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Abstract: Kernel density estimation (KDE) is widely adopted to show the overall crime distribution
and at the same time obscure exact crime locations due to the confidentiality of crime data in many
countries. However, the confidential level of crime locational information in the KDE map has not
been systematically investigated. This study aims to examine whether a kernel density map could be
reverse-transformed to its original map with discrete crime locations. Using the Epanecknikov kernel
function, a default setting in ArcGIS for density mapping, the transformation from a density map to a
point map was conducted with various combinations of parameters to examine its impact on the
deconvolution process (density to point location). Results indicate that if the bandwidth parameter
(search radius) in the original convolution process (point to density) was known, the original point
map could be fully recovered by a deconvolution process. Conversely, when the parameter was
unknown, the deconvolution process would be unable to restore the original point map. Experiments
on four different point maps—a random point distribution, a simulated monocentric point distribution,
a simulated polycentric point distribution, and a real crime location map—show consistent results.
Therefore, it can be concluded that the point location of crime events cannot be restored from crime
density maps as long as parameters such as the search radius parameter in the density mapping
process remain confidential.
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1. Introduction

Kernel density estimation (KDE) is widely adopted to show the overall crime distribution and
at the same time obscure exact crime locations due to the confidentiality of crime data in many
countries [1–6]. In the field of crime prediction, KDE is widely used to generate hotspots, which are
then used to guide police for targeted intervention. Compared to the city-wide patrol practice,
hotspot-targeted patrol strategies could save police resources and deter crime [7,8]. Another benefit
of KDE is that it could maintain the confidentiality of crime locations due to its ability to obscure
locational information [4,9–14].

Compared to the large body of research and applications for density maps, the confidential level
of crime locational information in KDE maps has not been systematically investigated [9,11,15,16].
This study aims to examine whether a kernel density map could be reverse-transformed to its original
map with discrete crime locations. Considering the fact that the predictability of density maps could be
affected by the bandwidth for KDE, the impact of KDE’s parameters on the confidentiality of density
maps will be extensively examined in our current literature [17,18]. The conclusions are expected to
answer whether—and to what extent—the locational information of a kernel density map is retained.
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2. Literature Review

One important goal for crime prediction research is to identify crime hotspots. Crimes are not
evenly distributed but concentrated within limited areas, which are usually called hotspots [7,10,19–25].
KDE is a popular method for crime mapping and hotspot detection [26]. Hotspot maps can also be used
to indicate future crime risk [27,28]. Due to the attractiveness of hotspots to potential offenders [29–34],
targeted intervention could help reduce and prevent future crime. Compared to the random patrol
strategy, characterized as “a drop in the bucket” over a whole city, the hotspots provide targets for
proactive policing patrol, saving great police effort and improving the efficiency of crime prevention
initiatives [35–37].

The confidentiality of crime locations is of concern in many countries. Crime locations could
lead to revealing victims’ locations, disclosing opportunity information to potential offenders, or even
imparting experience to potential offenders [14,38]. To avoid such problems, various types of
location protecting techniques have been used to protect these privacies [4,5,9,11,13,14]. Geocoding of
crime events to a street segment or a city block can encrypt their precise geographic locations [4–6].
Transforming a point map to a density map can help mask the exact location of crime events [4,5,11,16,39].
KDE is one of the most commonly used locational protecting methods due to its outstanding ability
to obscure location information and at the same time show the spatial distribution patterns of
crimes [15,26,40,41].

With the aim of testing the confidentiality of crime locations in density maps, several research
works have aimed to recover point maps from density maps [16]. For example, Lee, Chun and Griffith
proposed a geometric center-based method to recover point maps [16], while Seidl, et al., evaluated the
confidential level of masked maps [15]. Both studies were conducted on the spatial domain, and their
recovering accuracies are extremely low for smooth density surfaces. It is acknowledged that most KDE
calculations were conducted in the frequency domain rather than spatial domain [42–44]. Therefore,
the confidentiality of density maps generated in the frequency domain should be examined in the
frequency domain rather than the spatial domain. More importantly, the smoothness of density maps
is closely related to the parameters (e.g., bandwidth) of kernel functions. The impact of the parameters
of a kernel function on the confidentiality level of density map needs to be further investigated.

3. Research Questions and Methodology

To fill the aforementioned gap, this research aims to design a series of experiments to answer the
following questions:

Question 1: How does kernel function’s parameter affect the confidential level of density maps?
Question 2: How does crime distribution pattern affect the confidential level of density maps?
Question 3: To what extent can a density map be recovered?

3.1. Convolution and Deconvolution

The process of transforming a point map to an undulated density map is a convolution process.
Convolution can be mathematically interpreted as an operation on two functions to generate a third
function that expresses how the shape of one is modified by another (Figure 1). In contrast, the process
of transforming a density map to a point map is called deconvolution. A kernel function will be used
to transform a density surface to a point map in this process. Deconvolution is used to remove the
effect of one function on another and thus recover the original data. Convolution could be expressed
with the formula [45,46]

g = f ∗ h (1)

where g is the processed data, f is the original data, and h is the kernel function. Deconvolution is used
to eliminate the effect of kernel function on a density map using algorithms to reverse the effects of
convolution on point data. Deconvolution is usually performed in the frequency domain by computing
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the Fourier transformation of h and g separately. When ignoring the absence of noise, deconvolution
could be computed as:

F = G/H (2)

where F, G, and H are the Fourier transforms of f, g, and h respectively. Following this calculation, F
will be transformed to the estimated deconvolved signal or image f by inverse Fourier transform.

If the noise is considered, a deconvolution could be expressed as

g = f ∗ h + n (3)

where n is the noise [47]. Correspondingly, its Fourier transformation could be expressed as

G = FH + N (4)

where N is the fourier transformation of noise. To calculate this equation, we could use

F̂ = WG (5)

where F̂ is the recovered map.

W =
H∗

|H|2 + K
(6)

where H∗ is the Fourier transformation of the kernel function used for generating the density map;

K = |F|2

|N|2
. If K = 0 then W = 1

H , Equation (5) equals Equation (2). If K � |H|, then high frequencies are

attenuated. In this process, least squares are used to narrow the results’ error: F̂− F.
In this research, when the parameters are known for deconvolution, Equation (2) will be used

to derive the original map. When the parameters are unknown for deconvolution, Equation (3) will
be used to recover the original map. The errors caused by mismatching parameter values between
convolution and deconvolution will be considered as noise, n.
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Figure 1. Density map and point map.

3.2. Experimental Design

The experiment in this study is illustrated in a flowchart in Figure 2. Three maps containing
a pre-specified number of points (such as 100) with different spatial distribution patterns will be
generated (Figure 3). The three simulated point maps include a random point map, a monocentric
point map and a polycentric distribution. A convolution process will be carried out on each map to
create a density map, followed by a deconvolution process converting the density map back to the
point map. The confidentiality of the density map will be analyzed through the accuracy evaluation
of the recovered map in comparison to the original point map. Following the three simulated maps,
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real crime data will be used to test whether a kernel density map could be recovered to the original
point map.
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Figure 2. Flowchart of confidentiality analysis of density maps. MISE: Mean Integrated Squared Error;
CR: capture rate.

As a common type of kernel function used in ArcGIS (ESRI, Redlands, CA, USA), the Epanecknikov
kernel will be adopted in this study [48]:

f(x) =
1

nh

n∑
t=1

K
(x− xt

h

)
(7)

where h is the bandwidth, n is the number of events, x − xt is the distance from the center to each
incident t, and K is the quadratic kernel function:

K(x) =
3
4

(
1− x2

)
, |x| ≤ 1 (8)

The bandwidth is the shorter one between the width or height of the output extent in the output
spatial reference, divided by 30 (in the versions before 10.2.1 of ArcGIS Desktop). In the versions after
10.2.1, the default bandwidth was changed to be calculated using a new function [49]:

Bandwidth = 0.9∗min

SD,

√
1

ln(2)
∗Dm

 ∗ n−0.2 (9)

where SD is the standard distance calculated by the standard deviation of distances between each pair
of points. Dm is the medium distance. The bandwidth in the past ArcGIS versions was determined
by the width of the study area while the bandwidth in the new versions was determined by the
distribution pattern of points.
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In a deconvolution process, the bandwidth cannot be acquired because there are no points in a
density map. Therefore, the bandwidth calculation method in the past ArcGIS versions will be adopted
in our current study. In order to assess the accuracy of recovered maps, two indicators will be adopted.
Mean Integrated Squared Error (MISE) was proposed by Delaigle and Gijbels to assess the accuracy of
the recovered map after deconvolution [50].

MISE(h) =
1
B

B∑
b=1

∫
[ f̂ x(x; h) − f x(x)]

2
dx (10)

where B is the number of cells in the map, f̂ x(x; h) and f x(x) represent the recovered map after
deconvolution and the original point map respectively. h is the selected bandwidth.

The capture rate (CR), as a common index in crime prediction literature, was previously utilized
to evaluate the accuracy of crime prediction map [26]. CR is the percentage of crime events for a
measured data time period falling into the areas where crimes are predicted to occur.

CR =
n ∗ 100
N ∗ 100

(11)

where N is the maximum number of crimes that could be captured in the prediction area, n is the
number of crimes in areas where crimes are predicted to occur. The standard deviation is calculated by
the standard deviation of all cell values in the recovered map. In our current research, this indicator is
used to evaluate the scale of error distribution.

4. Experimental Results

The deconvolution process with unknown bandwidth is implemented. The maximum bandwidth
is set to half of the dimension of the original point map. For each bandwidth value for kernel
convolution, all possible bandwidth values will be applied to the deconvolution, and this process is
repeated for all possible bandwidth values for kernel convolution. The accuracy of the recovered point
map in deconvolution will be compared to the original point map by the error (MISE) and capture rate
(CR) for each combination of bandwidth in convolution and bandwidth in deconvolution. The MISE
and CR values are recorded in a two dimensional matrix (Figure 4).

Figure 4a,b indicate the error and capture rate of the recovered random point map for the random
point map. When the bandwidth for deconvolution is the same as that used in convolution, the point
map could be recovered with a very high accuracy (Figure 4a diagonal values < 0.01, Figure 4b diagonal
values = 1). In contrast, when the bandwidth for deconvolution is different from that of convolution,
the original map cannot be exactly recovered due to the great noise values (Figure 4a, non-diagonal
values: [0.37, 29.31]; Figure 4b, non-diagonal values: [0,0.07]).
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Figure 4. The errors of deconvolution with unknown parameters (BT: bandwidth of transformation
in convolution; BRT: bandwidth of reverse transformation in deconvolution). Figure (a) and (b) are
the results produced by randomly distributed points. Figure (c) and (d) are the results produced
by monocentric points. Figure (e) and (f) are the results produced by polycentric points. (a) MISE.
Diagonal values <0.01; Non-diagonal values: [0.37, 29.31]. (b) Capture rate. Diagonal values = 1;
non-diagonal values: [0,0.07]. (c) MISE. Diagonal values <0.01; non-diagonal values: [0.62, 25.38].
(d) Capture rate. Diagonal values = 1; Non-diagonal values: [0,0.12]. (e) MISE. Diagonal values <0.01;
non-diagonal values: [0.62, 24.22]. (f) Capture rate. Diagonal values = 1; Non-diagonal values: [0,0.08].

The results of the monocentric distribution (Figure 4c,d) are similar to those of the random
distribution. When the bandwidth is known, the original point map can be recovered from a density
map at high accuracy (Figure 4c, diagonal values <0.01; Figure 4d, diagonal values = 1). In contrast,
when the bandwidth is unknown, the accuracy of the recovered map would be very low (Figure 4c,
non-diagonal values: [0.62, 25.38]; Figure 4d, non-diagonal values: [0,0.12]).

Likewise, the results of the polycentric distribution (Figure 4e,f) are similar to those of the random
distribution. When the bandwidth is known, the original point map could be recovered from a density
map at high accuracy (Figure 4e, diagonal values <0.01; Figure 4f, diagonal values = 1). In contrast,
when the bandwidth is unknown, the accuracy of the recovered map would be very low (Figure 4e,
non-diagonal values: [0.62, 24.22]; Figure 4f, non-diagonal values: [0,0.08]).
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Other than the diagonal cells, the rest of the cells on the accuracy maps (Figure 4a–f) do not
show any discernable pattern, thus making the minimization of the errors impossible. Therefore,
when the bandwidth is unknown for convolution process, the original point map cannot be restored by
a deconvolution process in frequency domain.

5. Case Study

5.1. Data Source and Study Area

The research area is N city, one of the largest cities in southeast China. The downtown area of N
city consists of four administrative districts and 7.17 million people. As one of the most populated cities
in China, the population density of the research area is 6367 persons per square kilometer. For two
districts located in the city center, the population density is over 21,000 persons per square kilometer,
which is comparable to the population density in the center urban area of Beijing and Shanghai.
Additionally, as a regional political, economic and transportation center, N city is one of the biggest
cities in the Yangtze River Delta Region. The floating population (relocated from nearby cities) of N
city is around 2 million. The population and economic characteristics has allowed the economy of N
city to develop rapidly. These characteristics make N city highly representative in China (Figure 5).
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Figure 5. The study area.

The current research uses an official crime dataset provided by the local Public Security Bureau.
The full dataset includes a total of 9965 burglary records from 1st January 2015 to 30th December 2017.
Each record of the data includes location (XY coordinates) and the occurrence date.

5.2. Deconvolution Analysis with Crime Data

In this experiment, we will first generate the scatter plot with criminal points and then convert the
point map to the density map which is usually provided in patrol practice. Secondly, the deconvolution
process will be conducted to convert a density map into a grid map. Finally, the error of recovered
maps will be statistically analyzed.
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Figure 6a indicates that the burglary events are concentrated in the central longitudinal axis area
of N city. The maximum bandwidth size is set to 10 km, which is nearly half of the dimension of the
study area.

If the BT is known for deconvolution, the map could be accurately restored (Figure 6b,d).
The accuracies of the recovered map (Figure 6e,f) indicate a similar pattern to those of the simulated
data (Figure 4a,c,e). If the parameters for deconvolution are known, the accuracies of the recovered
maps is very high (Figure 6e, diagonal values <0.1; Figure 6f, diagonal values = 1). However, if the
parameters for deconvolution are unknown, the accuracies of the recovered maps are very low
(Figure 6e, non-diagonal values: [1.82, 126.04]; Figure 6f, non-diagonal values: [0.005, 0.1506]).
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6. Discussion

With the above results of the experiments and the case study, let us revisit the research questions
set forth earlier in the paper. With regard to Question 1, the deconvolution process varied significantly
with the change of parameters. In the frequency domain, even a small difference of bandwidth
could introduce a great error to the convolution/deconvolution process. Therefore, the possibility
of recovering a density map to a point map largely depends on whether the parameters can be
inferred. The results indicate that the errors vary as a function of the bandwidth. Importantly, the error
distribution does not apparently indicate any pattern which might be helpful to infer the bandwidth
used in convolution. This situation makes it more difficult to restore a point map from a kernel density
map. In summary, the parameters exert a great impact on the convolution and deconvolution process.

With regard to Question 2, the point distribution pattern does not affect the accuracy of the
deconvoluted maps. Three different point distribution patterns were used in this study. The results
indicated that the error did not change much with the changed crime distribution patterns. When the
bandwidth for deconvolution was known, the point map could be recovered, while when the bandwidth
for deconvolution was unknown, the recovered point map was drastically different from the original
point map.

With regard to Question 3, the impact of parameters on deconvolution was very small. A point
map can be recovered from a density map at a high accuracy level when parameters are known for
deconvolution. In contrast, a point map is nearly impossible to recover from a density map when
the parameters are unknown. The impact of the parameter adopted in the convolution process was
thoroughly examined. The answer agrees with the statement in the previous literature that “KDE could
protect locational privacy” very well when parameters for deconvolution are unknown [13].

The results using real crime data indicate similar results: the errors of point maps generated
by unknown parameters are much larger than the others. Importantly, the errors did not indicate a
significant pattern for parameter change. The highest capture rate of non-diagonal units could reach
15.06%. Importantly, the high capture rate occurred when the bandwidth for convolution was very
large and bandwidth for deconvolution was very small. It could be inferred that most of the captured
crimes were captured by hotspots because a large bandwidth would generate a smooth surface and a
small bandwidth could remove the high-frequency information, leaving the low-frequency information
(e.g., the smoothness hotspots) as a “recovered map”. Therefore, the accuracy of recovered maps is
still at a low accuracy level. The locational information of crimes was still confidentially preserved.
Such a confidentiality rate indicates that most of the locational information of crimes were masked at a
high level.

7. Conclusions

The confidentiality of crime locations is of concern in many countries. KDE can help to mask the
exact location of crime events by transforming a point map to a density map. However, an accurate
recovery of point locations from a density map (i.e., a reverse transformation) may reveal the original
point locations. With the aim of testing the confidentiality of crime locations in density maps, this study
investigated the impact of parameters for the deconvolution process from a density map to a point map.

Using the default kernel function in ArcGIS, the possibility of transferring a density map to a
point map was first examined using known parameters for deconvolution followed by using unknown
parameters for deconvolution. The experimental results indicate that, although the point distribution
pattern and the parameters of kernel function changed, the point map could be recovered at a high
accuracy when the parameters for deconvolution were known. When the parameters for deconvolution
were unknown, the errors of the recovered point maps were very large compared to the original point
map. Using two widely used indicators in the crime prediction research field, the MISE index indicated
that the values of recovered maps are on a much higher level of accuracy compared to the original map,
while the CR value indicated that a low percentage of points was correctly predicted by the recovered
point maps. More importantly, the number of points and the point distributions differed to the original



ISPRS Int. J. Geo-Inf. 2019, 8, 544 10 of 12

point map to a large extent. In summary, KDE performs well at preserving locational information
because it is nearly impossible to recover a density map to a point map with unknown parameters.
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