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Abstract: The aim of this research is to evaluate the use of ET and EEG for studying the cognitive
processes of expert and novice map users and to explore these processes by comparing two types of
spatial memory experiments through cognitive load measurements. The first experiment consisted of
single trials and participants were instructed to study a map stimulus without any time constraints in
order to draw a sketch map afterwards. According to the ET metrics (i.e., average fixation duration and
the number of fixations per second), no statistically significant differences emerged between experts
and novices. A similar result was also obtained with EEG Frontal Alpha Asymmetry calculations. On
the contrary, in terms of alpha power across all electrodes, novices exhibited significantly lower alpha
power, indicating a higher cognitive load. In the second experiment, a larger number of stimuli were
used to study the effect of task difficulty. The same ET metrics used in the first experiment indicated
that the difference between these user groups was not statistically significant. The cognitive load
was also extracted using EEG event-related spectral power changes at alpha and theta frequency
bands. Preliminary data exploration mostly suggested an increase in theta power and a decrease in
alpha power.

Keywords: eye tracking; EEG; spatial memory; cognitive load; cognitive cartography; cartographic
user experiment design

1. Introduction

Developments in medical research allow scientists to observe neurons in the brain with a high
spatial and temporal resolution. As “scientific cartography” emerged in the early 1900s, it became
possible to borrow theories and methods from experimental psychology to study how map design
influences map use in a formal, systematic and empirical way rather than the trial and error method [1].
In this respect, scientific cartography has long dealt with cognitive issues of maps and map use, and
Eckert applied experimental psychology principles to establish the laws of map logic [1]. According
to him, map logic complies with the map creation laws, which strongly influence cartographic
perception [2].

To be able to understand map users’ behaviors, it is important to identify the cognitive procedures.
Human memory functions within a sequence of three stages; sensory memory, working (short-term)
memory, and long-term memory (LTM) [3]. Cognitive processes and strategies particularly occur
during circumstances such as being aware of where to look at in a map or the interpretation of
map-related information regarding other knowledge stored in LTM. Since different map users have
different information stored in their memory, they are expected to have different strategies while
reading maps [1]. Therefore, expertise is one of the major individual differences across map users.
During a map-related task, all map users, especially novices, rely on the general map knowledge (e.g.,
knowing that the contour lines represent the elevation) whereas experts mostly consult their specific
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map knowledge (e.g., knowing the direction of slope by interpreting the contour lines). Specific map
knowledge enables experts to establish spatial relationships in a more structured and systematical way
compared to non-experts [4]. With the understanding of map knowledge of users, cartographers can
focus on effective map designs that ideally do not cause a high cognitive load.

As fundamental units of cartographic design, Bertin’s [5] visual variables (i.e., position, size,
shape, value, color hue, orientation, and texture) maintain the visual hierarchy (as described in Gestalt
theory) which is essential to improve map logic by distinguishing and grouping map symbols and
encoding map-related information [1,4]. That is why map perception is, in a way, dependent on the
decision of the visual variables used in its design. As important as design elements, the map task is
fundamental in cognition because cognitive procedures generally occur instantaneously and within a
specific task or context.

To measure real time cognitive responses of map users, cartographers have hitherto implemented
many methods in cartographic usability research such as eye tracking (ET), sketch maps, thinking
aloud, interviews or questionnaires e.g., [6–8]. The cartographic eye-tracking research has focused
on the interpretation of visual information while performing a complex visual and cognitive task
e.g., [9,10], visual interaction with highly interactive interfaces e.g., [11], cognitive processes linked
with visual search in maps e.g., [12], and learning and remembering the information presented via
maps e.g., [4]. The insights provided by eye tracking studies are promising for understanding how the
human brain handles map-related cognitive tasks, yet there is still much research to do to elaborate how
visual elements affect map use (e.g., perception, memory, cognition, etc.) and how to leverage visual
variables to facilitate map use with less cognitive load. There is also a lack of empirical evidence on the
users’ cognitive processes involved in map tasks, especially on the sources of individual differences
(i.e., expertise, gender, etc.) and the relationship between the organization of spatial thinking and
geographic space e.g., [8,13,14].

Authors propose that non-invasive brain-imagining techniques (e.g., electroencephalogram (EEG))
can benefit cartographic user studies by providing direct measures of brain activity during cognitive
processes. EEG, which is used to monitor the electrical activity in the brain, can be combined with
other quantitative methods, such as eye tracking, to gain a better understanding of cognitive abilities
and limitations of different groups of map users and how visual elements influence map use. The
insights that particularly arose from the differences due to expertise will henceforth contribute to
creating effective cartographic products.

Although there exists not much research showing the relationship between ET and EEG within the
cartographic context, the outcomes of these two methods might provide different outcomes in terms of
cognitive load. For instance, Gedminas [15] explored how hurricane advisory maps are perceived by
comparing the existing maps and their alternative map designs and found out that fixation durations
and the number of fixations that these maps received do not differ significantly, while frontal EEG
analysis indicated that the alternative maps had a larger and more positive effect on the user [15].

This study deals with the cartographic user experiments employing ET and EEG as simultaneous
and synchronized data collection methods in collaboration for spatial memory tasks on maps (see
Figure 1). The goal of the study is twofold: (i) studying the cognitive processes of map users, and (ii)
evaluating the use of EEG for these processes by comparing two types of experiments, also allowing to
triangulate ET and EEG findings and draw conclusion on the suitability of the methods, especially the
contribution of EEG.

In this context, we introduce two user experiments both aiming to explore the (cognitive) strategies
of experts and novice map users through cognitive load measurements when they are asked to
memorize and then remember a (part of) map content with varying levels of complexity. Due to
the methodological differences in the experiment designs, in the first experiment, we used simple
and exploratory measurements for cognitive load extraction. However, the findings of the first
experiment contributed to the experimental design of the second one. They were utilized as inputs for
hypothesizing the second experiment as some of the findings were fundamental for the motivation of
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the second experiment. Therefore, the second experiment was designed in a more complex way of
addressing in-depth investigation of cognitive load. In other words, it became possible to identify
how cognitive load affects the recalling performance for both map user groups, and whether some
features are recalled independently of task difficulty. If so, we can identify which features are recalled
easily/primarily with respect to other features recalled within the task, especially when the task
demands higher cognitive load. Moreover, we hope to contribute to cartographic usability research by
introducing a brief overview on the methodology of ET and EEG experiments, because it enables us to
explore the behavioral and neurophysiological responses of map users and helps with understanding
the influence of cartographic design and task on individual map users. It has rarely been applied in a
cartographic setting before, especially for map reading instead of map usability e.g., [15].
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2. Methodology

The (spatial) memory task in both user experiments focuses on the study process of the main
structuring map elements (i.e., roads, green areas, and hydrography) of a map stimulus to be retrieved
later. Accordingly, visual variables (e.g., shape, size, color, etc.) used for depicting those elements
play an important role in the experimental design because we utilize them to design maps to be used
either with less or more cognitive load. While roads contain only linear, and green areas contain only
polygon features, hydrography contains both linear and polygon features. Inherently, recalling one or
a combination of those can be linked to the different levels of task difficulty; hence, each different (or a
group of) task is assumed to cause different cognitive loads. For instance, linear features are easier to
learn and remember regardless of paying too much attention, and besides the color, the shape and size
of map elements have an equally important impact on visuospatial memory [4]. Table 1 summarizes
all the aspects of the experiment design for the first and second experiment.
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Table 1. Summary of the two experimental designs.

Experiment 1 Experiment 2

Research Question
How does cognitive load vary between experts and novices while

memorizing the main structuring elements of a map stimulus without
any time constraints?

How does cognitive load vary between experts and novices while
memorizing a (part of) map content in a limited study period?

How does the complexity/difficulty of the task influence the cognitive
load?

Goal
To evaluate the cognitive processes, abilities and/or limitations of map

users when they first study a 2D static map and retrieve this
information later.

To test the effect of task difficulty on behavior, which is the retrieval of
the main structuring elements with varying levels.

Hypothesis We expect that the spatial memory task will cause higher cognitive
load in novices compared to experts.

The tasks involving the retrieval of only linear features will cause less
cognitive load for both groups compared to the other features.

We additionally expect that experts would perform better at tasks
demanding higher cognitive load.

Participants

56 participants:
24 experts (13 females, 11 males)
30 novices (7 females, 23 males)

Age range: 18–35

22 participants:
11 experts (5 females, 6 males)
11 novices (6 females, 5 males)

Age range: 25–35

Task procedures

Participants studied one map stimulus for as long as they wanted to
memorize all the main structuring elements included in the map they

studied.
Once they thought they had studied the map long enough, they
pressed a certain key and then they had to draw this map from

memory by using MS Paint. After drawing the sketch map,
participants used a special key to terminate the task.

Randomized block design: Seven blocks representing seven difficulty
types. Each block includes 50 trials (i.e., one for each stimulus)

focusing on the similarity of:
Block 1: The whole map

Block 2: Roads and hydrography
Block 3: Roads and green areas

Block 4: Green areas and hydrography
Block 5: Green areas

Block 6: Hydrography
Block 7: Roads

Independent variables

1 map design type (i.e., 2D static topographic map)
1 task difficulty level (i.e., retrieval of the main structuring elements of

the whole map stimulus)
2 expertise levels (i.e., experts vs. novices)

1 map design type (i.e., Google maps stimuli)
7 task difficulty levels (i.e., classified as easy, moderate, hard) ~ linear

& polygon features within blocks
2 expertise levels (i.e., experts vs. novices)

Dependent variables Trial durations *, eye movements, EEG (alpha power, FAA),
self-reported metrics (i.e., questionnaire) *

Response time of correct answers, eye movements, EEG metrics
(ERD-ERS), self-reported metrics (i.e., questionnaire) *

* not mentioned in this paper, but published in [4].
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2.1. Experiment 1

In the first experiment, participants were asked to study a map stimulus as long as they would
like in order to draw a sketch map of what they had studied. The map stimulus used in this experiment
is a simplified topographic map that was produced by Belgian National Mapping Agency, NGI/IGN
(Nationaal Geografisch Instituut/Institut Géographique National), and was also used by Ooms [12] and
Keskin et al. [4]. According to the results of [4] and [12], we hypothesized that the spatial memory task
will cause higher cognitive load in novices. To explore participants’ recalling strategies, we evaluated
the drawn elements in the sketch maps and analyzed fixation related and AOI-based eye tracking
metrics (for more detail about the experimental settings and results, please read [4]).

This experiment resulted as single trials of one spatial memory task, but of long ET and EEG
recordings due to the absence of time constraints. The ET metrics used as indicators of cognitive load
were (i) average fixation duration and (ii) the number of fixations per second, which are frequently used
metrics by many researchers when studying individual differences e.g., [12,15,16]. Average fixation
duration is useful to study attentional procedures to one specific stimulus, whereas the number of
fixations per second reveals the speed of attention [17].

To extract the cognitive load from EEG data, we first averaged alpha power for all recording EEG
channels and calculated Frontal Alpha Asymmetry (FAA) using frontal channels. Cognitive load can
be measured using EEG activity power spectrum, and several researchers have repeatedly proved that
the spectral power changes under alpha and theta frequency bands are related to task difficulty and
therefore good predictors of cognitive load in a variety of working memory task demands [18,19]. These
studies have found that alpha activity (particularly over the parietal and occipital areas) decreases
with growing task demands that inherently cause working memory performance to decrease, whereas
theta activity increases (especially over frontal midline areas) when encoding new information [19–22].
A decrease in alpha power is a sign of attentional demands or comparatively high neuronal excitability
(i.e., processing visual information or responding to internal events, e.g., mental activation or cognitive
effort), while an increase in power reflects inhibition or cortical deactivation [23].

FAA is a commonly used measure for motivation, emotion, and cognitive control e.g., [24,25].
Greater relative left frontal activity is associated with increased memory & attentional performance and
more-focused task performance [26]. FAA is the average hemispheric difference in EEG alpha power
between the left and right frontal regions of the brain during EEG recording [27–29]. We computed the
alpha asymmetry using the left (F3) and right (F4) frontal channels with the following formula [30]
(Equation (1)):

FAA = log (alpha F4) − log (alpha F3) (1)

Since EEG power is inversely correlated with the activation, the negative alpha asymmetry scores
correspond to greater relative right frontal activation, whereas positive ones indicate greater relative left
frontal activity [30–33]. More activity in the left-frontal hemisphere indicates approach and motivation,
whereas greater relative right activation refers to withdrawal and avoidance [26].

2.2. Experiment 2

The goal of the second experiment is fundamentally the same as the first one, but more complex,
and there were some important modifications in terms of experimental design including participants,
task and stimuli, procedures, and psychological measures to extract cognitive load. In this chapter, we
will touch on all these aspects in detail.

The theoretical background for formulating the hypotheses of the second experiment was based
on the observations in Experiment 1 [4], whose outcomes will be presented in the results section, and
the existing literature [34,35]. In this context, linear features are primary to construct the whole map,
and therefore, they are easily accessible in working memory. We additionally expect that experts would
perform better at tasks demanding higher cognitive load.
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2.2.1. Participants

Since we intend to explore the influence of the task on cognitive load between expert and novice
map users, within and between designs should be combined. In this context, both experts and novices,
whose age and gender match (N = 22, MED = 27.5, SD = 3.9), performed the same experiment under
the same conditions (see Table 1 for more detail).

2.2.2. Task and Stimuli

The spatial memory task in this experiment focuses on the retrieval of the main structuring
elements with varying difficulty levels. Compared to the first experiment, we increased the number of
stimuli of interest and the reference stimuli (e.g., fixation cross), presented them as randomized blocks,
added more levels of task difficulty, put time constraints in place, and allowed participants to select
from multiple choices instead of drawing the sketch maps themselves as applied in the first experiment.

Next to the fixation crosses used as a pre-stimulus reference, the experiment included two types
of visual materials: (i) original map stimuli to be studied and (ii) the corresponding skeleton maps
displayed on the graphical response screens. The original map stimuli were acquired from Google
maps at zoom level 15 with 1 km scale bar (since the resolution of a map with the Mercator projection
is dependent on the latitude, the scale of the maps (collected from regions all around the world)
varies slightly but is approximately 1:40000). The skeleton maps are the simplified representations of
map stimuli indicating the main structuring map elements of interest for that specific task and were
prepared by digitizing the main structuring map elements on the original stimuli using a GIS software.
Throughout the design of the skeleton maps used in the experiment, we paid attention to depict each
map feature class with a unique color and to make sure that these colors remained true to the ones
used in the original stimuli. Accordingly, the main roads were assigned to yellow, major hydrographic
features to light blue and the green areas to light green. The maps (1344 × 768 pixels, 14’ × 8’) and the
graphical response screens including four panels (576 × 326 pixels, 6’ × 3.4’) were shown on a 22” color
monitor with 1680 × 1050 spatial resolution.

Tasks including the same number of trials related to the same map element were classified as
blocks. For the randomization of stimuli used in trials, randomized block design was used and in total
seven blocks of trials were designed. Each block consisted of one trial for each stimulus (i.e., 50 trials
within a block) focusing on the similarity of one of the criteria listed in Figure 2: the main structuring
elements of (b) the whole map, (c) roads and hydrography, (d) roads and green areas, (e) green areas
and hydrography, (f) green areas, (g) hydrography, and (h) roads. The trials in Block 1 were designed
to study the recalling performance related to the entire map stimulus; therefore, the skeleton maps
were prepared by digitizing all the main roads, all the major hydrographic features and the green areas
on the original map stimuli. The trials included in Block 2, 3 and 4 were dedicated to the retrieval of
the combination of two map feature classes. In this case, Block 2 refers to the main roads and major
hydrographic features, whereas Block 3 addresses the main roads and green areas, and Block 4 involves
major hydrographic features and green areas. The trials belonging to Block 5, 6 and 7 deal with a single
map feature class; either green areas, hydrographic or road features, respectively, and each of them
were digitized individually on the original stimuli.

One important concern about the design is that the task difficulty may not be predicted easily
in advance, because it depends on many factors rather than only the number of object classes to
remember. According to the average reaction time of the correct answers provided by all participants,
we observed clustering among some blocks and natural breaks between those clusters. Subsequently,
Block 1 and 2 were designated as hard; Block 3 and 4 as moderate; and the rest were assigned to easy
level (Figure 3). By this way, the blocks falling into the same category can be treated similarly when
analyzing and interpreting the gaze and neurophysiological data (i.e., eye tracking, EEG) collected
during the entire experiment.
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2.2.3. Procedures

Measuring the cognitive load is linked to how a participant indicates a correct answer on the
response screen presented to her/him, and reaction times of key presses are a simple and rather reliable
way to measure it. During the trial, participants were first asked to study a map stimulus and during
the stimulus presentation, they were free to shift their gaze across the display. The response screen
appeared with four graphical response panels that shows skeleton maps indicating specific main
structuring map elements (Figure 4). Only one of the panels corresponded to the map that a participant
just saw (a correct response). Participants were instructed to press the space bar immediately when
they found the panel with the correct skeleton map and to remember the corresponding letter.
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Pressing the space bar indicated that the search was complete by allowing participants to move to
the second response screen where they would see only the letters (i.e., no pictures) (Figure 4). They
should click on the letter, which they were keeping in memory to complete the task. If multiple
features were needed to be remembered (e.g., roads and hydrography), a participant might remember
only one type (e.g., hydrography), and then find a correct skeleton map based only on this type of
information. Thus, the options in the graphical response panels assured that a response based on partial
information was impossible. Additionally, the possible answers (correct skeleton maps) appeared at
different locations between each consecutive trial and the block orders were counter-balanced across
participants. Overall, each participant had to complete all seven blocks.

2.2.4. Psychological Measures to Use: ET & EEG Metrics

We used the same eye-tracking metrics employed in the first experiment to extract the cognitive
load: average number of fixations per second and fixation durations for each trial.

Events refer to the time points where the stimuli of interest are presented to the participants.
During a cognitive task, event-related power changes in EEG bands can be quantified in a specific
frequency band. If the event-related power decreases, it causes a reduction of amplitude in response to a
stimulus, and therefore is called event-related desynchronization (ERD), whereas power increases result
in an increment of amplitude with stimulus presentation, and hence, are referred to as event-related
synchronization (ERS) [19,22]. Alpha desynchronization and theta synchronization are fundamental
EEG phenomena that have been used in multiple studies on cognitive load and task difficulty
e.g., [36–39]. ERD/ERS of the alpha band has been found to be especially sensitive to cognitive task
performance and higher cognitive abilities e.g., [40,41]. On the contrary, Gevins et al. [37] examined
the changes in cortical activity during spatial and verbal working memory tasks and observed that
theta activity increased in magnitude with higher task difficulty. These results suggest that alpha and
theta oscillations are differently related to task difficulty; as task difficulty increases, alpha activity
decreases (i.e., desynchronizes), whereas theta activity increases (i.e., synchronizes).
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To be able to extract the alpha and theta spectral powers, the EEG data went through a series of
preprocessing steps. For handling EEG and ET data together, we decided to use EEGLAB, an open
source and interactive MATLAB toolbox [42], with the EYEEEG extension [43]. EEGLAB processes
continuous and event-related EEG and other electrophysiological data (supports data from most
of the commercially available software), and performs time/frequency analysis, artifact rejection,
event-related statistics, and visualization of averaged or single-trial EEG data. Figure 5 demonstrates
the pre-processed (i.e., filtered, bad channels removed, events added and modified based on correct
responses, re-referenced, and segmented) EEG recordings belonging to an expert female participant.
The vertical axis shows the amplitude (µV), i.e., the amount of energy in artifact-free EEG frequency
bands listed on the left-hand side of the graph, whereas the horizontal axis represents time in seconds.
The vertical lines on the graph labeled with vertical lettering (e.g., 148, 149, 150) are the event codes,
and the intervals represented between the blue vertical lines and numbers above the upper part border
of the graph (e.g., 16, 17, 18) indicate the epochs.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 9 of 17 continuous and event-related EEG and other electrophysiological data (supports data from most of 
the commercially available software), and performs time/frequency analysis, artifact rejection, event-
related statistics, and visualization of averaged or single-trial EEG data. Figure 5 demonstrates the 
pre-processed (i.e., filtered, bad channels removed, events added and modified based on correct 
responses, re-referenced, and segmented) EEG recordings belonging to an expert female participant. 
The vertical axis shows the amplitude (µV), i.e., the amount of energy in artifact-free EEG frequency 
bands listed on the left-hand side of the graph, whereas the horizontal axis represents time in seconds. 
The vertical lines on the graph labeled with vertical lettering (e.g., 148, 149, 150) are the event codes, 
and the intervals represented between the blue vertical lines and numbers above the upper part 
border of the graph (e.g., 16, 17, 18) indicate the epochs.  

Figure 5. Preprocessed EEG data. 

Once EEG data had gone through preprocessing steps, we segmented it based on trials. Figure 
6 demonstrates the trial sequence of the experiment. To be able to calculate event-related power 
change at an electrode, we created epochs from the events of our interest based on two different 
intervals:  

• [0 2] s for the events in the reference interval - fixation crosses
• [0 7] s for the events in the activation interval - map stimuli

Bad epochs containing blink or muscle artifacts were rejected based on visual inspection and
collected eye-tracking data. Prior to epoching, we synchronized the EEG recording with its 
corresponding ET recording through shared events present in the ET and EEG: start-event and end-
event. Although the time synchronization accuracy of our system was not sufficient for studying eye-
fixation-related potentials, fixation and saccade detection on EEG help explain the EEG spikes elicited 
from the eye movements. Therefore, we think offline synchronization of ET data is still useful for 
artifact rejection (Figure 7). 

Figure 5. Preprocessed EEG data.

Once EEG data had gone through preprocessing steps, we segmented it based on trials. Figure 6
demonstrates the trial sequence of the experiment. To be able to calculate event-related power change
at an electrode, we created epochs from the events of our interest based on two different intervals:

• [0 2] s for the events in the reference interval—fixation crosses
• [0 7] s for the events in the activation interval—map stimuli
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Bad epochs containing blink or muscle artifacts were rejected based on visual inspection
and collected eye-tracking data. Prior to epoching, we synchronized the EEG recording with its
corresponding ET recording through shared events present in the ET and EEG: start-event and
end-event. Although the time synchronization accuracy of our system was not sufficient for studying
eye-fixation-related potentials, fixation and saccade detection on EEG help explain the EEG spikes
elicited from the eye movements. Therefore, we think offline synchronization of ET data is still useful
for artifact rejection (Figure 7).
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For the computations of spectral power change of EEG activity, first, the band power of the EEG
signal was computed by means of a time–frequency analysis that employs a standard Fast Fourier
Transform (FFT). FFT transforms the EEG signal from the time domain into the frequency domain.
Therefore, any time-dependent signal can be broken down into a collection of sinusoids, and EEG
recordings can be plotted in a frequency power-spectrum. After the transformation, we averaged
the spectral power of alpha (8.5–12.5 Hz) and theta (4.5–6.5 Hz) bands for our 7-seconds-long EEG
recording (i.e., duration of the stimulus on the screen, activation period) of valid trials in each block.

To extract the cognitive load, event-related power changes can be quantified by contrasting the
power in a specified frequency band during a cognitive task (e.g., spatial memory) with a preceding
reference interval (i.e., ERD & ERS) (for detailed information please read [22]). In this context, the
baseline (pre-stimulus) period of EEG power was used to compare with the event-related EEG power
dynamics during the activation intervals in each epoch [44]. Event-related power change (ERP) at
an electrode was obtained by subtracting the log-transformed power during pre-stimulus reference
intervals from the log-transformed power during the activation intervals according to the following
formula [45] (Equation (2)).

ERP(i) = log(Powi, activation) − log(Powi, reference), (2)

Note that this ERP should not be confused with the commonly used abbreviation for event-related
potentials in EEG domain. After computing ERPs at alpha and theta frequency bands for all task
difficulty levels considering expertise, the powers were compared to study the differences between
expert and novices particularly based on low and high levels of complexity of tasks.
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3. Results

3.1. Experiment 1

The average duration of the fixations was 230.0 ms (N = 24, MED = 230.8 ms, SD = 50.1 ms)
for experts and 244.1 ms (N = 30, MED = 243.0 ms, SD = 48.4 ms) for novices. Two-way ANOVA
test suggested that no significant difference occurred between experts and novices (F(1,55) = 0.074,
p = 0.787). The average number of fixations per second for the map stimulus was 3.5 (N = 24, MED = 3.7,
SD = 1.0) for experts and 3.6 (N = 30, MED = 3.6, SD = 0.5) for novices. Regarding the Mann-Whitney
U test, the difference between these two user groups was not statistically significant (Uexpertise = 338,
p = 0.702) (for detailed results, please read [4]).

The average alpha power across all usable common EEG electrodes (i.e., C3, F3, F4, O1, P3, T5, T6)
for all participants (usable data: 6 novices, 6 experts) was 0.000939 (SD = 0.000051, range = 0.000225 -
0.002218). Shapiro–Wilk test was used to test the normality of the distribution of the data since our
dataset is smaller than 2000 samples (N = 84). p = 0.000 suggested strong evidence that the data
was not normally distributed (D(84) = 0.930, p < 0.05). The difference of 0.000171 in alpha power
between experts (M = 0.001282, SD = 0.000064) and novices (M = 0.000853, SD = 0.0000777) was
statistically significant according to non-parametric Man–Whitney U test (p = 0.024 < 0.05). The
greater alpha power is associated with the less cognitive load, therefore, the results indicate that
experts spent considerably less cognitive load on this memory task compared to novices. This outcome
was important because while sketch map evaluation and ET metrics claimed the other way, EEG
alpha power provided an additional insight referring to a significant difference in the spatial memory
performance of experts and novices.

For the memory task, average FAA score across participants (usable data: 7 novices, 10 experts)
was −0.149 (SD = 0.275, range = −0.810 to 0.160). According to the Shapiro–Wilk test, p = 0.006 showed
that the data was normally distributed (D(17) = 0.870, p > 0.05), therefore, we applied two-way ANOVA
to explore whether the difference between expert and novice groups was statistically significant.
Novices (M = −0.054, SD = 0.252) and experts (M = −0.216, SD = 0.283) showed no significant difference
in FAA scores (F(1,15) = 0.199, p = 0.245). However, 70% of experts had negative scores on this metric,
which reflects greater relative right activation, suggesting withdrawal-related motivation. Although
the average FAA scores were negative for novices, 57% of them exhibited larger left-hemispheric
activation, which is an indicator of approach-oriented motivation and positive affective states.

3.2. Experiment 2

ET results are shown in Figure 8. Fixation durations of novices were longer, and the difference
between experts and novices increased as the difficulty increased. For the hard tasks, this difference
was the highest. On the contrary, the number of fixations (per second) of experts was higher, and the
difference increased as the difficulty decreased. Therefore, these two groups differed the most for the
easy tasks. The eye movement data for both metrics fit normal distribution (Shapiro–Wilk test) for easy
and moderate tasks. For these two categories of task difficulty, no statistically significant difference
emerged between experts and novices in terms of the average fixation duration (Feasy = 0.261, p = 0.232;
Fmoderate = 0.174, p = 0.514).

The difference in the number of fixations per second was not significant (Fmoderate = 1.861,
p = 0.165) for moderate tasks, whereas it was significant for easy tasks (Feasy = 0.006, p = 0.019).
For the hard tasks, the average fixation durations were not normally distributed across participants
(Shapiro–Wilk test) and we observed no statistically significant difference between expert and novice
groups (Mann–Whitney U, p = 0.886). The data for the number of fixations per second fit the normal
distribution (Shapiro–Wilk test), and no significant difference occurred between the two groups based
on two-way ANOVA test (Fhard = 0.064, p = 0.983).
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Figure 8. ET metrics belonging to Experiment 2 ((a) average fixation duration (ms), (b) the number
fixations per second).

Figure 9 depicts the ERPs in theta and alpha averaged for a novice male for Block 1 and Block
2. Here, we would like to show how individual data might include inconsistencies, although we
observed negative alpha power and on the contrary, positive and relatively higher powers in theta
frequency in most EEG channels (see Table 2 for frequency values at each electrode). Frontal channels
(e.g., Fp1, F3, F7, and F8) might not be trusted because they might still contain small blink artifacts
acting as confounding effects, however, except for that, we usually observed ERD (event-related
desynchronization) in alpha and ERS (event-related synchronization) in theta power. Obviously, the
cognitive load cannot be interpreted based on one or two participant data for a single block. The overall
results will be of aggregating blocks based on task difficulty (i.e., easy, moderate, hard) and averaging
many trials of many participants for every difficulty level. However, the preliminary data analysis
seems promising for further analysis of the EEG power spectrum. With this study, we attempted to
verify the proposed methodology and prove that with our experiment design and hardware & software
set up, it is possible to synchronize ET and EEG data to obtain more detailed insight on user behaviors
and observe the EEG metrics, alpha and theta power.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 13 of 17 
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Table 2. Event-related power changes between activation and reference intervals.

EEG Channels ERP Theta
(4–8 Hz)

ERP Alpha
(8–13 Hz) EEG Channels ERP Theta

(4–8 Hz)
ERP Alpha
(8–13 Hz)

Block1 Block 2

C3 4.76 × 10−5
−5.83 × 10−6 C3 8.57 × 10−1

−4.92 × 10−2

F3 −1.37 × 10−5
−3.87 × 10−6 F3 4.58 × 10−1

−1.15 × 10−2

F7 2.58 × 10−4 2.59 × 10−7 F7 3.15 9.89 × 10−2

F8 3.25 × 10−4 8.36 × 10−6 F8 5.23 −2.18 × 10−3

Fp1 5.42 × 10−4
−1.54 × 10−6 Fp1 6.15 −1.7 × 10−2

Fp2 7.15 × 10−4 3.22 × 10−6 Fp2 7.13 3.49 × 10−3

O1 3.29 × 10−5
−2.76 × 10−6 O1 9.32 × 10−1

−6.22 × 10−2

O2 3.11 × 10−5
−1.23 × 10−5 O2 5.41 × 10−1

−7.39 × 10−2

P3 1.11 × 10−4
−3.49 × 10−6 P3 1.75 −3.83 × 10−2

P4 6.03 × 10−5
−5.18 × 10−6 P4 3.72 × 10−1

−2.32 × 10−1

T4 9.72 × 10−5
−5.30 × 10−6 T4 1.05 −1.54 × 10−2

4. Discussion

ET metrics in the first experiment showed that there was no significant difference between expert
and novice map users, similar to what was found in the second experiment, except for novices
exhibiting a lesser number of fixations for easy tasks. This finding is interesting considering our
hypotheses and it can be evidence that expert and novices use similar strategies for moderate and
hard tasks; however, novices might think about easy tasks more deeply or they find even easy tasks
more confusing. On the other hand, we observed more fixations and longer fixation durations for
novices in hard tasks, and a similar situation applies for experts in easy tasks. To be able to interpret
this outcome, we can look into saccade-related metrics because of longer search times, more fixations,
shorter saccades, and longer fixation durations with increasing crowding and decreasing span size [46].
Triangulating ET data with EEG data might also contribute to judging this result better, therefore, there
is still a lot of work to do in terms of further analysis. For instance, while ET metrics do not differ
across different conditions, EEG metrics argue otherwise e.g., [15].

Studying the EEG metrics indicating the cognitive load suggested an important insight on map
users and seems assuring to be integrated as a complementary methodology and a way of assuring
the validity of research. However, EEG requires a quite extensive experience to acquire, analyze and
interpret the data, and one of the motivations of this paper was to emphasize the importance of the
experiment design, especially when EEG comes into play.

On the one hand, as methodological decisions are highly dependent on the research questions
and hypotheses regarding them, it is important to describe a solid objective for the user study with
psychological design principles in mind and to identify the key metrics answering the research
questions. On the other hand, although the experiment within this paper is limited to a spatial memory
task and the methodological design of the other experiments may vary on a large scale, the technical
issues to overcome and the preprocessing steps of the collected data are valid for almost all ET&EEG
experiments. Recording EEG and ET data in free-viewing tasks has been a challenge and rarely applied,
especially due to the precise co-registration of gaze position. To minimize the muscle artifacts due to
unnatural sitting positions, using a chin rest and adapting the position of the participant is crucial;
besides, this makes sure that the participant has enough rest between blocks so that they do not exhibit
fatigue and move as little as possible during the experiment. Electromagnetic artifacts that are elicited
from other electrical devices and introduced as line noise in EEG data should be identified and filtered
out. For accurate synchronization of both EEG and ET data records, Transistor-transistor logic (TTL)
triggers is preferred as it is the most straightforward and reliable method e.g., [47,48]. Although proper
synchronization can be achieved with the TTL trigger method, in our experiment, the monitor offset
value restricts studying the eye-fixation-related potentials (EFRP) requiring high temporal resolution in
terms of synchronization of EEG and ET. However, our experiment setting allows for studying the EEG
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activity power spectrum, and ET data can still be synchronized offline and ET metrics can be correlated
with EEG data on a trial basis. Therefore, the feasibility of the methodology should always be verified
in advance considering the possible technical constraints related to the recording equipment.

Although some procedures such as data management (e.g., converting data into a compatible
format with EEGLAB) and noise filtering (e.g., applying high- and low-pass filters on the fly) can
be automatized, many other steps such as bad channel removal, which is mostly carried out by
visual inspection, are performed manually. In addition, preprocessing and analyzing the data is
inherently the most labor-intensive and complicated part of the study. Since each participant’s data
consists of a number of trials and should be handled individually, the processing stage is overall
very time-consuming.

5. Conclusions

We presented two cartographic user experiments first to demonstrate what is possible with the
co-registration of EEG and ET and to investigate the spectral characteristics of cognitive processes in
free viewing conditions, only within the frame of the specific spatial memory task described throughout
the paper. Our results showed that EEG can be employed as a complementary technique to get a
detailed insight about user actions and behaviors and reveal the information that we did not observe
with eye tracking. While eye tracking metrics in the first experiment demonstrated that the difference
between experts and novices are not significant, the EEG alpha power analysis suggested that this
difference was significant, indicating that this specific spatial memory task caused more cognitive load
in novices. Therefore, triangulating EEG and ET data seems useful to be able draw conclusions on
user’s behavior and also shows that the data require more investigation.

Although the analysis of the second experiment is still in progress, preliminary results of
event-related power changes in alpha and theta allowed us to estimate the variations in the cognitive
load that a certain task demands. The future work will focus on alpha & theta power computations
considering both user groups and varying task difficulties. In this respect, alpha and theta power
changes will be averaged for easy, moderate and hard tasks considering experts and novices to explore
the influence of expertise on the cognitive load. By this way, we will be able to tell whether there is a
difference across participants, and if so, how much this difference is and how significant it is. Having
ET metrics calculated, we will then link and correlate them with EEG metrics to estimate the overall
cognitive load.

Combining EEG and ET is not straightforward since there are numerous methodological and
technical problems to overcome, yet it is indeed a very valuable technique to explore the individual
differences and similarities of map users through perceptual and cognitive procedures. If we continue
staying engaged with experimental psychology and cognitive science research, it will contribute to the
future progress of scientific cartography. The more we know about the limitations and capabilities of
visual perception and cognition of different map users, the higher the possibilities to design cartographic
products in a more efficient, understandable and effective way.
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