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Abstract: The low-cost, indoor-feasibility, and non-intrusive characteristic of passive infrared 
sensors (PIR sensors) makes it widely used in human motion detection, but the limitation of its 
object identification ability makes it difficult to further analyze in the field of Geographic 
Information System (GIS). We present a template matching approach based on geometric algebra 
(GA) that can recover the semantics of different human motion patterns through the binary 
activation data of PIR sensor networks. A 5-neighborhood model was first designed to represent the 
azimuth of the sensor network and establish the motion template generation method based on GA 
coding. Full sets of 36 human motion templates were generated and then classified into eight 
categories. According to human behavior characteristics, we combined the sub-sequences of 
activation data to generate all possible semantic sequences by using a matrix-free searching strategy 
with a spatiotemporal constraint window. The sub-sequences were used to perform the matching 
operation with the generation-templates. Experiments were conducted using Mitsubishi Electric 
Research Laboratories (MERL) motion datasets. The results suggest that the sequences of human 
motion patterns could be efficiently extracted in different observation periods. The extracted 
sequences of human motion patterns agreed well with the event logs under various circumstances. 
The verification based on the environment and architectural space shows that the accuracy of the 
result of our method was up to 96.75%. 

Keywords: spatio-temporal analysis; human motion reconstruction; passive infrared sensor 
network; geometric algebra; generation-template-matching; MERL motion sensor 

 

1. Introduction 

The analysis of trajectory semantics and motion patterns is crucial to human behavior research, 
and extensive research is already being conducted on the extraction of human motion patterns by 
modern observation technologies such as video surveillance, mobile location tracking, GPS receivers, 
and sensor networks [1–6]. As one of the most widely used sensors, passive infrared (PIR) sensors 
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provide cheap, non-invasive, power-efficient, and long-term observations [7,8]. Unlike other passive 
motion sensors such as cameras, PIR sensor measurements are qualitative and record only the 
Boolean activation state of sensors, which means that information of the object under observation is 
concealed. With this “privacy-protection” feature, PIR sensors can be used in privacy-sensitive 
environments. 

However, the PIR sensors can acquire only limited target information and azimuth information, 
which hinders their application to the recovery of accurate motion of every object. Taking Figure 1 as 
an example, different human trajectory patterns can lead to the same activation data sequences, due 
to the binary activation properties of PIR. Therefore, the motions recorded for multiple people by 
different sensors at the same time are difficult to recover. Nevertheless, PIR sensor networks contain 
rich embedded human motion information derived from spatial PIR sensors, which is especially the 
case when it is considered in a reasonably selected time window, like a day, a week, or a month [9]. 

 
Figure 1. Uncertainties from Boolean activation. The different two situations can lead to the same log 
data. First, two people pass from position C to A and B separately; second, two people pass from C to 

B, and an additional person arrives A at 2t . 

The embedded human motion information can also be called as human motion patterns, which 
was widely used in crowd detection, movement direction detection, and indoor location/activity 
recognition [8,10–13]. 

Typical approaches to separate different human motion patterns from the PIR log data are the 
geometric and statistical methods [14,15]. For geometric methods, geometric sensor locations and 
target motion characteristics were used to build a probabilistic model, and target numbers were 
recovered using feature-extracting methods such as cluster or particle filters [16]. These approaches 
illustrate the theoretical boundary conditions on whether the human motion pattern can be classified 
using binary activation data. However, most of these methods have been analyzed only theoretically 
because numerous challenges arise when PIR sensing is applied to complex scenes (e.g., a floor of an 
office building with different rooms and channels) due to the complex spatiotemporal constraints. 
The initial work is to use geometric algebra and matrix products to recover the target motions in 
complex scenes. With the assumptions of more detailed sensing capabilities, complex scenes can 
extract possible motion directions and limited trajectory types [9]. However, the accuracy of the 
trajectory recovery remains low. In addition, the matrix-based computation and the computational 
complexities of the methods are high, which avoids the large-scale application for PIR sensor 
networks. 
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Template matching methods, which are commonly applied in the signal processing or image 
analysis, have the potential to bridge the gap between the binary sensor activation data and 
identifiable human motion patterns. Template matching defines feasible patterns in a template and 
reveals both local and global patterns by matching the original data with these pattern templates [17–
20]. Nevertheless, unlike template matching methods widely used in signal processing and image 
analysis, the location of the sensors and log data are hard to represent as structured data. Thus, as far 
as we know, there are no formal template matching methods for extracting human motion patterns 
from PIR networks. The lack of a key mathematical theory is the key issue of such template matching. 

Here, we developed a generation template matching (GTM) paradigm with geometric algebra 
(GA) to solve the problem of recovering qualitative motion patterns from PIR sensor data. In our 
approach, the motion templates that classify different human motion patterns, were generated by GA 
coding and the outer product of the 5-neighborhood model. With the consideration of the PIR sensor 
network and uncertainties of motions, spatial and temporal constraints were embedded into the data 
selection step, trying to recover all possible trajectories. A template-matching algorithm was also 
developed to calculate the relationships between the template and the overall sensor activation data, 
and this is to recover human motion pattern sequences. Finally, we evaluated our method based on 
MERL (Mitsubishi Electric Research Labs) datasets. 

The paper is organized as follows: the formal definition of the problem and the basic idea is 
described in Section 2. The methods including the GTM algorithm of human behavioral semantics 
are described in detail in Section 3. The case study and performance analysis are given in Section 4. 
The conclusions are given in Section 5. 

2. Materials and Methods 

This section describes the main problems in human motion pattern analysis and the basic idea 
for extracting trajectory semantics using the GTM algorithm. 

2.1. Problem Definition and Basic Idea 

In order to constrain the linkage between different sensors, PIR sensors are commonly installed 
in closed spaces. The observed states of the PIR sensor at each time are encoded into a binary set as 

{0,1}X = , where 1 indicates that the corresponding sensor is active, and 0 indicates otherwise. For 
large sensor networks with hundreds or thousands of sensors deployed, the combination of all global 
states may grow significantly. To avoid the computational exploration, the local response of the 
sensor network should first be considered (Figure 2). 

 
Figure 2. The local spatial response and local spatial-temporal response. 

As shown in Figure 2, considering the spatially constrained by the neighborhood of specific 
sensors, we define the local spatial sensor response as follows: 

• Definition 1. Local spatial response of sensor: 
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Given the observation time series { }
1

N

j j
T t

=
= , the state series of the sensor located at { } 1

M
i iL l ==  

can be represented as a global temporal binary response vector ( )1 2
,, ,

i i i nl t l t l tX X X . Considering the 

adjacent PIR sensor set ( )iAdj l , a local spatial response sequence can be defined as a binary matrix 

( )( ( ), )=
i ki l t m n

RT Adj l T X ′ ′×
, where { }

1
( )=

m

i i
i

Adj l l L
′

=
′ ⊆ . Since the motions occur at a limited time, the 

spatiotemporal response is also defined. 
• Definition 2. Local spatio-temporal response of sensor: 

For the PIR sensor { } 1

M
i il =  at observed time { } 1

N
k kt = , a spatiotemporal response sequence with 

two-tuples can be defined as { }
1 1

( ( ), ), ( ( ), )
k k k k

M N

i t t t i t t t i k
RT Adj l T RT Adj l T−Δ → → +Δ = =

, where 
k kt t tT −Δ →  denotes 

the time span from kt t− Δ  to jt , +k kt t tT → Δ  denotes the time span from kt  to kt t+ Δ , and tΔ  is a 

user-specified maximum time span threshold (or time interval). 
It is evident that the spatiotemporal responses are composed of observed states including those 

before and after the current time. Then, we can extract the sensor sets preSensors  pl  and 

nextSensors  ql  activated before and after the current time with the constraints that , 1
p t t tk kl TX

−Δ →
=  and 

, 1
q t t tk kl TX

→ +Δ
= . 

To extract the patterns from the local spatiotemporal response of the sensor and match them 
with the human trajectory semantics, extracting some of the constant response patterns from the 
sensor activation data is important. Since complex trajectory can be combined from several simple 
structures, we defined these fundamental structures as a meta response pattern. 

• Definition 3. Meta response pattern: 
According to the spatiotemporal response of sensor { } 1 1( , ) M N

i k i kSeq l t = = , the meta response pattern 
is defined as the minimum response sequence composed of the active sensors in the previous and 
next states: 

{ } , , 1 11 1( , ) { | , ( ), 1, 1}
p t t t q t t tk k k k

M N M N
i k p i q p q i l T l T i ki kMSensor l t l l l l l Adj l X X

−Δ → → +Δ = == =
= ∈ = = . 

The objective of motion pattern recovery is refining the meta response pattern set and convert 
the bool data of the PIR response into the final motion semantics. This process can be divided into 
two parts: (1) defining a reasonable motion semantic set SMotion  and (2) constructing the mapping 
from the meta sensor response pattern to the motion semantics. However, this two-step method may 
lead to a new problem between the infinite meta response patterns, which is theoretically true when 
infinite sensors are used, and the motion semantics are limited. 

Therefore, we introduced the template method to filter the meta response patterns into a finite 

motion template set. Given the motion template set{ }
1

J

j j
TM

=
, according to the above definitions, we 

can formally define the template matching method as follows: 
,

,
1, 1

( ) ( , )
i M k N

i k i k j
i k

S j MSensor l t TM
= =

= =

= ⊗  (1) 

where ⨂ is the filtering and matching operator, which is similar to the convolution approach in the 
image data analysis. , ( )i kS j  denotes the similarity of the motion template jTM  and the 

spatiotemporal response of sensor il  at time kt . For all of the templates { }1 2, , , JTM TM TM , if 

jTM  can be matched and filtered with the meta response pattern ( , )i kMSensor l t , the template 
matching results can get the maximum value, and this means that the motion semantic of people has 
the same motion semantic as jTM . The overall solution can then be decomposed into three different 
steps: (1) The definition of the template set; (2) the definition of the filter method to refine the 
unstructured PIR log data into structured GA coding; and (3) the definition of the template matching 
operator ⨂. 
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2.2. Basic Idea 

Focusing more on qualitative motion patterns, we attempted to embed both the spatial and 
temporal meaning in the template. To reduce the uncertainty of response combinations, which are 
composed of mixtures of semantically meaningful or meaningless codes, we refined the mixed 
response by a temporal-neighborhood window. As shown in Figure 3, the framework of our method 
comprises three parts. 

 
Figure 3. Flow chart of the generation-template matching approach showing three steps. 

2.2.1. Template Generation 

In the template-matching method, the structure of the template directly affects the performance 
and efficiency of the trajectory semantics extraction. As there are various semantic sets with different 
spatial cognition and partition granularity, the predefined human motion patterns may be so limited 
that additional human motion patterns cannot be classified. The numerous template types also make 
the algorithm computationally expensive. To make it simple enough, we considered the motion 
pattern in both the spatial and temporal domains and used the 5-neighborhood model to represent 
the direction of motion including center, top, right, bottom, and left. In the temporal domain, the 
motion process is represented by the meta response pattern p i ql l l . GA coding of the 5-neighborhood 
model was used and then the outer product was introduced to generate the GA expression of the 
meta response pattern [21]. Thus, the local templates can be used to generate all possible trajectory 
types (template) in a local spatial and temporal range, which can be used to recover all the trajectory 
semantics. 

2.2.2. Spatial and Temporal Filtering 

In our approach, motion patterns should be defined by the template, and human motion types 
should be matched and filtered by sensor log data. Template matching is a local computation process 
satisfying both local and global constraints. Unlike the template matching widely used in signal 
processing and image analysis, the location of the sensors and the log data are unstructured. The 
trajectories’ distribution in space–time is irregular, and the data types of trajectory and sensor log 
data are not unique. 

In the PIR sensor networks, the topological and directional relations between different sensors 
can be seen as a key indicator of the spatial structure. The templates focus on a single sensor and its 
adjacency reproduce the entire possible motion trajectory. Therefore, we can map the irregular sensor 
logs to the topology of the network to regulate both the sensor log data and the template. In the work 
by Yu (2016), they used a global matrix-based approach to model the network and trajectory 
topologies, which have lots of redundancy. Here, we used the outer product in a local region to 
achieve the trajectory filtering. 

It is important to define an appropriate spatio-temporal window to participate in template 
matching. Here, a well-defined time window should first be defined to segment the duration time of 
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the log data into small intervals, thus we can form the meta response pattern. Consequently, the meta 
response pattern actually means the motion state of the behavior trajectory and is expressed as a GA 
blade, which contributes to the implementation of template matching. To reduce the uncertainty of 
the meta response patterns, an accuracy correction step is raised here. Since the behavior trajectory 
of a target remains stable during a reasonably selected time window tW  (e.g., a day, a week, or a 
month), we can collect the entire possible behavior trajectory and only retain those occurring at a 
frequency of 50% and higher. Thus, in a small given local area and stable time window, the status of 
possible human motions is limited and fixed. 

2.2.3. Template Matching 

Similar to the convolution operation in signal processing or image analysis, the template 
matching uses certain operators to compute the similarity or relations between the template and the 
local region of original data. The difference with the convolution operation is that the template 
matching of PIR sensors is required to compute the similarities between the template and local 
spatial-temporal regions across different active sensors. Since the meta response pattern and the 
template have already been converted into GA blades, the similarity can also be implemented by the 
inner product, which is always used to calculate the relationship of blades in GA [21,22]. The inner 
product can distinguish if the two blades are consistent, in addition, it can also work when the blades 
are in reverse arrangement. 

With the generated template, the computation of PIR sensor logs can be limited to a local 
window to distinguish more complete human motion types. By combining the generation-template 
paradigm and the matching method, it is possible to increase the accuracy of the PIR data analysis 
and obtain stable motion patterns. 

3. Methods 

3.1. Templates with the Neighborhood Model 

The key point of the template-matching method is defining the templates and determining the 
completeness of the retrieved motion patterns. In order to define reasonable templates, the selection 
of neighborhood and the expression of motion behavior under the neighborhood are considered. 
Adjacent PIR sensors of the selected sensor are built based on the topology of the sensor network. 
The area of the motion can then be retrieved according to this local unit. Meanwhile, the direction for 
the clear motion semantics is also important. Thus, we introduced the 5-neighborhood model, 
expressed as , , , ,C T R B L< > , which indicates the center, top, right, bottom, and left, respectively. 
Then, the key point is to express the 5-neighborhood model algebraically. 

Geometric algebra is an ideal tool for expressing multi-dimensional algebra, and this can be used 
to synchronize spatial construction and computation [21,23–25]. For any given positive integer n, the 
GA space is constructed as a set of base vectors { },1ie i n≤ ≤ . The element blade  can be calculated 
by arbitrary ie  through the outer product [22]. Such an element in the GA space ( )Cl n  can be 
expressed as: 

1 2

1 2 12...

:
: , ,...,

: ,0

: ...

n

i j ij

n n

scalar k R
vectors e e e
bivectors e e e i j n

n vectors e e e e

 ∈

 = < < <


 − =



 (2) 

Since the blade structure can not only record node information, but also embed the node order, 
the GA coding can be used to define the templates. As for the specific predefined set , , , ,C T R B L< >
, it can be represented by the GA space (5)Cl . Each element in such a set corresponds to the 
orthogonal base vector , , , ,C T R B Le e e e e  in (5)Cl . Then, the k-blade structure within the 5-
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neighborhood model can be used to code the distinct combinations of sensor nodes as Figure 4, which 
are active at different directions in a continuous period. 

 

Figure 4. Neighborhood coding by blades  

However, not all blades  correspond to the actual motion. For example, CTBe , one type of 
trivector , is invalid for expressing motion in the network. Thus, in order to obtain all meaningful 
blades  that can be used as standard motion codes in the templates, further filtering is required. 

We defined all motions from the center node of the 5-neighborhood model. According to the 
definition of the meta response pattern, all the meaningful orders of sensor nodes can be expressed 
as three continuous sets, { } { } { }, , , , ,i C j i j T R B Le e e e e e e e e→ → ∈ . Given a response sequential 

D C El l l→ → , it can be encoded in GA space as { } { } { }D C E
B C Te e e→ → , where D

Be  means the node D  

is located to the bottom of the center node C . The corresponding motion can be regarded as the 
single body and easily encoded as trivector  BCTe . 

According to the above rules of motion encoding, we can easily extract all possible motions in 
the 5-neighborhood. As shown in Figure 5, eight types of motion templates (including Still, Through, 
Turn, Enter, Leave, Fetch, Split, and Join) are proposed and the detailed motion codes are also given. 
Such templates provide the paradigm for the extraction of meta response pattern and motion 
semantics from the original trajectory. 

 
Figure 5. Templates of trajectory semantics. 

3.2. Spatial and Temporal Constraint Window 

k

0 (scalar)

1 (vector)

2 (bivector)

3 (trivector)

4

5

k-blade

{eC,eT,eB,eL,eR}

{1}

{eCT,eCB,eCL,eCR,eTB,eTL,eTR,eBL,eBR,eLR}

{eCTB,eCTL,eCTR,eCBL,eCBR,eCLR,eTBL,eTBR,eTLR,eBLR}

{eCTBL,eCTBR,eCBLR,eCTLR,eTBLR}

{eCTBLR}

eT

eCeL

eB

eR

(a) Still (b) Through

(c) Turn (d) Enter and Leave

eTeCeR eReCeT eReCeB eBeCeR

eBeCeL eLeCeB eLeCeT eTeCeL

eCeL eCeT eCeR eCeB

eLeC eTeC eReC eBeC

(f) Split (g) Join

eCeL+eCeB eCeL+eCeT eCeL+eCeR

eCeT+eCeR eCeT+eCeB eCeB+eCeR

eBeC+eLeC eTeC+eLeC eLeC+eReC

eTeC+eReC eBeC+eTeC eReC+eBeC

eC

eBeCeT

eLeCeR

eTeCeB

eReCeL

(e) Fetch

eTeCeT eReCeR eBeCeB eLeCeL



ISPRS Int. J. Geo-Inf. 2019, 8, 554 8 of 19 

 

For the arranged PIR sensor system, templates can provide a unified extraction paradigm, but it 
is difficult to apply directly them to the real PIR network without an effective spatial-temporal 
window. Here, we introduce the spatial-temporal constraint window to preprocess the PIR sensor 
data. 

3.2.1. Spatial Constraint Window 

For the given PIR sensor network, all sensor nodes are clearly represented by the GA-based 
network graph, which can provide a precondition for additional spatial constraints in the PIR sensor 
network (Figure 6). Based on the 5-neighbor model of templates, it is necessary to find all neighbors 
of the whole sensor nodes to build the same spatial structure. As shown in Figure 6, any sensor node 
il  in the sensor network is treated as the center node individually to obtain its neighbors in four 

directions (Top, Left, Bottom, and Right). The four directions are divided according to their angles 
with the center node, which is defined in detail as: 

315 ,360 (0 ,45
(45 ,135

=
135 ,225
(225 ,315

Top
Left
Bottom
Right

θ








   

 

 

 

( ] ]
]

( ]
]

 (3) 

 
Figure 6. Spatial constraint window based on the 5-neighbor model. 

For each region separated by angleθ, only adjacent sensors ( )iAdj l  are selected as the neighbor, 
this selection also depends on whether this node and the center node are sufficiently close for 
continuous movement detection. The result is defined as a connected sub-network, having the same 
structure with the 5-neighborhood model. 

3.2.2. Temporal Constraint Window 

Spatial constraints segment the PIR sensor network into sub-networks that correspond to the 
templates. However, for the sensor log data themselves ( )( , )

i kl t m n
RT L T X

×
= , the activation response 

sequences are continuously recorded over time. Thus, the temporal constraint is needed to segment 
the continuous sensor log data. 

First, in the 5-neighborhood model, the GA codes of sensor nodes can be used to signify the 
response state. Then, the activated sensor sequences { , } { } { , }A B C E Fl l l l l→ →  can be expressed as 
{ , } { } { , }A B C E F
L T C T Re e e e e→ →  in Figure 7. We introduced the time interval, which decides whether the 

sensor node is activated adjacently by time. tΔ  is a parameter related to human motion and sensor 
settings. Assuming v  to be the normal walking speed (1.3 m/s) of an adult, s  to be the sensor 
detection radius, and d  to be the feasible distance between two sensors, the time interval tΔ  is 
calculated as: 

2d st
v
−Δ =  (4) 
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Figure 7. Spatial constraint window based on the 5-neighbor model. 

Since motion detection based on a single sequence may lead to uncertainties of the trajectory (as 
shown in Figure 1), here we introduce the duration window tW , in which all sequences including the 
center sensor cl  are collected, and only trajectory semantics occurring at high frequency (e.g., 50%) 
are retained. As shown in Figure 7, every time window that contains sensor cl  will be analyzed in 
duration window tW , even when two windows overlap. Taking the center sensor cl  as the split line, 
the response sequence of tΔ  can be divided into previous and next response sequences. Taking the 
first time window in Figure 7 as an example, two types of response sequences including the previous 
response sequence { , }A B

L Te e  and next response { , }E F
T Re e  sequence are divided by the center sensor 

node cl . Then, six trajectory semantics were evaluated, where T C Te e e  occurred three times and met 
the 50% frequency condition. According to the templates of trajectory semantics, for sensor cl  and 
the duration window tW , the trajectory semantic was ‘Fetch’. 

3.3. Meta Response Pattern Generation 

We refer to the 5-neighborhood templates to generate possible trajectory semantics according to 
the sensor network topology and sensor log data. As the sensor network is segmented by the spatial 
and temporal constraints into sub-networks, and the continuous sensor activation response sequence 
is divided into two response sequence sets, we proposed the following gradual generation method 
to obtain the GA expression of all possible trajectories. 

First, in the front and back response sequences, the common situation of sensor nodes were 
considered. As all response sequences are coded on the basis of GA and the 5-neighborhood model, 
the response sequence { } { }1 2, ,..., , , , , ,i i C T R B LR R R R e e e e e∈  was used to represent the previous and 
next response sequences, which are named as preSeq  and nextSeq , respectively. There are three 
common types of response states based on the number of sensor nodes in the -Front seq  and 

-Back seq : 
1. -Front seq  and -Back seq  are both empty, which means only the center sensor node 

responds; 
2. -Front seq  and -Back seq  both have response sensor nodes; 
3. Either -Front seq  or -Back seq  is empty. 

Among these three types, type (1) is easy to handle because it means that there is no other motion 
at that time. Types (2) and (3) are much more difficult because more possible combinations exist. 
Therefore, the encoding method is used to signify all combinations as GA expressions. Given the 
representations of preSeq  { }1 2, ,..., iR R R  and nextSeq , { }1 2 ,  ,...,  jR R R′ ′ ′ , { },  , , , ,i j C T R B LR R e e e e e′ ∈ , 

all possible combinations, C , constructed by the outer product are formulated as: 
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1

1

1 1

 if , 1
 if , 0

   if , 0
  if , 0

i C j

C n C

C C n

C i C j

R e R i j
R e R e n i j

C
e R e R n j n
R e R R e R i j

′ =
 + ⋅⋅⋅ + ≤ ==  ′ ′+ ⋅⋅ ⋅ + ≤ =
 ′ ′+ ⋅⋅ ⋅ + ≠  

The above formula represents general GA forms of sensor responses. In particular, when , 0i j ≠  
(meaning that there are multi-targets in both preSeq  and nextSeq ), the trajectory is uncertain due 
to the diversity of combinations. In our method, all possible trajectories were generated in order to 
avoid the loss of trajectory semantics. 

Second, after the generation, it was obvious that not all of the GA expressions are meaningful 
from the viewpoint of motion. Therefore, template matching was applied to obtain the similarity 
calculation of response sequences and template. So far, the combinations of both sensor response 
sequences and templates have been represented as GA expressions. Based on the quantified 
expressions of GA, the matching processes can be easily implemented by the inner product. 

3.4. Template Matching of Meta Response Pattern and Template 

According to the original definition of the inner product, for the given base vector 
, , , ,C T R B Le e e e e  , there exist 0i je e• =  when i j≠ ; and 1i je e• =  when i j= . Therefore, the 

template matching operator ⨂ in Equation (1) can be defined as: 

when TM is a blade
/ 2 when TM is a multivector

MSensor TM
MSensor TM

MSensor TM
•

⊗ =  •  
(5) 

As two forms of templates exist, the matching operator is divided into two situations. When 
TM  is a blade, the inner product is enough, but if it is a multivector  (like split and join, which 
composed with two blades), the inner product must be divided by two. The value range of the 
matching operator is [0, 1], and only when the result equals to 1, the MSensor  obtains the best math 
ofTM . 

3.5. Generation-Template Matching Algorithm 

Based on all definitions in the above-mentioned four sections, a generation-template matching 
algorithm can be developed according to the sensor activation log, and it can help to extract all 
possible trajectory semantics. 

The algorithm starts with the sensor network data, and then the whole network is segmented 
into sub-networks with the spatial constraint. The generation process is executed over each time 
window in duration window tW . After applying a 50% frequency filter, the stable sensor activation 
response sequences of the sub-networks were divided into preSeq  and nextSeq  before being 
combined with the center node and then encoded to obtain possible GA expressions. The pre-defined 
templates traverse each node to match the GA codes with those defined in the templates, which is 
mainly to achieve meaningful coding. Finally, the retrieved GA codes are translated into 
corresponding motion semantics, and the whole algorithm process is completed, as illustrated in 
Figure 8. 
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Figure 8. Flow chart of the process of the generation-template matching algorithm. 

In order to satisfy the requirements of the generation-template matching algorithm, we built an 
operator library as shown in Table 1. It mainly includes four parts: a network reconfiguration 
operator set, spatial constraint operator set, time constraint operator set, and generation and 
matching operator set. Among them, the network reconfiguration operator set mainly rebuilds 
topological relationships based on the sensor position, obtains the sensor network map, and 
establishes the adjacency matrix by sensor position. The spatially constrained operator set mainly 
segments the entire network into sub-networks. The time constraint operator set divides the sensor 
activation response sequences into front and back response sequences; the generation and matching 
operator set is used to generate all possible trajectories, and it is matched by templates to obtain the 
motion patterns. 

Table 1. Operator database of the generation-template matching algorithm. 

Operator set Operator Illustration 

Network reconfiguration 

DataCoordTrans () Coordinate space conversion 
DataFindAdj () Connection point search 
AdjJudgeCon () Connectedness judgment 
IniAdjMatrix () Establishes the adjacency matrix 

Spatial constraints 
DataNeighScreen () 5-neighborhood search 
DataNeighCode () Coding of 5-neighborhood 

Time constraints 
FreqFilter () Filter the code by frequency 

DataDivSeq () Divide front and back sequences 

Generation and matching 
DataSemGenerate () Generate the motion codes 

DataSemMatch () Matching motion patterns 

Through the construction of the above four kinds of operator sets, the generation-template 
matching algorithm can be implemented, from the original response data to the final trajectory 
semantics. The pseudo-code of the complete algorithm is shown in Table 2. 
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Table 2. Pseudo code of the generation and matching algorithm. 

Input: Basic parameters, Coordinate set of sensors C, Sensor activation log Data, Time division step Δt 
Output: semantic set of trajectory ST 

Function Explanation: The functions used in the pseudo-code are explained with reference to Table 1. TC 
means all the sensor nodes after coordination conversion; Aj means the set of nodes adjacent to TC; M 
means the adjacency matrix; E denotes adjacent domain coding; T denotes the total time; W denotes the 
duration time window; GA_code represents the code sequence with the combination of Front_seq and 

Back_seq; Templates mean the pre-defined 5-neighborhood motion templates. 
1:   TC = DataCoordTrans(C); 
2:   for i←0 to Count of TC do 
3:      Aji←DataFindAdj(TCi); 
4:      for each element e in Aji 
5:         if (AdjJudgeCon(e, TCi)) 
6:           M←IniAdjMatrix(e, TCi); 
7:         End if 
8:      End for 
9:   End for 
  
10:   for i←0 to Count of TC do 
11.      M5i←DataNeighScreen(TCi, M);  
12:      E5i,←DataNeighCode(M5i);  
13:      for j←0 to T/W 
14:         E5 i,j←FreqFilter(E5 i,j) ; 
15:         Front_seq←DataDivSeq(Data, E5 i,j, Wj, �t).Front; 
16:         Back_seq←DataDivSeq(Data, E5 i,j, Wj, �t).Back; 
17:         GA_code←DataSemGenerate (Front_seq, Back_seq); 
18:      End for 
19:  End for 
  
20:  Motion_Pattern←DataSemMatch(GA_code, Templates); 

4. Case Study 

4.1. Data and Analysis Environment 

We used the Mitsubishi Electric Research Laboratories (MERL) data to test our algorithm [26]. 
All 157 PIR sensors were located on the eighth floor of the laboratory building (Figure 9). Each sensor 
was closely placed at the indoor passage and had no blind spot at any passage. The feasible distance 
between the two sensors was 4.4 meters, and the sensor detection radius was 1.1 meters. The sensor 
data log was up to one year, from 21 March 2006 to 24 March 2007 and included sensor ID, start time, 
end time, and validity test, etc. A one-year event log for the lab such as climate data, meeting, and 
place data was also included. 
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Figure 9. Spatial distribution of sensor data and the indoor floor plan of the Mitsubishi Electric 
Research Laboratories. 

The case system was developed based on the API provided by the Clifford Algebra based 
Unified Spatial-Temporal Analysis system and features its own independent analysis and 
visualization interface [9]. The sensor data log in the case were stored in the PostgreSQL v9.6 
database, but they are accessed, managed, and analyzed by the case system. The case system had 
functions such as topology reconstruction of sensor network, sensor 5-neighborhood coding, and 
generation matching of motion behavior, through which trajectory semantics can be extracted 
dynamically. 

4.2. Analysis and Verification 

In order to obtain the possible behavioral pattern of the trajectory semantics extracted from 
sensor activation response sequences, and to verify their correspondence with real human behavior, 
we selected a day (20 April 2006) with special events from the sensor event log as a typical case. At 
12:50 on this day, a fire alert simulation was conducted on the eighth floor of MERL. The fire alarm 
prompted people occupying indoor spaces to exit from the building. After the evacuation, there was 
a blank period of sensor activation, which provided a favorable situation for comparing and verifying 
the target behavior. A total of 76,959 trajectory semantics were extracted on 20 April 2006, and the 
results are presented in Figure 10. 

 
Figure 10. Summary statistics of the full day semantic trajectory. 
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Figure 10 shows that the entire trajectory semantics can be divided into three levels. The first 
level included standing, entering, and leaving, which occurred the most frequently on that day. The 
second level included crossing, merging, and splitting, and the third level included turning, which 
was not that frequent because of restricted movement in the indoor space. Considering the motion 
characteristics of the indoor crowd, the trajectory semantics of standing, entering, and crossing, 
which reflect daily indoor motion, were all consistent characteristics of a person’s daily behavior. 

4.2.1. Verification Based on the Environment 

The MERI monitoring data do not contain real records of human movement, therefore, the 
quantitative accuracy evaluation of semantic trajectory could not be evaluated. We verified the 
correctness of the algorithm by considering the consistency of the spatial structure and semantic 
particularity of the scene. People’s moving semantics will be restrained by the environment and 
architectural space. For example, in a long gallery, only the passing through semantics (enter, leave) 
can generally appear. In order to verify the correctness of the method, the results were verified by 
the architectural space. First, the environment of each sensor can be divided into four types including 
I type, L type, T type, and Cross type, and this division is done according to the path topology and 
the characteristics of the architectural space. On the other hand, we could also obtain the proposed 
environment types by the trajectory semantic results based on the behavior features when people 
went through the sensors. Finally, the accuracy of this method could be obtained by comparing the 
environment types based on the trajectory semantic results with the actual environment types. 

Since the division of environment types here was based on the number of turns, there were a 
total of eight turning semantics including BottomToLeft (or LeftToBottom), BottomToRight (or 
RightToBottom), TopToRight (or RightToTop), and TopToLeft (or LeftToTop). As shown in Table 3, 
the mapping table from trajectory semantics to environment types was constructed. 

Table 3. Mapping table from trajectory semantics to environment types. 

Trajectory semantics Proposed type Environment type 
Contain none of the turns Type-I  
Contain one of the turns Type-L 

 
Contain two of the turns except 

(BottomToLeft & TopToRight) and 
(TopToLeft & BottomToRight) 

Type-T 
 

Contain three, four of the turns and two of 
the turns when (BottomToLeft & 
TopToRight) and (TopToLeft & 

BottomToRight) 

Type-Cross 
 

The analysis results are shown in Figure 11. The comparison shows that 149 nodes in the analysis 
result of this method were consistent with the original environment types, while the other five nodes 
were inconsistent. The verification based on the environment and architectural space shows that the 
accuracy of the result of our method was up to 96.75%. We set up the confusion matrix as shown in 
Table 4. There were 157 samples in the experiment, among which three were invalid (the three sensors 
did not respond during the selected sample period). From the confusion matrix, we calculated that 
the Kappa coefficient was equal to 0.918. 
  

p

p p p
p

p p p p

p
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Table 4. Confusion matrix for the environment type classification. 

Confusion Matrix 
The actual type 

I L T Cross 

The  
proposed 

type 

I 105 0 0 0 
L 3 17 0 0 
T 1 2 23 0 

Cross 0 0 0 3 

Further analysis of the nodes with inconsistent results (Figure 11c) showed that all five nodes 
were in the location where the door may be in a long-open state (for example, sensor nodes 375, 453, 
291, 413 were arranged next to the door of the conference room, while sensor node 391 was arranged 
next to the door of restroom), which many change the path topology. The analysis showed that the 
results of this paper were still accurate for the calculation of trajectory semantics. 

 
Figure 11. The comparison of the actual environment types and the proposed types. (a) The actual 
environment types; (b) the proposed environment types; (c) the node in the result that are inconsistent 
with the actual environment type. 

4.2.2. Verification Based on the Event 

People’s moving semantics can also be affected by some emergency events like fire alarms. In 
order to further verify the correlation between trajectory semantics and the fire event, we selected 
particular time periods during the event for separate analysis. The sensor data log recorded a blank 
period after 12:58, suggesting that the fire simulation period occurred between 12:50 and 12:58. A 
total of 2247 trajectory semantics were extracted, as shown in Figure 12. The figure shows that the 
trajectory semantics of ‘Still’ and ‘Through’ occupied the major share. The semantic ‘Through’ may 
depict the process of evacuation, while the semantic ‘Still’ may show possible congestion at passages 
or exits. 
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Figure 12. Summary statistics of trajectory semantics during a fire simulation. 

Then, we visualized these two semantics to further confirm their distribution indoors. In Figure 
13a, the semantic ‘Still’ mostly occurred at nodes 310, 449, 372, 352, and 452 (marked by blue box). 
All these nodes are obviously located near the exit of two large conference rooms and lunch room, as 
shown in the floor plan of the eighth floor, many people occupied the area at noon and may 
experience a jam from the rooms to the exit. In Figure 13b, the semantic ‘Through’ is dense at upper 
sensor nodes 375–433, nodes 331-257, nodes 432–445, nodes 281–276, and nodes 397–419 (marked by 
blue box), which were near the four exits. However, the count of semantic ‘Through’ near the “Still” 
event nodes (node 352, 310, 449) were quite low, the possible reason is that during the evacuation 
process, the jam took place and people moved slowly until they reached the exits. The slow 
movement cannot be recognized as the semantic ‘Through’. The uniform distribution of the semantic 
‘Through’ counts also indicates a smooth evacuation. In addition, the distribution of sensor nodes in 
the lounge also reflects human behavior patterns. The trajectory semantics extending from the exit to 
the left and right sides reflect an orderly and direct crowd motion, a motion that goes to the left and 
the right after the activation of the fire alarm. This reveals that the crowd is well organized during 
the evacuation. 

 
Figure 13. Visualization of two semantics during fire simulation. (a) Distribution of semantic ‘Still’ 
count, (b) Distribution of semantic ‘Through’ counts. 
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According to the analysis of the fire simulation, the trajectory semantics extraction has good 
correspondence with the event, which could not only reflect human motion under special events, but 
also reveal some hidden human behavioral pattern restrained by the environment and architectural 
space. 

4.3. Algorithm Efficiency 

The computational complexity of the generation-template matching algorithm can be mainly 
attributed to the constraints and the extraction. Suppose the number of all sensor nodes is n , then 
the algorithm complexity in neighborhood searching is 2( )O n . Additionally, suppose the number of 
extraction according to the total time is m , the complexity of extraction process is ( )O n m× , drawing 
the conclusion that the entire algorithm complexity is 2(n m )O n× + , which is equal to 2( )O n . 

Since there is no similar algorithm for extracting trajectory semantics from PIR sensor networks, 
the efficiency comparison was mainly performed between different node sizes and time scales. The 
computing time only included the processes of generation and matching. The specifications of the 
system environment are as follows: Intel Xeon E5645 (2.4 G) CPU, 48.00 GB RAM, and Windows 
Server 2008 R2 operating system. In terms of the node size, the efficiency of extracting 1000 trajectory 
semantics from 10, 50, and 100 sensor nodes was considered. The results are shown in Table 5. With 
the increasing sensor nodes, more operations such as neighborhood establishment and parameter 
storage were required, which slightly increased the time and memory consumption. Nevertheless, 
the stability of the algorithm remained excellent with the expansion of node size. 

Table 5. Comparison of the efficiency of different node sizes. 

Size of nodes Size of extraction Time (s) Memory (MB) 
10 1000 0.28 10.4 
50 1000 0.39 17.1 
100 1000 0.60 25.6 

For evaluating efficiency, we selected three times nodes, one hour, one day, and one week, when 
all 157 sensors responded frequently, as our detection time. The results in Table 6 show that the 
computation complexity and memory usage were relatively stable. With the increase in time span, 
the number of records was up to 355,702 during one week. The extraction of sensor response data 
from the one week dataset consumed approximately 155.18 s and 357.7 MB. 

Table 6. Efficiency comparison of different time spans (started in 12:00 on April 20, 2006). 

Time interval No. of 
records 

Time（s） 
Memory 

(MB) Total 
spatial 

constraints 
Time 

constraints 
Generation 

One hour 6,923 1.973 0.027 0.022 1.083 14.0 
One day 77,556 26.98 0.305 0.248 20.001 79.8 

One week 355,702 155.18 1.439 1.148 122.22 357.7 

5. Conclusions and Discussion 

In this paper, the advantages of the representation and operation of GA for PIR data processing 
could be fully utilized. Generation-templates with the 5-neighborhood model including eight 
different types of motion semantics were first defined to provide a standard paradigm for extraction. 
Then, spatial and temporal constraints were introduced to segment the entire sensor network and 
sensor log data. Such constraints could simplify the objects for processing and enable the semantic 
extraction to focus on single sensor nodes. The generation-template matching algorithm was 
introduced to extract all trajectories and matched them with the templates. With our method, eight 
types of detailed trajectories could be obtained from the PIR sensor network. Then, these trajectories 
were further analyzed to determine human behavior patterns. The case study showed that the 
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sequences of human motion patterns could be efficiently extracted in different observation periods. 
The results agreed well with the event logs under various circumstances. 

PIR sensor data are a set of discrete activation response sequences, which seemingly do not have 
any semantics. Nevertheless, the relationship between the activation responses can be determined 
through data mining under constraints. Geometric algebra provides a solid mathematical foundation 
for expressing both the sensor network and motion pattern templates. The spatial and temporal 
constraints segment the PIR sensor activation response sequences into sub-sequences and can be 
expressed as GA codes by the outer product. The GA expression of the response sequences are in 
accordance with the motion pattern templates and can be further used in semantic extraction and 
analysis. Therefore, the process of trajectory semantics extraction is converted into encoding and 
matching. Compared to previous methods, our method completely avoids complex matrix 
calculations and supports more types of motion semantics, facilitated by the generated coding 
paradigm. Therefore, it avoids the computational complexity problem of high-dimensional GA 
computation, and makes it possible for large-scale applications. 

In our method, the moving semantics were extracted by spatial and temporal filtering, therefore 
the result was sensitive with the setting of a spatial and temporal window. Although we set the 
default walking speed (1.3 m/s), according to the general situation of adults, in different passable 
conditions, the speed may change. For example, in the case of a jammed situation, a person’s walking 
speed decreases, which may generate ‘Still’ semantics. In future work, the moving semantics should 
be further studied in different scenarios, and the neighborhood semantics can also be used to improve 
the result. Here, we only used the 5-neighborhood model to extract a total number of 36 human 
motion template. However, the extension to a more complex human behavior template, which means 
using high-order grades or multivector to form the template, is direct. In this way, the methods can 
be extended as a generalized method to filter semantical meaningful human motions from the binary 
PIR sensor network log data. Based on the unified construction and computation operator of GA, our 
method provides a template system with both geometry and motion features. Using this method, 
complex calculations of response sequences can be converted into simple local data processing, 
similar to image convolution. Further integration of our method with real-time access of data under 
the Internet of Things can lead to a feasible method for timely sensor data analysis. Overall, it 
provides an opportunity to further explore human motion patterns based on PIR sensors. 
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