the QL for that DQU. To make this decision, a random 
sampling of size n is obtained, and the sampling statistics are obtained by counting the number of 
non-conforming elements in the sample, T.  

This decision is made using a number called a p-value, which is the probability of obtaining the 
results at least as extreme as those actually observed during the test. To obtain the p-value, two 
scenarios have to be considered while taking into account the population size. If the population size N is very high with respect to the sampling size, n, the binomial model is adequate. However, if the 
population is finite, and N is small with respect to n, such that the extraction of the sample of size n 
generates a change in the proportion (probability), a hypergeometric distribution should be used. 
The choice criterion is given by the sampling fraction 

 𝐹 = 𝑛𝑁. (2). 

In both cases, the p-value is obtained through adequate distribution by calculating the 
probability that, under the null hypothesis, the value of the random variable will be greater than or 
equal to T. More details appear in Appendix A. 
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3.2. Multiple Proportions 

The hypothetical test written in Equation (1) implies that we can define a pass/fail model based 
on an element classified in a binary form. Nevertheless, in many cases, we can determine several 
tolerances based on scale (very good, good, bad, and unacceptable), such that we can determine the 
probability of belonging to each class. Therefore, if we fix k categories, we must set k probabilities 
such that our exigence (null hypothesis) is 

 ℍ଴:𝜋ଵ ≥ 𝜋଴ଵ;   𝜋ଶ ≤ 𝜋଴ଶ; … ;𝜋௞ ≤ 𝜋଴௞ . ℍଵ: At least one of these inequalities is not true. 
(3). 

Consequently, unlike Equation (1), the null hypothesis is a vector, 𝝅𝟎 = (𝜋଴ଵ,𝜋଴ଶ, … ,𝜋଴௞). For 
instance, if we compare the designed length of an interior wall with its actual length, we can establish 
the following classification: 
• Good, if its actual length differs by less than ± 2% from the design length.  
• Acceptable, if its actual length differs by less than ± 5% but more than ± 2% from the designed 

length.  
• Unacceptable, if its actual length differs by more than ± 5% from the designed length.  

Following this example, for a previously specified building’s characteristics, we can apply 𝜋଴ =(0.80, 0.15, 0.05), which means that we expect at least 80% of the elements to be well classified (good), 
with at most 15% acceptable elements and 5% unacceptable elements. In this case, the sampling size 
n is obtained, and the test’s statistics are a vector 𝑻 = (𝑡ଵ, … , 𝑡௞), where the component 𝑖, 𝑡௜ indicates 
the number of sampling items that belong to category 𝑖. To obtain the p-value, new models must be 
proposed, both of them based on multivariate extensions of binomial or hypergeometric 
distributions. This discrimination, as stated before, depends on the sampling fraction given in 
Equation (2)  
• If the population size is infinite (or very high with respect to sample size 𝑛), the distribution 

under the null hypothesis given in Eq. 3 is a multinomial (𝑀) distribution, with parameters (𝑛,𝜋଴ଵ , … , 𝜋଴௞)  
• If the population size 𝑁 is finite, and we assume that each category has a finite size 𝑁௜ , 𝑁ଵ +⋯+ 𝑁௞ = 𝑁 , the distribution under the null hypothesis given in Eq. 3 is a multivariate 

hypergeometric (𝑀𝐻) distribution, with parameters  (𝑁଴ଵ , … , 𝑁଴௞). We can relate 𝑁଴௜  with 𝜋଴௜, considering that, under the null hypothesis, 𝑁଴௜ = 𝑁 × 𝜋଴௜, so each 𝑁଴௜ must be an integer.  
• In both cases, the sampling statistics are 𝑻 = (𝑡ଵ, … , 𝑡௞), and to obtain the p-value, we use the 

probability of T and all possible points that are worse than 𝑻 (in the sense of the alternative 
hypothesis). For the multinomial case, see References [25–26], and for the multivariate 
hypergeometric distribution, see Reference [27]. More information is available in Appendix B. 

4. Extension of the Method 

As indicated above, what has been presented so far is valid only for a single qualitative variable 
at a time, in order to control the Type I error level. However, not all the characteristics of interest for 
the nonconforming items of a BIM data-set are qualitative, and not all them are of the same type or 
have the same importance. Thus, consideration of nonconformity typologies according to their 
seriousness should be considered. This is a situation that will depend on each specific use case. In 
addition, there are types of nonconformities that must be controlled independently and should not 
be mixed when reporting and controlling. For all the above, a method that only allows controlling a 
single aspect must be modified to conform to a more complex reality, such as the BIM models. Thus, 
based on the field of quality control for both industry and spatial data, via statistics on multiple tests, 
this section shows how to address these three issues. 

4.1 Control of Quantitative Elements.  

In BIM data, there are numerous aspects of interest that are collected in the form of measures or 
dimensions of the elements (e.g., width, length, height, area, etc.)—that is, as quantitative variables. 
Nevertheless, the application of binomial or hypergeometric models requires that the measurements 
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become qualitative variables. To this end, rules will be applied—that is, criteria must be established 
that allow each of the measurement records to be converted into a qualitative variable. This idea was 
applied through the NIST method, as explained above. Further, the studies in References [24–25] 
show how to develop accuracy controls based on binomial or multinomial statistical models. In this 
way, counting methods become an effective mechanism to control the quality of BIM data based on 
reality, both for quantitative and qualitative variables. 

4.2 Seriousness of Defects:  

Defects will generally be classified by their level of seriousness in their categories [28]. For 
example, it is not the same as in the BIM data if a window is omitted here, or if some attribute of that 
window is registered inconsistently with respect to reality (e.g., the RAL color of the finishing). 
Similar to quality control in industry, for data, the following categories of nonconformity can be 
considered: 
• Critical: The defect affects critical functionality or critical data.  
• Major: The defect affects major functionality or major data.  
• Minor: The defect affects minor functionality or non-critical data.  
• Trivial: The defect does not affect functionality or data.  

Each of these categories can and should demand a different QL and be independently controlled, 
which is commonplace when applying standards such as ISO 2859 or ISO 3951. This is achieved by 
using more exigent QL for those categories with greater seriousness. Another possible option is to 
work with all categories together, for the reason that each typology should be understood to 
count/weigh in a different way. For example, each critical case weight is five, the major case weights 
are three, and the minor case weight is one. This assignment is completely arbitrary and can be 
modified to express the weight that one wishes to give each category for each specific use case. 
However, this weight must be known by the parties (those responsible for the data delivery and the 
ones who receive them). In this way, the control method proposed by GPO [29] is based on a system 
of demerits in which the categories have different weights according to their typologies and 
according to whether the product is of greater or lesser quality. 

4.3. Joint Control of Several DQU.  

The aforementioned method is only valid for the non-conforming items of a single DQU (e.g., 
doors, windows, etc.). Therefore, if we want to apply this method to a joint control to maintain a 
single level of Type I error for all items analyzed while considering several DQUs, the method must 
be adapted to the statistical reality. In this case, the binomial distribution is not reproducible for the 𝑝 parameter [30], so the statistical options valid for this situation must be applied. Thus, if one works 
with K different DQUs, and all them are independent, each one of the DQUs can be considered as 
binomial 𝐵௜(𝑛௜ ,𝑝௜), such that 𝑖 ∈ [1, 𝑘], where the values of n and 𝜋 in Equation (A1) (Appendix A) 
are, respectively, replaced by 𝑛௜ and 𝜋௜ (one for each DQU), and each of them can be different from 
the rest. Under this scenario, we can apply 𝑘 independent controls, such as those already presented 
in Section 3.1—each of them on a binomial variable. To accomplish this and guarantee the global 
significance level, a multiple hypothesis testing method (MHTM) is needed (e.g., Bonferroni or any 
other; see Reference [31]). One usually checks the entire model, which includes 𝑘  independent 
DQUs, where 𝑘 >  1, each with a different specification, 𝜋଴௝ , 𝑗 = 1 … , 𝑘, such that the global model 
meets the joint specification. In this case, the null and alternative hypotheses given in Equation (1) 
can be analyzed; they appear in Equation (4) as follows: ℍ଴: 𝜋௝ ≤ 𝜋଴௝ , 𝑗 = 1 … , 𝑘  ℍଵ:𝜋௝ > 𝜋଴௝ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑗. (4). 

4.4. Realization of the Global Contrast 

For the realization of the global statistical contrast, a p-value, 𝑝௝ , must be obtained for each 
independent DQU, using Equation (1) or (4) as appropriate. Since multiple tests are carried out, to 
ensure that the global Type I error does not exceed the set α value, the final decision of the 
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acceptance/rejection of all specifications will be taken together using an MHTM (for instance, by 
applying Bonferroni, ℍ଴ is rejected if any 𝑝௝ is less than 𝛼/𝑘; otherwise, ℍ଴ is accepted. 

 
Thus, in summary, the procedure is: 

• Take an independent sample for each DQU. 
• Count the number of nonconforming items found in the sample of each DQU. 
• Calculate the corresponding p-values for each DQU. 
• Check whether the global ℍ଴ hypothesis is accepted or rejected according to MHTM correction. 

5. Example of Application 

As an example of the application of the proposed method, the case of a BIM data control 
corresponding to the delivery of a complete project (“as built”) will be considered. This is a building 
with four floors (basement, F0, F1, and F2) and an attic, with garages in the basement, two commercial 
premises in F0, and four apartments distributed between F1 and F2—that is, two per floor. Figure 1 
presents an overview of the building and Figure 2 illustrates the distribution of F1 and F2, which is 
the same. This section addresses three contents in relation to the application example—on the one 
hand, the realization of the theoretical aspects indicated above, on the other, the characterization of 
the case, and finally, the execution and results of the control. 

  
  

Figure 1. Overview of the building information model (BIM) of the considered use case. 
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Figure 2. 2D Distribution of F1 and F2. 

5.1. Concretions of the Control 

First, the aim of the control must be clear. Our interest is to verify whether the content of the 
BIM data file corresponds to reality, and if that reality is faithfully reflected in the data set. This is 
what we understand as an “as built” perspective. Thus, the completeness assessment is relevant and 
means that there are no excess or missing items in the BIM data. This situation means that the 
sampling for completeness assessment must be carried out in a way that allows both perspectives to 
be controlled. Thus, if this perspective were controlled exclusively from the BIM data to reality, only 
commission errors could be controlled, and if it were controlled from reality to the BIM data, only 
omission errors could be controlled. For a two-way control to be carried out, sampling should be 
organized in an appropriate manner, which will be proposed later. 

If the populations are large, a sampling-based approach for the execution of the control is 
required. A sample must be representative, and therefore, extracted by simple random sampling 
(SRS). The SRS should be stratified to better consider the differences within a DQU. The sample will 
have a size that is adequate to reduce the risks (Type I and Type II errors) (see Section 3.1).  

Since the completeness assessment requires both analyses—from the dataset to the reality and 
from the reality to the dataset—it is proposed that the sampling be executed as follows. A set of 
randomly distributed positions will be generated in the building; in these positions, we will locate 
the nearest instances bellowing to the DQU (both in reality and in the BIM data). If, for that position, 
the instance is the same in reality and in the BIM data, there is neither omission nor commission. If 
the instance of interest exists only in the BIM data or in reality, it is a commission or omission, 
respectively.  

Once the data completeness assessment has been developed for the items that are correct (neither 
omissions nor commissions), the rest of the DQEs linked to the same scope can be controlled (e.g., 
DQEs for the metric accuracy and thematic accuracy categories). Additionally, it should be 
remembered that we have adopted a nonconforming items perspective (e.g., the door is right or 
wrong) and not a nonconformities perspective (e.g., the presence of various defects in a door).  

5.2. The Case 
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As indicated, Figure 1 presents an overview of the building. While the reality is not known, there 
are BIM data that have been formed throughout the execution of the construction project—that is, the 
BIM data come from the design, but have received several changes and updates during the execution 
of the project (the construction process). Thus, as an initial hypothesis, we can consider the BIM data 
to be a good approximation of reality. In this way, the number of elements involved (population size 
estimation) in each CoI can be directly approximated (Table 1). In this control, a significance level 𝛼 = 5% is adopted as a Type I error for acceptance. 
 

Table 1. Categories of interest in the BIM database. 

Group Categories of interest Cases (N) 
Elements C1=Doors and windows 119 

 C2=Bathrooms and Kitchens 14 
 C3=Balconies and terraces 29 
 C4=Other rooms 18 
 C5=Living rooms and bedrooms 16 
 C6=Common zones 6 
 C7=Enclosures (walls) 179 
 C8=Slabs and paving 25 
 C9=Pillars  105 
 C10=Sales unit 6 
 C11= Interior walls 200 

Facilities  C12=Electricity installation 7 
 C13=Heating and air-conditioned installations 7 
 Total 731 

 
In relation to the DQU for the control, Table 2 summarizes the configuration, population, and 

sample sizes. Considering the future use of this BIM dataset, the determined DQUs represent aspects 
of fitness whose control is considered to be relevant for use. For example, based on Table 1, the 
presence/absence of elements (commissions/omissions), the shape fidelity, etc., are considered 
relevant for the future use of this data set. This relevance is also reflected in the QLs that are 
established (see Table 3). From a statistical point of view, all the variables considered are of a 
qualitative type: Presence/absence, right/wrong, and faithful/unfaithful. The sample sizes have been 
set arbitrarily with the criteria set forth above (≈ 10%), except for the DQU2 with a larger sample size.  

 

Table 2. Definition of the data quality units to be considered for the control (cases for the population and 
sample size). 

Data quality units Cases in the population (N) Sample size  
DQU1=Completeness of elements 

DQE = Commission + omission 
CoI = C1+C2+ ··· + C11 

511 
 
 

50 
DQU2=Completeness of facilities  
DQE = Commission + omission 

CoI = C12+ C13 
182 

 
 

40 
DQU3= Shape Fidelity  

DQE = Fidelity in shape 
CoI = C1+C2+ ··· + C10 

1605 
 
 

160 
DQU4=Attributes of elements 

DQE = Correction of non-quantitative attributes 
CoI = C1+C2+ ··· + C10 

462 
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50 

DQU5=Attributes of installations 
DQE = Correction of non-quantitative attributes 

CoI = C12+ C13 
491 

 
 
 

50 
DQU6= Shape Fidelity of walls  

DQE = Fidelity in shape  
CoI = C11 

200 
 
 

20 
Total  3451 350 

 
Prior to the control, and by agreement between the parties, QLs must be established. For this 

example, the specifications are those presented in Table 3. When indicating completeness, we refer 
to both omissions and commissions, considering both types of errors to be equivalent for error 
counting purposes. Finally, it should be noted that the QLs are themselves a representation of the 
importance of the different aspects considered in the joint control, since greater quality is demanded 
by the most critical elements or CoIs. Naturally, these values must be determined based on experience 
and the requirements of greater or lesser rigor for the BIM application. In this way, as indicated by 
Equation (4), the global control of the BIM data means that QC1 passed AND QC2 is passed AND 
QC3 is passed AND QC4 is passed AND QC5 is passed AND QC6 is passed.  

 
Table 3. Definition of the quality controls by means of the data quality units and the conformity 

levels. 

Quality 
control 

Data quality 
unit 

Data Quality Measure  
and ID* 

Conformity level (Maximum 
proportion of defects) 

QC1  
DQU1 

Rate of excess items (ID=3) 
+  

Rate of missing items 
(ID=7) 

1% 

QC2  
DQU2 

Rate of excess items (ID=3) 
+  

Rate of missing items 
(ID=7) 

3% 

QC3  
DQU3 

Rate of unfaithful items 
(ID=**) 

5% 

QC4 
 

DQU4 
Rate of incorrect attribute 

values (ID=67) 10% 

QC5  
DQ5 

Rate of incorrect attribute 
values (ID=67) 10% 

QC6 DQ6 Rate of unfaithful items 
(ID=**) 

80%, 15%,5%*** 

(*) The ID is the identifier for this measure given in Annex D of ISO 19157.  
(**) This measure is not included in Annex D of ISO 19157. 

(***) These proportions are linked to good, acceptable, and unacceptable cases. 

5.3. Execution and Results.  

The execution consists of applying the steps indicated above. These steps are as follows: 
• Generating random sampling positions over which the completeness control is performed. 
• Performing the control by visiting the positions of the building that are part of the sampling and 

where the reality to BIM data and BIM data to reality perspectives are taken into account. In this 
step, the measurements of quantitative attributes, preferably using a laser distance meter and 
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assessments of qualitative attributes are performed on the correct items (neither omission nor 
commission). This phase is very important: The data taken here are considered to be the ground 
truth or reference. Therefore, extreme care is required with the working methods to ensure that 
the captured data (qualitative and quantitative) are accurate. 

• Analyzing the results and making a final acceptance/rejection decision. The defect case counts 
are computed (Table 4). Based on these counts, and applying the functions “pbinom” and 
“phyper” of R [32] (indicated in the annexes), the p-values that appear in Table 4 are obtained. 
As can be seen, the hypergeometric model has been considered for the case QC2, and in the rest 
of the cases, the binomial model has been applied. Here, a MHTM is needed, so we apply 
Bonferroni because of its simplicity. Since α = 5% was adopted, the global null hypothesis should 
be rejected for any p-value less than 0.05/6 = 0.083. Given that the lowest obtained p-value is 
0.0004 < 0.083, it is possible to reject the hypothesis that the BIM data complies with the 
specifications imposed by Table 4, since the observed data provide evidence of this.  
 

Table 4. Results of the defective count and p-values by quality control. 

Quality 

control 

 

Number of 

nonconforming 

items 

Sample 

size (n) 

 

p-value 

Binomial 

 

Hypergeometric Multivariate 

Hypergeometric 

QC1 0 50 1.000   

QC2 5 40  0.0004  

QC3 11 160 0.179   

QC4 5 50 0.569   

QC5 2 50 0.966   

QC6 7,1(*) 20   0.0236 

(*) The number of items per class is: 12 (good), 7 (acceptable), 1 (unacceptable) 

5.4. Discussion.  

An example has been presented based on a relatively simple case that corresponds to a 
residential building. This situation limits, to some extent, the number of categories that appear and 
the size of the populations. Additionally, a reduced number of controls (six) have been defined. 
However, despite these limitations, and given that the main interest of this work is methodological, 
we consider that this situation is not problematic. Indeed, to present this method, we have searched 
for a simple and understandable case (a residential building) for most professionals and researchers 
working with BIM. 

The presented case is a non-automatic control process because we must go to the field to carry 
out checks. Focusing on the statistical elements, the proposed method can be developed by any 
technician who has training in quality control. A researcher could use statistical programs (e.g., R) 
and even spreadsheets to perform the necessary statistical calculations (p-values). 

We have compared the built situation (as-built) to the designed product (BIM model), but the 
present method is also adequate to compare a BIM model achieved through surveying and attribute 
collection methods to an as-is situation. 

Interesting aspects, such as compliance levels, methods for measuring, sample size 
determination, specific details of the samples, etc., are beyond the scope of this work, as this is not an 
application guide. In any case, the developed example demonstrates that it is possible to work with 
quantitative and qualitative variables, combine variables, establish very diverse fields, use different 
measures, etc., and combine all these elements in a global acceptance/rejection dataset. 

The present example results in the rejection of the BIM data set. In a situation with real 
applications, subsequent decisions will be required. For example, in ISO 2859-2, if a batch of products 
is rejected, those products must be repaired by the producer and will be inspected again. In our case, 
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the decisions to be taken in the case of rejection must also be established. We could, for example, 
follow the same decisions as the international standards of acceptance controls (e.g., the ISO 2859 
series). 

One characteristic of the present method is that a single acceptance/rejection function occurs at 
the end, upon delivery of the building model. In some cases, a lot by lot inspection process may be of 
interest, like the sequential acceptance processes presented in the international standard ISO 2859-1, 
but solving this limitation will require further investigation. 

6. Conclusions 

The quality of BIM data is an issue of great importance. However, so far, it has not acquired 
appropriate relevance relative to the current increase in its applications. The quality of BIM data is 
not fully formalized, but directly applicable knowledge can be transferred from the field of geospatial 
data. In this paper, the framework established by ISO 19157 has been applied to BIM data due to its 
great similarity with geographical information. 

This paper has presented the statistical basis of a method for the global quality control of BIM 
data with multiple DQUs, which entails different scopes and diverse DQEs. This method has a valid, 
affordable, and known statistical formulation, as it is based on the known distribution functions that 
are applied in the field of quality control. The main contributions of this work are two-fold. First, we 
present a proposal and example of using the ISO 19157 data quality framework for BIM data; second, 
we use a statistical approach formulation, including an example of how to handle the joint control of 
several types of errors, each with different quality specifications. 

An example of application in a residential building case has been presented. This case uses BIM 
data of a medium to small size, but represents a very common type of construction. The control 
developed corresponds to the "as built" perspective—that is, to ensure that the content of the BIM 
data is a true reflection of reality. An "as built" control is a more complex control than a control based 
on performing logical check routines on the BIM data, since an “as built” control requires probabilistic 
sampling. The present example has been developed considering six quality controls, which entails 
the definition of five DQUs and QLs. The final joint result of the control has been rejected. The 
definition of the DQU and QL are issues adaptable to each situation and use case.  

We consider the application of the proposed method to be affordable for experts based on its 
quality compared to a conventional statistical framework. The present method is simple, both in its 
statistical elements (very similar to conventional acceptance testing in industry, for which examples 
of the functions to be applied in the R program environment are provided [32] R Core Team, 2019), 
and in terms of its execution, for which we have presented an application example and explained the 
most relevant issues. 

We believe that the method presented here may serve as the basis for the development of BIM 
data quality controls with an “as built” perspective, but could also be adapted to other perspectives. 
An interesting future advance would entail the proposal of DQUs and QL based on this method by 
some professional organizations or regulatory bodies of the building sector. Additionally, statistical 
control requirements should be established for BIM data deliveries in legal regulations. 
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Appendix A 

Binomial approach 

In a binomial approach, the probability must remain constant, and this occurs in infinite or large 
populations. Thus, if the population size, 𝑁, of items of the DQU is known, for that condition to be 
valid, it is necessary that 𝑁 be large, and, if the sample is of size 𝑛, the sampling fraction, which is 
defined as 𝑛/𝑁, must be small (for example, less than 0.1). If this does not occur, the statistical 
model that follows the proportion of nonconforming items is a hypergeometric distribution. 

The count data random variable X follows a binomial distribution with parameters n and 𝜋, 𝐵(𝑛,𝜋) 
If the probability of obtaining exactly x successes in n independent trials is 𝜋, then 𝑃[X = x|𝑋 → 𝐵(𝑛,π)] = ቀ𝑛𝑥ቁ𝜋௫(1 − π)௡ି୶. (A1) 

 
Given a sample observation, 𝑥, for the number of nonconforming items in DQU, and if we suppose 
that, under the null hypothesis, the probability of a non-conforming item is 𝜋଴ , the p-value is 
determined by obtaining the probability that, in a binomial 𝐵(𝑛,𝜋଴), a value greater than or equal to 𝑥 is obtained, as indicated in (A2): 𝑝 = 𝑃[𝑋 ≥ 𝑥|𝑋 → 𝐵(𝑛,𝜋଴)] = ෍ቀ𝑛𝑦ቁ𝜋଴௬(1 − 𝜋଴)௡ି௬௡

௬ୀ௫  (A2) 

where: 𝑝:  the p-value. 𝑥:  the number of defective items found in the sample. 𝑛:  the sample size. 𝜋଴:  the maximum acceptable probability of the defective items. 𝐵(𝑛,𝜋଴): the binomial distribution of parameters 𝑛 and 𝜋଴ . 
 

This calculation can be done with the R package by means of the 𝟏 − 𝒑𝒃𝒊𝒏𝒐𝒎(𝒙 − 𝟏,𝒏, 𝝅𝟎) function, 
or 𝒔𝒖𝒎(𝒅𝒃𝒊𝒏𝒐𝒎(𝒄(𝒙:𝒏),𝒏,𝝅𝟎) , where 𝒙  is the number of non-conforming items found in the 
sample, so that if 𝒑 < 𝜶 , that population is rejected. This is an approach with a final 
acceptance/rejection decision, where the producer's risk (Type I error) is actually bounded by α. 
However, in this way, for a fixed sample size, the user's risk is not controlled (Type II error). 

Hypergeometric approach 

If the proportion of nonconforming items in a population is modified each time an item is removed 
from the set, we apply a hypergeometric distribution. This occurs when taking a sample without 
replacement, especially if the sample size n is relatively large with respect to 𝑵, the population size. 
The counting data variable follows a hypergeometric distribution with parameters (𝑵,𝒏,𝝅) if the 
probability that the variable takes the value x is the one that appears in (A3). 

𝑃[𝑋 = 𝑥] =  ቀ𝑁𝜋𝑥 ቁ ቀ𝑁 − 𝑁𝜋𝑛 − 𝑥 ቁቀ𝑁𝑛ቁ  (A3)  

Therefore, in this case, the test can be performed using this distribution. To do this, if the 
hypotheses are those raised in (1), the exact test is performed by calculating the p-value, which is 
given by (A4): 𝑝 = 𝑃[𝑋 ≥ 𝑥|𝑋 → 𝐻(𝑁,𝑛,𝜋଴) = ෍ቀ𝑁𝜋଴𝑡 ቁ ቀ𝑁 − 𝑁𝜋଴𝑛 − 𝑡 ቁቀ𝑁𝑛ቁ

௡
௧ୀ௫     (A4) 

where: 
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𝑝:  the p-value. 𝑥:  the number of nonconforming items found in the sample. 𝑛:  the sample size. 𝑁:  the population size. 𝜋଴:  the maximum acceptable probability of nonconforming items. 𝐻 (𝑁,𝑛,𝜋଴): the hypergeometric distribution of parameters 𝑁,𝑛 and 𝜋଴. 
In this case, ℍ଴ is rejected if p <α. To perform this test in R, the parameters are 𝑁𝜋଴, 𝑁 − 𝑁𝜋଴, and 𝑛. The formula to calculate the p-value in R is 1 − 𝑝ℎ𝑦𝑝𝑒𝑟(𝑥 − 1,𝑁𝜋଴,𝑁 − 𝑁𝜋଴,𝑛). However, the 
definition of a hypergeometric distribution requires that 𝑁𝜋଴ be a natural number, so the function 
rounds to the nearest integer. 

Multinomial distribution   

This model appears when we classify n elements into 𝑘 classes under an infinite population. 
This is the same scheme as that of the binomial distribution. In fact, Binomial distribution is a 
particular type of multinomial distribution where the number of classes is 2.  

A vector of integers 𝑿 = (𝑛ଵ, … ,𝑛௞) , with 𝑛ଵ + ⋯+ 𝑛௞ = 𝑛, follows a multinomial distribution 
of parameters (𝑛;  𝜋ଵ, … ,𝜋௞),   where 𝜋ଵ + ⋯+ 𝜋௞ = 1 if its mass probability function is given by 
(A5): 𝑃[𝑋ଵ = 𝑛ଵ, … ,𝑋௞ = 𝑛௞] =  n!𝑛ଵ! …𝑛௞!𝜋ଵ୬భ …𝜋௞௡ౡ . (A5) 

Multivariate hypergeometric distribution     

As in the binomial case, the multinomial distribution requires that the probability of success 
remains constant between the trials, which implies that the population size has to be infinite, or at 
least very high with respect to the sampling size, as indicated in (2). However, in many situations, 
the population size, N, is finite and relatively small, with respect to sampling size, n, so a multivariate 
hypergeometric distribution is required. This distribution is a generalization of hypergeometric 
distribution, and its mass probability function of a Multivariate Hypergeometric distribution—with 
parameters (𝑁ଵ, … ,𝑁௞), 𝑀𝐻(𝑁ଵ, … ,𝑁௞)— is given by (A6): 

𝑃[𝑥ଵ = 𝑛ଵ, … , 𝑥௞ = 𝑛௞] = ൬𝑁ଵ𝑛ଵ൰… ൬𝑁௞𝑛௞൰ቀ𝑁𝑛ቁ  (A6) 

where (𝑛ଵ, … ,𝑛௞) is the number of items found in the sample belonging to each category, 𝑛 = 𝑛ଵ +⋯+ 𝑛௞ is the sample size, (𝑁ଵ, … ,𝑁௞) is the number of items in the population belonging to each 
category, and 𝑁 = 𝑁ଵ + ⋯+ 𝑁௞ is the population size. 
 
In order to express the test, 𝑁଴௝ = 𝑁 × 𝜋଴௝, 𝑁଴௝  must be an integer.  

Appendix B 

For the example of the length of the interior walls (DQU6 = Shape fidelity), we present here the 
calculations of the p-value for the assumed multinomial distribution. We are interested in 
checking if the actual lengths of walls verify some conditions relative to the designed length. 
The proportion of the interior walls that differs less than ±2% from the designed length is less 
than 80%, and no more than 5% differs more than ±5% from the designed length. There are 200 
walls, and we select a sample of size 20. The results are shown in Table A1, where the class 
names A, B, and C correspond to good, acceptable, and unacceptable items, respectively.  

Table A1. Results of the sampling respective to the wall lengths   

Planned length 
(cm) 

Observed length 
(cm) 

Absolute Error 
(cm) 

 
2% 5% Class 

240 237.00 3.00 4.8 12 A 
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240 247.68 7.68 4.8 12 B 
180 176.84 3.16 3.6 9 A 
180 169.29 10.71 3.6 9 C 
300 303.24 3.24 6.00 15 A 
300 288.91 11.09 6.00 15 B 
240 240.39 0.39 4.80 12 A 
240 241.41 1.41 4.80 12 A 
180 173.75 6.25 3.60 9 B 
180 179.83 0.17 3.60 9 A 
300 306.04 6.04 6.00 15 B 
300 303.82 3.82 6.00 15 A 
180 181.68 1.68 3.60 9 A 
240 241.10 1.10 4.80 12 A 
240 240.45 0.45 4.80 12 A 
180 173,54 6,46 3,6 9 B 
180 182,75 2,75 3,6 9 A 
300 308,68 8,68 6 15 B 
240 244,44 4,44 4,8 12 A 
180 173,18 6,82 3,6 9 B 

 
In this case, the version of the hypothesis shown in Eq. 3 is: 

 ℍ଴:𝜋஺ ≥ 0.80;  𝜋஻ ≤ 0.15;𝜋஼ ≤ 0.05 ℍଵ: At least, one of these inequalities is not true. 
(B1) 

 

The sampling fraction is 10%, and, as a consequence, a multivariate hypergeometric test is made. 
The test statistics 𝑇 = (12, 7, 1) are obtained by counting the error category of each sampling 
point as it appears in the last column of Table A2. To apply the 𝑀𝐻 distribution, the population 
size of each category under the null hypothesis (given in Eq. 6) is 𝑁஺ = 160,𝑁௕ = 30,𝑁஼ = 10. 
Consequently, we determined the worst points with respect to 𝑇 to obtain the probability under 
a 𝑀𝐻(𝑚, (160, 30, 10), 20) distribution, where 𝑚 = (𝑚஺,𝑚஻,𝑚௖) are the points shown in Table 
A2. 

Table A2. p-value calculation. 𝒎𝑨 𝒎𝑩 𝒎𝑪 Probability 
 12   7   1  0,004858 
 12   6   2  0,006376 
 12   5   3  0,004081 
 12   4   4  0,001373 
 12   3   5  0,000244 … …  … … 
 0   17   3  0,000000 
 0   16   4  0,000000 
 0   15   5  0,000000 
 0   14   6  0,000000 
 0   13   7  0,000000 
 0   12   8  0,000000 
 0   11   9  0,000000 
 0   10   10  0,000000 
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The p-value is obtained by adding all probabilities in column 4 of Table A2. In this case, 𝑝 =0.02365. These probabilities can be calculated using the function dmvhyper(m, N, n, log=FALSE). 
This function belongs to the extraDistr package of R, which is adequate for multivariate 
hypergeometric cases.  

List of acronyms 

• BIM  Building information model  
• CoI  Category of Interest 
• DQE  Data Quality Element  
• DQU  Data Quality Unit  
• GIS  Geographic Information Systems  
• MHTM Multiple Hypothesis Testing Method 
• NIST   National Institute of Standards and Technology 
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