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Abstract: The paper proposes a method supported by MATLAB for detection and measurement
of missing point regions (MPR) which may cause severe road information loss in mobile laser
scanning (MLS) point clouds. First, the scan-angle thresholds are used to segment the road area for
MPR detection. Second, the segmented part is mapped onto a binary image with a pixel size of ε
through rasterization. Then, MPR featuring connected 1-pixels are identified and measured via image
processing techniques. Finally, the parameters regarding MPR in the image space are reparametrized
in relation to the vehicle path recorded in MLS data for a better understanding of MPR properties on
the geodetic plane. Tests on two MLS datasets show that the output of the proposed approach can
effectively detect and assess MPR in the dataset. The ε parameter exerts a substantial influence on the
performance of the method, and it is recommended that its value should be optimized for accurate
MPR detections.

Keywords: occlusion; missing points; mobile laser scanning; point cloud; image processing

1. Introduction

Mobile light detection and ranging (LiDAR) systems, also known as Mobile Mapping Systems
(MMSs), are an emerging survey technology that enable quick and accurate depiction of real-world
three-dimensional (3D) road environments in the form of dense point clouds. The LiDAR comprises
the Global Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU), and laser scanning
system. Due to their realistic representation of real-life objects, mobile laser scanning (MLS) data
provide an ideal virtual environment for various computerized estimations, in which dangerous
and cumbersome field measurements, such as sight distance [1], can be avoided. Moreover, rich
information, such as intensity, scan angle, and trajectory of the inspection vehicle, is included in
MLS data, which aids the recognition and segmentation of different objects. Given these remarkable
advantages, MLS data have received ever-increasing attention from transportation researchers over
the past years [2].

Existing MLS data-based studies in road engineering can be generally categorized into three types:
road-geometry feature extraction, road-surface condition assessment, and road-asset inventory [3–5].
Though the specific objective of each category is different, the general concept of using MLS data
is similar: that is, to automatically extract certain road information whose measurement is costly,
time-consuming, and labor-intensive in the real-world.

Although MLS data have great potential in this area, its quality may be susceptible to missing
point regions (MPR) [6,7]. As shown in Figure 1, the beams emitted from the laser scanner may be
obstructed by obstacles (either static or mobile) and thus creating MPR [6]. These missing regions may
cause severe information loss and data gaps. For instance, if road lamps completely fall within an

ISPRS Int. J. Geo-Inf. 2019, 8, 525; doi:10.3390/ijgi8120525 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0001-7491-1438
https://orcid.org/0000-0002-9901-1660
https://orcid.org/0000-0003-0754-138X
http://dx.doi.org/10.3390/ijgi8120525
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/8/12/525?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2019, 8, 525 2 of 29

MPR, they cannot be detected by algorithms, which causes an adverse effect on the inventory accuracy
of road features. When objects are partially inside the MPR, the missing point issue may also increase
the difficulty of object detection and segmentation [7]. In some cases when the mobile obstacle is
small or travels reversely in the direction of the measuring vehicle, the generated MPR may not cause
substantial data gap (see the area marked in red in Figure 1).
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Whether an MPR causes non-negligible data gaps depends on its features (e.g., location, area,
orientation). These features are associated with the obstacle attributes (e.g., position, dimension,
speed of mobile vehicles in the traffic) at the time of capturing the points. Stationary obstructions
are constantly fixed at their positions, so their impacts on MPR generation are relatively predictable.
However, the traffic condition around the inspection vehicle at the data collection stage is hard to
control, especially in busy cities, making the distribution of MPR along the road corridor difficult to
predict. Therefore, it is meaningful to detect MPR in MLS data, which is a prerequisite for checking
whether the road information loss (RIL) in the dataset is substantial.

Generally, detection of MPR on roads in MLS data involves two main steps: delineating the road
area and segmenting MPR therein. Road area defines the search range for MPR while segmentation
emphasizes MPR identification. In spite of the few studies that directly focus on detecting MPR,
much attention in the literature was given to road-surface (or ground) extraction and road-boundary
identification from MLS point clouds, both of which are related to road-area delineation.

Road-surface extraction is commonly a prerequisite for effective detection and classification
of on-road objects in MLS data [3,4]. According to the review by Che et al. [3], existing methods
of organizing MLS data for road-surface extraction can be generally categorized into three types:
(1) rasterization, (2) 3D point, and (3) scanline methods.

Rasterization methods organize point clouds onto an image with a user-defined pixel size.
The quality of the generated image is closely associated with the pixel size. Large pixel size may cause
several points to fall within the same pixel and thus causing a substantial loss of details, while small
pixel results in intensive computations. In the case where several points fall within the same pixel,
the pixel-value is commonly represented by four different parameters: (a) the maximum elevation,
(b) the minimum elevation, (c) the elevation difference, and (d) the number of points inside the pixel [8].
Assuming a planar segment as the road surface, rasterization methods use certain pixel-value difference
as a threshold to segment surface from the generated image [9–11].

Compared with rasterization methods, the 3D point-based approaches can preserve the 3D nature
of MLS point clouds. Nevertheless, due to the large volume of MLS data and the complexity of 3D
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calculations, 3D point-based methods are usually computationally intensive [3]. There exist various
3D point-based methods for ground filtering: (a) grid cell-based methods which partition points into
grid cells and find points representing road surface in each cell [12–14], (b) triangulated irregular
networks (TIN)-based methods which construct TIN from MLS points and use the features related to
triangle elements to segment road surface [15,16], and (c) density-based approaches which calculate
the number of neighboring points around each point within certain range and use a specific density
value as a threshold to distinguish non-ground from ground points [17].

Both rasterization and 3D point-based methods partition MLS data into several vertical profiles.
Unlike the preceding methods, the scanline methods first extract scanline profiles using the GPS time
registered at the data collection stage. Then, in the scanning profile the road surface can be efficiently
extracted using the scan angle and the height thresholds [18–20]. Some studies slice the cross-section
profiles that are perpendicular to the vehicle path in MLS data and then extract the road surface using
similar rules to the scanline methods [21,22].

However, extracting the road surface points may not contribute to accurate MPR detection.
Figure 2 presents an example of a road surface extracted from highly noisy MLS data. As noted, due to
the existence of MPR, it is a challenging task to recover the shape of the road corridor from the extracted
road surface. In this case, the delineated road area would not be accurate.
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Compared with ground filtering, more effort has been devoted in the literature to road boundary
identification in MLS data [23–28]. However, the methods of organizing MLS data for identifying road
boundaries are still similar to those of filtering ground points [3]. Besides, most existing methods for
road boundary detection assume that road edges are higher than the road surface, which may fail in
situations where road curbs are unavailable [12].

There are three main issues with respect to road area delineation using detected road boundaries
in MLS data. First, as mentioned by Ma et al. [4], the existence of vehicle noises may degrade the
performance of existing methods for road edge/curb identification. Second, the missing point regions
in MLS data may cause substantial discontinuity in the identified road edges [6], which increases the
difficulty in accurately delineating the road area. Third, some roadside features (e.g., road lamps) are
located outside the road edges. In this case, only detecting MPR within the road boundaries cannot help
determine whether such road features are missing in MLS data. Although the state-of-the-art methods
may accurately extract road surface or detect road edges from MLS data, the severe MPR issue can
make it challenging for those approaches to accurately delineate an ideal road area for MPR detection.

Despite the scarcity of studies that shed light on how to segment MPR from MLS data, some
studies have recognized the MPR issue and proposed methods to automatically fill holes in the MLS
point clouds. Hernández and Marcotegui [9] treated holes of an image as sets of pixels whose minima
are not connected to the image border. Then, they removed all minima which are not connected to the
border using the morphological reconstruction by erosion. The algorithm operated on the entire image
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and did not segment any specific MPR. In addition, the hole-filling algorithm may omit some large
MPR according to their test results [9]. Doria and Radke [29] combined concepts from patch-based
image inpainting and gradient–domain image editing to fill hole-structures in LiDAR data. However,
their method was only tested for some typical scenes and did not involve detection of MPR.

Currently, a method for automatic detection and estimation of MPR in MLS data is still lacking.
To fill the gap, this study aims to propose a post-processing pipeline for automated detection and
measurement of MPR within the road area in MLS point cloud. Detection refers to the identification of
MPR in the dataset, while measurement refers to quantitatively estimating the morphological features
of MPR. Both processes are indispensable to assessing the extent of RIL in MLS data.

The following parts are structured as follows: Section 2 presents the material and method section
which describes the MLS datasets used in this study and the MMS for collecting the data. Section 3
presents the algorithm description section which elaborates on the method developed for detecting
MPR in MLS point cloud. Section 4 presents an application where the developed method was used to
detect MPR in two MLS datasets. Finally, Section 5 presents our conclusions and the study limitations.

2. Materials and Methods

2.1. MLS Datasets

Two datasets containing scanning data of two different urban road sections shown in Figure 3a are
used to test the method proposed for MPR detection in MLS point clouds. Both sections are situated
in Qinhuai district, Nanjing, Jiangsu Province, P.R. China (N31◦14′-N32◦37′, E118◦22′-E119◦14′).
The Hongwu road segment in Dataset 1 is 836.0 m long and 30.75 m wide with six lanes. The Zhongshan
road segment in Dataset 2 is 562.0 m long and 27.70 m wide with six lanes. There are 10512319 and
8508372 points in Datasets 1 and 2, respectively. The point cloud resolution near the MLS trajectory is
approximately 0.06 m in both datasets. The positioning accuracy of the two datasets is 1 cm + 1 ppm
(horizontal) and 2 cm + 1 ppm (vertical). Figure 3b,c display different views of two road sections. There
were many moving vehicles around the measuring car during the scanning of both road segments,
so each dataset contains considerable MPR for the testing of the proposed method.
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2.2. Mobile LiDAR System

The mobile LiDAR system used for collecting point cloud data is the Hi-Scan MMS from
HI-TAGET [30]. The Hi-Scan MMS consists of three main parts: a SPAN® GNSS+IMU Combined
System produced by Novatel [31], a single Z+F® laser scanner [32], and five high-quality digital
cameras for capturing 360◦ views around the measuring vehicle. During the measuring process,
the laser sensor emits high-frequency laser beams continuously. Every time a beam reaches an object,
it returns to the laser mirror. Combining the time of flight data, the scan angle of laser beams, and
the position information of the laser sensor recorded by the positioning system, the Hi-Scan can
determine the 3D coordinates of each point in the coordinate system of the mapping frame. In this
case, the positioning information of points obtained through Hi-Scan MMS is in the World Geodetic
System (WGS) 84 frame (E 120◦, Gauss-Kruger Projection).

The mechanism of geo-referencing of Hi-Scan MMS is graphically shown in Figure 4a. As the scan
angle θ and the scanning range ρ of a point P is determined, its position in the LiDAR scanner system
can be obtained. Then, the position of P in the coordinate system of the mapping frame is calculated
as [4]: 

xP

yP

zP

 = RIMU
M ($,ϕ,κ)·

rS
P(θ,ρ)·RS

IMU(∆$, ∆ϕ, ∆κ) +


lX
lY
lZ

+


LX

LY
LZ


+


xGNSS
yGNSS
zGNSS

 (1)
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where (xP, yP, zP)
T and (xGNSS, yGNSS, zGNSS)

T are the positions of P and the GNSS antenna in the
mapping system, respectively; rS

P(α, d) is the relative position of P in the LiDAR scanner coordinate
system; RIMU

M ($,ϕ,κ) is the transformation information that aligns the IMU with the mapping
frame where $,ϕ,κ are roll, pitch, and yaw details of IMU in the mapping coordinate system; and
RS

IMU(∆$, ∆ϕ, ∆κ) is the transformation matrix that aligns the LiDAR scanner with the IMU. Other
parameters involved in the geo-reference transformation and their values in the Hi-Scan MMS are
summarized in Table 1. Figure 4b also presents different views of the Hi-Scan MMS component which
help to understand the calibration parameters.
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Table 1. Parameters in the geo-referencing transformation.

Parameter Representation Value

∆$, ∆ϕ, ∆κ bore sight angles that align the LiDAR scanner with the IMU 0◦, 145◦, 180◦

lX, lY, lZ offsets between the IMU origin and the LiDAR scanner origin 227.6mm, 137.0mm, −349.4 mm
LX, LY, LZ offsets between the GNSS origin and the IMU origin 13.8mm, 95.0mm, −337.4-65mm

Note: the angles and lengths in Table 1 are measured in the IMU frame shown in Figure 4b.

Detailed technical information regarding the Hi-Scan MMS is presented in Table 2. In this study,
the highest scan frequency 200 Hz was selected to obtain denser point clouds. During the scanning
process, the Hi-Scan MMS components were mounted 1.9 m high from the ground, and the inspection
vehicle traveled along the same lane constantly at a speed less than 60 km/h.
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Table 2. Parameters regarding the Hi-Scan MMS.

Parameter Threshold

Laser measurement rate Up to 1M Hz
Measurement range 0.3 to 120 m

Distance measurement accuracy 0.9mm@50m
Scan frequency 50 to 200 Hz

Number of returns per laser pulse 4
Angular resolution 0.0088◦

Operating temperature −10 ◦C to +45 ◦C
x, y position 0.02 m

z position 0.05 m
Roll and pitch 0.008◦

Heading 0.023◦

3. Algorithm Description

3.1. Overview

The working flow of the developed method is graphically presented in Figure 5 and comprises
four steps: (1) segmentation, (2) rasterization, (3) detection and measurement of MPR in the image
and (4) parameterization of MPR on the geodetic plane. Specifically, in Step 1 using MLS data as
input, the points within the road area are automatically extracted using the scan-angle thresholds.
In Step 2, the obtained points are arranged onto the x-y plane in a grid manner to create a binary
image. Then, the connected pixels labeled with 1 in the binary mask, which correspond to MPR in
MLS data, are automatically detected and measured using a series of image processing algorithms
in Step 3. Finally, in Step 4 the properties of MPR on the geodetic plane (e.g., location and area) are
obtained via necessary parameterization and thereby the detection of MPR in LiDAR data is achieved.
The entire method is implemented in the MATLAB environment.
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3.2. Segmentation

Since this paper focuses on the estimation of MPR on roads, the points outside the road area are
filtered out. In this study, the removal of points is realized using the scan-angle thresholds which
have been successfully applied in several studies [18–20]. Figure 6a presents a cross-section view of
the laser scan lines. The MLS point cloud is composed of numerous two-dimensional (2D) profiles
that correspond to each rotation of the LiDAR scanner. Each point from a 2D profile (i.e., the scan
plane in Figure 6a) has an angle value relative to the laser sensor. It is worth noting that Figure 6a is
simply used for illustration as the scan plane of MMS is not necessarily parallel to the cross profile [4].
For instance, the angle between the scan plane (i.e., the xsys plane in Figure 4b) of the Hi-Scan MMS
and the cross profile (that is perpendicular to the forward direction) is 45◦ [30].

The vertical offset of the laser scanner from the road surface is constant during the field survey.
Therefore, there is a relatively stable geometrical relationship between the scan angle and the horizontal
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distance from the laser sensor to every point captured [19]. In the mobile LiDAR system, all sensors
are aligned with the positioning system and linked through the time stamp [4], so each point recorded
in the MLS dataset is relative to the inspection vehicle trajectory. Hence, in this study, d1 and d2, which
are the horizontal offsets from the vehicle path to the left and right road edges, respectively, are used to
obtain the scan-angle thresholds. Because some road features are located outside the road edges, it is
advisable to adjust d1 and d2 to extract different regions of interest (ROI) for MPR estimations.

The determination of the scan-angle thresholds was done manually in the literature [18–20],
which is not flexible to address different ROI. Therefore, an algorithm for automated estimation of the
scan-angle thresholds, illustrated graphically in Figure 6b, is developed in this phase. First, let P j and
P j+1 (1 < j ≤ n− 1, n is the number of vehicle path points) be two consecutive points along vehicle
trajectory which can be viewed as a good representation of the road axis [33]. The tangential vector at

P j is
⇀

P jP j+1. In this case, the azimuth ψ j of the vehicle path at P j is calculated as:

sinψ j =
(
x j+1 − x j

)
/‖

⇀
P jP j+1‖ (2)

cosψ j =
(
y j+1 − y j

)
/‖

⇀
P jP j+1‖ (3)

where (x j, y j)
T and (x j+1, y j+1)

T are plane coordinates of P j and P j+1, respectively, and ‖
⇀

P jP j+1‖ is

the horizontal distance between P j and P j+1. This distance ‖
⇀

P jP j+1‖ is associated with the inspection
vehicle speed and the selected output rate of the GNSS receiver during the data collection stage [34].
To achieve a smooth representation of the road alignment, especially on curved segments, this distance
is recommended to be controlled as less than 5 m [33].

Second, calculate the plane coordinates of the respective points on the left and right road boundaries
as follows: [

xd1
yd1

]
=

[
x j
y j

]
− d1·

[
cosψ j
sinψ j

]
(4)

[
xd2
yd2

]
=

[
x j
y j

]
+ d2·

[
cosψ j
sinψ j

]
(5)

where (xd1, yd1)
T and (xd2, yd2)

T are the plane coordinates of the left (Bl) and the right (Br) boundary
points at P j, respectively.

Third, as shown in Figure 6b, find neighbors within the radius of r around Bl and BR separately in
the MLS point cloud using the kd-tree algorithm [35], where, any point in the dataset whose horizontal
distance from Bl or BR is less than r is obtained. In this study, r is adopted as d1/20 for Bl and d2/20 for
BR. The empirical results regarding the influence of r on the scan-angle threshold are presented in
Appendix A. Then, for each boundary point, a histogram along the elevation of the points inside the
circle is established with bin size empirically set as 0.05 m. The highest bin in the histogram normally
corresponds to the surface points [36]. Hence, the points with elevation exceeding the right edge of the
bin and containing the peak in the histogram are excluded. Subsequently, the scan-angle thresholds
are determined as:

α =

η∑
i=1

αi/η (6)

β =

∑ζ
i=1(βi + 2π·µ)

ζ
− 2π·ν (7)

where αi (1 < i ≤ η) and βi (1 < i ≤ ζ) are the scan angle of the remaining points in the left and right

circles, respectively. If βi <
π
2 , µ = 1, otherwise µ = 0 and if

∑ζ
i=1(βi+2π·µ)

ζ > 2π, ν = 1, otherwise ν = 0.
The variables η and ζ are the number of points in the respective ranges.
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The algorithm starts from a random selection of a path point and then calculates α and β using
Equations (6) and (7). If Bl or BR falls inside an MPR, where the thresholds obtained are incorrect, once
the algorithm detects that there is no point in either circle, a new path point will be selected to calculate
the scan-angle thresholds. Using the proposed algorithm, the scan-angle thresholds can be determined
without knowing the orientation of the rotation axis of the LiDAR scanner. Let θ be scan angle of each
point in the MLS dataset. Depending on whether β is an acute angle, there are two cases regarding
the segmentation based on the scan-angle thresholds. Case 1: If 270◦ ≤ β ≤ 360◦, only the points with
α ≤ θ ≤ β are retained while the other points are omitted. Case 2: If β is a small acute angle, the points
with α ≤ θ ≤ 360◦ and 0◦ ≤ θ ≤ β are retained.

As shown in Figure 6c,d, to validate the results of the segmentation, the points on the road edges
in both Datasets 1 and 2 were manually selected. Continuous lines that connect the selected points
on the two sides were viewed as the ground truth. The points along the left and right edges of the
segmented ROI (points marked in red in Figure 6c,d) were also manually delineated and taken as the
estimated boundaries. Then, these boundaries were compared with the ground truth. In Dataset 1,
the algorithm produced desirable results as the estimated boundaries overlap substantially with the
ground truth.

However, as marked with a rectangle in Figure 6d, the estimated boundaries in Dataset 2 show
obvious deviation from the ground truth. The estimated boundaries are associated with the vehicle
path. During the data collection, although the inspection vehicle is expected to strictly trace the lane
centerline constantly, the surrounding vehicles may encroach into its travel lane and force it to shift
transversely. This can explain why the estimated ROI boundaries did not overlap with the ground
truth in Dataset 2 at some positions. The issue in Dataset 2 can be mitigated by slightly lengthening d1

and d2, ensuring that the road area is included in the ROI.
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3.3. Rasterization

With respect to the MPR measurement, the 2D parameters (e.g., area) can provide a clearer
understanding of the MPR features in comparison with the 3D features. Moreover, implied by existing
studies [25,26], analyzing MPR on the x-y plane helps reduce the dimension of the point cloud, making
it more manageable and thus decreasing the computational time. Therefore, the MPR detection and
measurement were performed on the horizontal plane in the study.

In Figure 6c or Figure 6d, it can be observed that there is an obvious contrast between an MPR and
its adjoining regions. In this case, some well-established image processing algorithms can help identify
MPR if the points are transformed into pixels. In addition, the removal of points with θ-value outside
the angle range in the previous phase helps eliminate objects higher than the laser sensor. As such,
objects like tree crown will not affect the accurate detection of MPR. Therefore, a rasterization method
is applied to convert the point cloud data into a 2D binary image. Similar methods have been proved
as effective for processing point cloud [37].

First, the remaining points are organized onto the x-y plane to create a 2D grid representation of
the road area as follows:

x = round(x/ε) ∗ ε (8)

y = round(y/ε) ∗ ε (9)

where (x, y)T represent any point in Θ and round(.) is a function for rounding a number to an integer.
The x and y-values of the residual points are rounded to integral multiples of ε. The resolution of the
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generated model is closely associated with the grid size ε. Finer grids can result in a more accurate
representation of the original point cloud. However, a small ε also causes disconnected pixels in
an MPR, which may produce the adverse effects on the detection of MPR in the following steps.
For simplicity, Θ is used to represent the gridded point cloud data in the coordinate format.

Suppose a large bounding box fully encloses Θ, as shown in Figure 7a. Let (xul, yul)
T and (xlr, ylr)

T

be plane coordinates of the upper-left and lower-right corners, respectively. Let ε be the unit length.
In this case, the horizontal and vertical distances from any point (gridded) to (xul, yul)

T are both
positive integers. Based on this feature, each 2D point in Θ can be transformed into an element (or
pixel) in a matrix (or image) as shown in Figure 7a. Taking (xi, yi)

T for an illustration, the process of
rasterization includes the following steps:

Step 1: Construct an M×N matrix ΨM×N with all elements equal to zero, as follows:

M = (ylr − yul)/ε+ 1 (10)

N = (xlr − xul)/ε+ 1 (11)

where M and N are the number of rows and columns, respectively, and ε is the unit length.
Step 2: Calculate the vertical distance p and the horizontal distance q from (xul, yul)

T to (xi, yi)
T.

Step 3: Make the element in the (p + 1)-th row and (q + 1)-th column equal to 1, that is,
ΨM×N(p + 1, q + 1) = 1.

A binary mask that corresponds with the gridded point cloud can be constructed by converting
all points in Θ. Figure 7b displays a sample image after the conversion. In this phase, the measurement
of MPR in Θ is equivalent to estimating the areas that feature connected pixels with 0-value within the
road range in the binary image (i.e., ΨM×N).ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 11 of 29 
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Usually, the inverted distance weighting (IDW) or the natural neighborhood interpolation (NNI)
methods are used to rasterize the MLS points. However, when the pixel (grid) size ε is small,
the IDW and NNI rasterization methods are computationally intensive. On the contrary, although the
rasterization process in this study may cause a small shift of the MLS points, it can generate the binary
image more efficiently without compromising the accuracy of the MPR detection. The comparison
results of the rasterization methods on processing time and accuracy are presented in Appendix B.

3.4. Measurement of MPR in the Image

After years of development, the image processing algorithms for automatically detecting connected
pixels with 1-value in a binary image are well established, which helps to quickly identify the MPR.



ISPRS Int. J. Geo-Inf. 2019, 8, 525 12 of 29

The pixel-based complement can reverse the pixel value (i.e., 0 to 1 or 1 to 0) in the binary map, in which
case the MPR is converted to connected pixels with 1-value. Nevertheless, the areas outside the road in
the image also contains pixels with 1-value after the complementation, which causes adverse effects on
the accurate detection of the MPR. Therefore, several image processing techniques are sequentially
applied to address this issue and thereby improving the accuracy of MPR estimation. Figure 8 shows
the general procedure for eliminating the impact of the areas outside the road on MPR detection.
The image processing functions entailed are also presented.
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Let Ψb be the matrix representing the boundary image illustrated in Figure 8. Then the procedure
for obtaining the final image Ψ f for MPR detection can be expressed as:

Ψ f = imcomplement(med f ilt2(ΨM×N)) − imcomplement(im f ill(Ψb)) (12)

where med f ilt2(.) conducts the median filtering of the image to remove potential noises (isolated pixels
with 1-value), imcomplement(.) outputs the pixel-based complement of the inputted image, and im f ill(.)
fills the areas enclosed by continuous pixels with 1-value in an image. These functions are all mature
algorithms embedded in MATLAB [38].

Because ΨM×N has been obtained in the previous stage, the gap is Ψb for the purpose of obtaining
Ψ f . Ψb is transformed from points bounding Θ, so the kernel is to calculate the coordinates of points
in boundaries of Θ. As previously described in the segmentation part, d1 and d2, which are used to
calculate the scan-angle thresholds from the MLS data, separately indicate the boundary positions on
the two sides. Therefore, the boundary points can be derived from vehicle path coordinates using
Equations (4) and (5). The function im f ill(.) works only when it detects fully connected and loop-like
pixels with 1-value, as shown in Figure 8. Nonetheless, the interval of boundary points is related to the
gap of the vehicle path points, which may be larger than ε, causing disconnection between pixels that
represent the boundary points, thus disabling the im f ill(.) function. To resolve this issue, natural cubic
splines (NCS) were used to fit the boundary points and then partitioned them into narrower and more
uniform points.

Given a set of knots, the function cscvn(.) is available to construct an NCS [39], yet an algorithm
for adding knots on NCS is lacking in MATLAB. The concept of the algorithm for uniformly dividing
the NCS is illustrated in Figure 9a, in which K j−1, K j and K j+1 are three consecutive points (i.e., knots
or nodes) that constitute the NCS. The curves between each two adjacent knots are in the piecewise
polynomial form. To illustrate, consider the curve between K j−1 and K j for example. The coordinates
(xncs, yncs)

T of each point on the curve passing through K j−1 and K j are given by:

xncs =
∑i=3

i=0
aiti (13)
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yncs =
∑i=3

i=0
biti (14)

where ai and bi are polynomial coefficients, t ∈
[
0, t j − t j−1

]
is the square root of the chord length [40],

and t j − t j−1 is given by:

t j − t j−1=
√
‖K jK j−1‖ (15)

where ‖K jK j−1‖ is the Euclidean distance between K j−1and K j.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 13 of 29 
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Equations (13)–(15) indicate that each curve between two sequential knots maps onto a curve
along the t-axis. In order to obtain the curve length s between K j−1 and K j, the t-axis is discretized into
points with a small interval of ∆t (∆t < 0.001 m), where s is computed as:

s =
∑

N
∆s·∆t+‖p1p2‖ =

∑
N

√
(

dx
dt

)
2
+ (

dy
dt

)
2

·∆t+‖p1p2‖ (16)

where ∆s is the length of line segment on NCS which corresponds to ∆t on the t-axis, N is the aliquot

part of
t j−t j−1

∆t , and ‖p1p2‖ (which corresponds to the remainder part of
t j−t j−1

∆t on the t-axis) is the
Euclidean distance between p1 and p2.

To obtain dense points with a gap of ω (ω ≤ ε) on NCS, the algorithm originates at K j−1 and
proceeds along the NCS at a pace of ∆s. Once the cumulative length reaches ω, it is reset to zero and
the point is recorded and the algorithm continues until the end point (K j+1) is reached. If s cannot be
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exactly divided by ω, the remainder τ (τ ≤ ω) will affect point acquisition in the curve between K j and
K j+1 as shown in Figure 9a, guaranteeing that the new knots are evenly distributed along the whole
curve. The code of the algorithm is presented in Appendix B.

As shown in Figure 9b, there are four boundary lines including left ( 4O) and right ( 2O) boundaries
as well as two line-segments ( 1O and 3O) that connect the vertices of the two boundaries for a given road
section. NCS were separately applied to add points on each boundary line. Then, the Ψb that contains
1-value pixels corresponding with the boundary points can then be generated through the previously
described rasterization method. Note that the size of Ψb should be consistent with ΨM×N in this step.

If ΨM×N is not exactly bounded by Ψb, the med f ilt2(.) function is recommended to remove
potential isolated 1-pixels in Ψ f before MPR assessment. As seen from Figure 8, only the missing point
regions remain after the processing, which aids the estimation of the MPR in the final image. Then, an
efficient function regionprops(.), implemented in MATLAB [38], is used to quantify the properties of
the regions formed by the connected 1-pixels (i.e., MPR). Considering the potential impacts on RIL,
five properties illustrated in Figure 10 are empirically chosen for MPR assessment in this study: (1) in
the image coordinate system (xI, yI)

T, the centroid denotes the position of MPR, (2) the major axis
length and (3) the minor axis lengths of the bounding ellipse approximately reflect the shape of the
MPR, (4) the angle between the major axis of the bounding ellipse and the xI-axis shows the orientation
of MPR, and (5) the area indicates the size of MPR. These parameters can quantitatively describe the
missing point regions and help understand their features in the dataset.
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The preceding properties may provide a comprehensive understanding of the MPR, but most of
them are measured in pixels. To boost their value in real-world cases, further parametrization on the
geodetic plane is necessary, as described next.

3.5. Parameterization of MPR on Geodetic Plane

At this stage, a coordinate transformation is first conducted to convert pixel positions in the binary
image to 2D coordinates on the geodetic plane as follows:[

x
y

]
=

[
xul
yul

]
+

[
1 0
0 −1

]
·

[
xI

yI

]
·ε (17)

Subsequently, each MPR feature measured in the binary image is transformed into a parameter in
the geo-referenced MLS data. Table 3 shows the MPR parameters in two different spaces. Methods for
mathematically transforming each feature are also shown.
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Table 3. MPR Parameters in two different spaces.

Image
Space

Mathematical
Transformation

Geodetic
Space

Centroid (pixel position) Equation (17) Centroid (plane coordinate)
Detailed in Section 3.5.1 Offset from the vehicle trajectory (m)

Angle (◦) Detailed in Section 3.5.2 Angle between the major axis (of ellipse) and the
vehicle trajectory (◦)

Area (pixels) Multiply ε2 Area (m2)
Minor axis length (pixels) Multiply ε Minor axis length (m)
Major axis length (pixels) Multiply ε Major axis length (m)

Because ε represents the pixel size in the real world, the area, and the minor and major axes lengths
can be simply scaled by multiplying them by ε or ε2 as shown in Table 3. As previously mentioned,
MPR detection is a prerequisite for estimating RIL on roads. In the civil engineering field, most road
information, such as geometric parameters, road lamps, and traffic signs is registered in relation to the
road axis (e.g., indexed with station). In this case, linking MPR features with the road axis is beneficial
for understanding their effects on road-attribute extraction in future research. Therefore, the angle and
centroid are re-parameterized in relation to the road axis.

Nonetheless, accurate extraction of the road centerline from MLS data is a challenging task and
may depend on the quality of point cloud data [18], which is not the focus of this work. Hence,
the vehicle trajectory that traces the centerline is used in this study to represent the road axis.

3.5.1. Offset from Vehicle Trajectory

Figure 11 illustrates the MPR corresponding to Figure 10 in the point cloud form. The offset from
the vehicle trajectory is calculated by obtaining the distance between A and B in Figure 11, where A is
the centroid of the MPR and B is the vehicle track point which makes the line segment AB perpendicular
to the vehicle trajectory. The coordinate of A is available via Equation (17), so the kernel of calculating
the offset from the vehicle trajectory aims at finding B.

The interval of the path points can be narrowed to ω using the algorithm in Figure 9, making the
discretized points a good representation of the continuous vehicle trajectory. Under this circumstance,
B can be approximated using a nearest neighbor searching method. Specifically, as shown in Figure 11b,
a virtual circle centered at A is established using the rangesearch(.) function in MATLAB to find
neighbors around A within a radius of R (R > max(d1, d2)). The point therein with the smallest
distance to A is determined as B.
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As the interval of dense path points is known, the distance SB from the starting point (of vehicle
path) to B along the vehicle trajectory can be calculated, where the centroid is located as (SB, do f f ).
To make it easier for the users to understand which side of the vehicle trajectory the MPR is situated,
do f f is set as negative for the right-side MPR, and positive for the left-side MPR.

3.5.2. Angle between Major Axis and Vehicle Trajectory

With the position of B determined, the angular relationship between the major axis of the ellipse
enclosing the MPR and the vehicle path can be estimated. Let C be the point where the major axis
intersects with the tangential direction of the vehicle trajectory at B. Then, the angle of concern is ϕrd

between the vectors
⇀

AC and
⇀

BC (Figure 11a).
In the binary map, the angle φ between the major axis and the xI axis (see Figure 10) is negative

when the xI axis demands clockwise rotation around the centroid to arrive at the major axis, otherwise
it is positive. The criterion remains unchanged in the computation of ϕrd except that the xI axis is

substituted with the tangential vector
⇀

BC. Under this condition, there exist four cases with respect to
the calculation of ϕrd (see Figure 12a–d):

Case A (Figure 12a): Both ϕrd and φ are positive, and ϕrd is given by:

ϕrd = 1 ∗
(
ψ+ φ−

π
2

)
(18)

where ψ is the azimuth of the horizontal vehicle path at B.
Case B (Figure 12b): ϕrd is negative and φ is positive, and ϕrd is given by:

ϕrd = −1 ∗
(
π
2
−ψ−φ

)
= ψ+ φ−

π
2

(19)

Case C (Figure 12c): ϕrd is positive and φ is negative, and ϕrd is given by:

ϕrd = −1 ∗
(
−φ−

(
ψ−

π
2

))
= ψ+ φ−

π
2

(20)

Case D (Figure 12d): Both ϕrd and φ are negative, and ϕrd is given by:

ϕrd = 1 ∗
(
ψ−

π
2
− (−φ)

)
= ψ+ φ−

π
2

(21)

Clearly, according to Equations (18) to (21), ϕrd equals ψ+ φ− π
2 in all cases.
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Figure 12. Calculation of ϕrd.

4. Application

In this section, the developed method was applied to detect the MPR in the two MLS datasets
previously mentioned. The variables involved in the method were specified as shown in Table 4. In this
case, ε was set as 0.10 m for accurate detection of the MPR. The effect of ε on MPR measurement is
discussed later.

Table 4. Values of the variables adopted in the method.

Variables d1 (m) d2 (m) ε (m) R (m) ω (m)

Dataset 1 17.50 13.25 0.1 20.00 0.05
Dataset 2 18.20 9.50 0.1 20.00 0.05

4.1. MPR Detection Test

In addition to the measurement of the MPR, connected 1-pixels which represent the MPR in the
binary image were converted to points in the Cartesian coordinates using Equation (17). In this way,
the MPR identified by the algorithm can be visualized in the point cloud environment as displayed in
Figure 13.
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In this case, it is viable to visually examine the false positives and negatives that are detected by
the method. Different ε-values (from 0.04 to 0.26 with an interval of 0.02) were separately applied
to produce different estimations of the MPR. Then, using different ε values, stepwise comparisons
between real and detected MPR were manually made for each dataset (Figure 13), finding that every
MPR was correctly identified and located when ε = 0.10. Regarding other ε-values, although some
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small MPR were neglected by the algorithm, all the identified ones were correct with respect to
their positions. These findings demonstrate that the proposed method is effective for MPR detection.
For a better performance of the algorithm, ε = 0.10 was used in the subsequent assessment of MPR.

4.2. MPR Mesurement in Two Datasets

The numerical parameters that describe MPR in each MLS dataset can be obtained via the proposed
method. To make it easier for the users to understand MPR in the given MLS data, five parameters
(area, offset, major axis length, minor axis length, and angle) were all indexed to the distance (SB) from
the starting point, so that these parameters can be developed into graphics like Figures 14 and 15.
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Figure 14. Stem diagrams regarding the MPR area.

The generated areas of MPR along each road section are shown in Figure 14, where the height of
every stem in each figure represents the scale of the MPR area. Figure 14 helps understand the positions
along the road where it suffers large MPR that may cause severe RIL. For instance, the positions where
the MPR area exceeds 50 m2 are highlighted in both Figure 14a,b. There are 24 MPR whose area is
larger than 50 m2 in Dataset 1 while only 13 counterparts are observed in Dataset 2. The number of
large MPR in Dataset 1 outstrip that in Dataset 2. However, the maximum area of MPR in Dataset 2 is
1994 m2 at 407 m, which is far larger than that of 371 m2 at 431 m in Dataset 1.

A preliminary knowledge of MPR can be learned from Figure 14, yet it only contains area
information. Hence, a supplementary graphic illustrated in Figure 15a is used to provide a better
understanding of the MPR results. Each MPR inside the ROI is represented by its bounding ellipse.
The centroid is located at (SB, do f f ) and the angle between the major axis of the ellipse and the distance
axis is ϕrd. The boundary lines that delineate the borders of ROI are also shown.

Features like size, orientation, and distribution of MPR along the road can be directly appreciated
from Figure 15b,c, albeit no numerical data were provided. The ellipses on the right and left sides
of the vehicle trajectory are distinctly marked, so that it is possible for the users to compare which
side may suffer MPR more. For example, the MPR on the left side of the vehicle path are larger than
those on the right in Figure 15c, implying that the RIL issue on the left side in Dataset 2 may be
more severe. Figure 15c also demonstrates the existence of the extremely large MPR at 407 m (see
Figure 14b). The immense MPR in Dataset 2 can be understood by referring to its shape in the point
cloud environment, as illustrated in Figure 15d. For the case when the traffic was heavy at the time of
the laser scanning, small MPR may connect to form a larger MPR.
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Graphics like Figures 14 and 15 offer effective visualization to understand the MPR in the datasets.
It can be concluded from these figures that both Dataset 1 and 2 suffer severe MPR issue, which
deserves further examination on whether a significant RIL is caused.
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4.3. Sensitivity Analysis

The variable ε plays a crucial role in establishing the binary map and is closely associated with the
image resolution, which may substantially affect accurate measurement of MPR. Therefore, the effect of
ε on MPR measurement was evaluated in this study. Different ε-values from 0.04 to 0.26 with an interval
of 0.02 were used to generate different MPR estimations. As previously mentioned, the proposed
method achieved satisfactory performance on detecting MPR in MLS data when ε = 0.10, so the MPR
estimations generated using other ε-values were all compared with the results of this ε value through
one-way analysis of variance (ANOVA) tests. Specifically, for each ε-value, the difference between
the five estimated MPR features and those of ε = 0.10 were separately examined. The test results
are summarized in Table 5. The P-value lower than 0.05 indicates a statistically significant difference
between two samples at the 95% confidence level. In this case, P < 0.05 means the results concerning
a specific parameter measured are unreliable.

It can be drawn from Table 5 that ε exerts a significant effect on the MPR detection and measurement.
As shown in the second column of Table 5, either an increase or a decrease in the ε-value may reduce
the number of identified MPR in both datasets. As the ε-value increases, the resolution of the binary
image decreases, in which case some details in the original LiDAR data may be omitted due to the
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rough rasterization and thereby causing neglect of some small MPR. On the contrary, a smaller ε can
better represent the original data but may also lead to disconnection between pixels inside the MPR.
A main drawback to rasterization lies in the fact that the point cloud resolution is highly variable with
MLS data and greatly further degrades from the vehicle path. The med f ilt(.) operation in the method
would exclude isolated pixels. Hence, the MPR in which the pixels are not fully connected cannot be
correctly detected. Therefore, the number of MPR detected by the method can serve as an indicator
that shows whether the MPR are adequately identified.

Table 5. Statistical analysis of MPR measurements a.

ε Num
P-Value (ANOVA Test)

Area LD MaL MiL Angle

Dataset 1

0.04 40 0.02 0.11 0.06 0.23 0.04
0.06 72 0.26 0.33 0.12 0.64 0.14
0.08 87 0.36 0.47 0.28 0.98 0.29
0.10 112 - - - - -
0.12 109 0.99 0.89 0.90 0.95 0.82
0.14 108 0.73 0.58 0.71 0.78 0.14
0.16 97 0.74 0.89 0.60 0.72 0.11
0.18 86 0.48 0.57 0.34 0.74 0.06
0.20 70 0.17 0.44 0.11 0.58 0.02
0.22 58 0.04 0.22 0.03 0.22 <0.01
0.24 51 0.01 0.40 0.01 0.19 <0.01
0.26 42 <0.01 0.18 <0.01 0.09 <0.01

Dataset 2

0.04 41 0.21 0.31 0.15 0.51 0.02
0.06 69 0.36 0.51 0.34 0.77 0.09
0.08 84 0.56 0.76 0.74 0.90 0.14
0.10 104 - - - - -
0.12 100 0.87 0.91 0.95 0.95 0.99
0.14 99 0.97 0.93 0.94 0.89 0.93
0.16 97 0.96 0.89 0.90 0.71 0.69
0.18 76 0.65 0.79 0.56 0.25 0.62
0.20 59 0.27 0.76 0.14 0.08 0.61
0.22 47 0.27 0.67 0.14 0.08 0.22
0.24 46 0.23 0.98 0.08 0.03 0.21
0.26 39 0.12 0.87 0.03 <0.01 0.09

a Num = number of MPR identified, LD = lateral distance to the vehicle path, MaL and MiL = major and minor axis
lengths of the bounding ellipse, respectively.

There is no fixed pattern regarding the influence of ε on the reliability of the measured parameters.
The five parameters showed different susceptibilities to the change in ε and the ANOVA results varied
between the datasets. However, it can be concluded that the MPR estimations become unreliable
when the deviation from ε of 0.10 reached a certain extent. These findings indicate that there exists an
optimal ε-value with respect to the MPR detection and measurement using the developed approach.
Therefore, for a more accurate MPR measurement, it is recommended to adjust the ε-values using
partial data extracted from the entire MLS dataset to determine the optimal ε-value before the final
MPR estimations.

5. Concluding Remarks

This paper has proposed a solution for automated detection and measurement of road’s missing
point regions in mobile laser scanning data. The effectiveness of the method was demonstrated using
tests on two MLS datasets. The results show that the method can identify and locate MPR correctly
within ROI. In addition, five properties of MPR were quantitatively measured and developed into
graphics using the proposed approach, which helps better understand morphological features of



ISPRS Int. J. Geo-Inf. 2019, 8, 525 21 of 29

MPR and paves the way for future investigation into how MPR features are related to the RIL issue.
The ANOVA tests suggest that there is an optimal ε-value regarding detection of MPR in MLS data
using the proposed approach.

Some issues remain to be addressed in future research. The developed approach relies on vehicle
trajectory data. In this study, the measuring vehicle traces the road axis carefully by remaining in the
same lane during data collection, but there is a possibility that the vehicle must shift to another lane
for turning or passing maneuvers. In these cases, the extracted ROI may not be exactly the road area.
Further research to estimate the adverse effect of using vehicle path as a substitute for the road axis
is needed. Also, the proposed method extracted the road area from the MLS point cloud using the
scan-angle thresholds, while in some MMS, more than one laser scanners are used (e.g., Trimble MX-9),
which may degrade the accuracy of the extracted road area. A more robust method for delineating the
road area in MLS data for MPR detections is expected to be developed in the future.

As previously mentioned, the detection of MPR in MLS data is a first step for investigating the
relationship between MPR properties and RIL. Although the RIL issue can be estimated by determining
whether important road features fall inside MPR in some contexts, when the road furniture data are
missing or road information concerned is a parameter (e.g., road curve radius), such an estimation is
impracticable. Therefore, it is meaningful to find the specific parameters that can serve as effective
indicators of RIL in future research. This would help to directly determine from MPR parameters
whether RIL is significant.
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Notations

The following notations are used in this paper:

Bl Left boundary point
BR Right boundary point
LX, LY, LZ Offsets between the GNSS origin and the IMU origin
K j−1, K j, K j+1 Three consecutive nodes that constitute the NCS
M Number of rows of the matrix ΨM×N
N Number of columns of the matrix ΨM×N
P j, P j+1 Two consecutive points along the vehicle trajectory
R Radius that helps determine do f f
RS

IMU(∆$, ∆ϕ, ∆κ) Transformation matrix that aligns the LiDAR scanner with the IMU
RIMU

M ($,ϕ,κ) Transformation information that aligns the IMU with the mapping
SB Distance that is measured along the vehicle path from the starting point
ai, bi Polynomial coefficients
d1 Horizontal offset from the vehicle path to the left road edge
d2 Horizontal offset from the vehicle path to the right road edge
do f f Offset from the vehicle path to the centroid of MPR
imcomplement(.) Function that outputs the pixel-based complement of the inputted image
im f ill(.) Function for filling the areas enclosed by continuous 1-value pixels in an image
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lX, lY, lZ Offsets between the IMU origin and the LiDAR scanner origin
med f ilt2(.) Function for the median filtering of the image to remove potential noises
n Number of vehicle path points
p Vertical distance from (xul, yul)

T to (xi, yi)
T

‖p1p2‖ Remainder part of
t j−t j−1

∆t on the t-axis
q Horizontal distance from (xul, yul)

T to (xi, yi)
T

r Radius around Bl or BR
round(.) Function for rounding a number to an integer
rS

P(α, d) Relative position of P in the LiDAR scanner coordinate system frame
s Curve length between K j−1and K j
t Square root of the chord length
(x, y)T Any point in Θ(
xI, yI

)
Image space

(xd1, yd1)
T Plane coordinates of the left (Bl) boundary points at P j

(xd2, yd2)
T Plane coordinates of the right (Br) boundary points at P j

(xGNSS, yGNSS, zGNSS)
T Position of GNSS antenna in the mapping system

(x j, y j)
T Plane coordinates of P j

(x j+1, y j+1)
T Plane coordinates of P j+1

(xlr, ylr)
T Plane coordinates of the lower-right corner of the bounding box enclosing Θ

(xncs, yncs)
T Coordinates of each point on the curve passing through K j−1 and K j

(xP, yP, zP)
T Position of P in the mapping system

(xul, yul)
T Plane coordinates of the upper-left corner of the bounding box enclosing Θ

∆s Length of line segment on NCS which corresponds to ∆t on the t-axis
∆t Interval along the t-axis
∆$, ∆ϕ, ∆κ Bore sight angles that align the LiDAR scanner with the IMU
Θ Gridded point cloud data in the coordinate format
Ψb Matrix representing boundary image
Ψ f Matrix representing the final image for the MPR detection
ΨM×N Gridded point cloud data in the matrix format
α Scan angle of the left boundary point
αi Scan angle of the remaining points in the left circle
β Scan angle of the right boundary point
βi Scan angle of the remaining points in the right circles
ε Pixel size
η Number in the range for αi
ζ Number in the range for βi
θ Scan angle of each point in the MLS dataset
µ, ν Variables in the calculation of β
κ Yaw angle of IMU in the mapping coordinate system
$ Roll angle of IMU in the mapping coordinate system
τ Remainder on the NCS between K j−1 and K j
ρ Scanning range in the LiDAR scanner system
ϕ Pitch angle of IMU in the mapping coordinate system
ϕrd Angle between major axis of bounding ellipse and SB axis
φ Angle between major axis of bounding ellipse and xI axis in the image space
ψ Azimuth of the horizontal vehicle path at B
ψ j Azimuth of the horizontal vehicle path at P j
ω Gap between points on an NCS

Appendix A. Effect of r on Scan-Angle Thresholds

In each dataset, two positions (that do not suffer MPR issues) are selected to investigate the
influence of r on the scan-angle thresholds. For each position, the distance from the path point
(along the normal direction) is d and the radius of the circle is r. In the tests, five d-values (2.0, 4.0,
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6.0, 8.0 10.0 m) are used. For each d-value, five r-values are applied to determine the scan-angle
thresholds. The accurate scan angle is manually determined for each d-value. Then, the absolute error
(ASE = |accurate value− estimated value|) is used to measure the difference between the accurate scan
angle and that determined by the algorithm. The results are summarized Tables A1 and A2.

Table A1. Test results of Dataset 1.

d (m) a
Absolute Error, ASE (◦)

r = d/10 r = d/20 r = d/30 r = d/40 r = d/50

Position 1

2.0 0.53 0.46 - b - -
4.0 0.15 0.36 0.35 0.50 -
6.0 0.27 0.17 0.20 0.37 -
8.0 0.35 <0.10 <0.10 0.19 0.24

10.0 0.62 <0.10 0.16 0.27 0.38

Position 2

−2.0 0.45 0.36 - - -
−4.0 0.23 0.24 0.56 0.57 -
−6.0 0.26 0.11 0.25 0.33 0.43
−8.0 0.24 0.15 <0.10 0.36 0.27
−10.0 0.22 0.17 <0.10 0.13 0.26

a A negative value of d means the point is on the left, a positive value means the point is on the right. b A dash
means there is no points in the circle.

Table A2. Test results of Dataset 2.

d (m) a
Absolute Error, ASE (◦)

r = d/10 r = d/20 r = d/30 r = d/40 r = d/50

Position 1

2.0 0.23 0.15 - b - -
4.0 0.32 0.12 0.17 0.23 -
6.0 0.22 0.15 0.23 0.22 0.28
8.0 0.25 0.18 0.14 0.21 0.25

10.0 0.12 <0.10 <0.10 0.10 0.13

Position 2

−2.0 0.36 0.23 0.13 - -
−4.0 0.25 0.14 0.30 0.55 -
−6.0 0.38 0.14 0.11 0.16 0.22
−8.0 0.33 0.20 0.11 0.33 0.37
−10.0 0.34 <0.10 0.27 0.31 0.29

a A negative value of d means the point is on the left, a positive value means the point is on the right. b A dash
means there is no points in the circle.

Appendix B. Comparison of Rasterization Methods

The inverse distance weighting (IDW) is a type of deterministic method for multivariate
interpolation with a known scattered set of points [41]. The assigned values to the unknown
points are calculated with a weighted average of the values available at the known points. In this
case, the horizontal distance between each known point to the unknown point is used to calculate the
weight. Figure A1 illustrates the concept of the IDW method. The rasterization process using the IDW
method involves the following steps:

Step 1: Create many cells where each cell center corresponds to the pixel position in the final
image. The cell size corresponds to the pixel size.

Step 2: Find the LiDAR points inside each cell using a nearest neighbor searching method (e.g.,
kd-tree searcher)

Step 3: Select a cell. If there is no point in the cell, the height value zc of the cell center is void,
otherwise, go to Step 4
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Step 4: Calculate the height of the cell center as follows

λi =
d−p

i∑n
i=1 d−p

i

(A1)

di =

√
(xi − xc)

2 + (yi − yc)
2 (A2)

zc =
n∑

i=1

λi·zi (A3)

where di is the distance from each LiDAR point in the cell to the cell center, λi is the calculated weight
of each point, (xc, yc, zc)

T is the coordinate of the cell center, and (xi, yi, zi)
T are the coordinates of

LiDAR points in the cell. Note that p is adopted as 1.
Step 5: if zc is void, the pixel value is 0, otherwise the pixel value is 1.
Step 6: If all cells are calculated, the process is terminated. Otherwise, go to Step 3.
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Figure A1. Illustration of the IDW method.

The natural neighborhood interpolation (NNI) is another well-established method that can
be invoked using the ‘griddata (.)’ function in MATLAB. It has been widely applied in 2D or 3D
interpolation with a large set of unordered points [42]. However, the ‘griddata (.)’ function is
inappropriate for direct application in this case because it may arbitrarily fill holes (i.e., MPR) in the
MLS dataset [43]. To perform the rasterization without filling MPR, the rasterization process with the
NNI method is similar to that using the IDW approach, except that the height in Step 4 is calculated
with the ‘griddata (.)’ function instead of the IDW method.

Three rasterization methods are separately applied to generate the binary image. The processing
time of different methods are summarized in Table A3. It can be observed from Table A3 that the simple
method used in the study outperforms the other two methods with respect to computational efficiency
for both MLS datasets. The MPR detection results in the two MLS datasets, using different pixel size,
are shown in Figure A2. The horizontal axis in each figure refers to the distance to the starting point
along the vehicle path, while the vertical axis represents different MPR features. From Figure A2a,b,
it can be concluded that the difference between the rasterization method employed in the study and
the other two methods is negligible because most points overlapped in the figures. Accordingly, it
is advisable to use the simple method for rasterization of this study when the pixel size is relatively
small (<0.3 m). However, it is not recommended to use this simple method when the pixel size is large
because the operation may cause a large shift of points and thereby adversely affect the accuracy.
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Table A3. Processing time of different rasterization methods (a) Dataset 1 (2) Dataset 2.

Pixel (Cell) Size (m)
Processing Time (s)

IDW NNI Method of This Study

(a) Dataset 1

0.1 89.42 69.43 0.27
0.2 27.14 20.98 0.23
0.3 15.17 14.58 0.22

(b) Dataset 2

0.1 54.71 27.98 0.24
0.2 17.77 15.56 0.19
0.3 15.17 13.58 0.18
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Figure A2. MPR detection results using different rasterization methods.
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Appendix C. MATLAB Source Code for Adding Uniformly Distributed Points on NCS

The code uses MATLAB syntax. The content following ‘%’ in the same line is annotation. ncs is
a ‘struct’ type data output by cscvn(.). The symbol ‘.’ following ncs allows access to elements in ncs:
ncs.pieces stores the number of line segments connecting two original sequential knots, ncs.breaks
stores the cumulative t-value along the spline, ncs.coefs stores the coefficients of piecewise polynomials.
Details about MATLAB syntax can be found in the MATLAB official website [39]. The testing results
generated by the algorithm are presented in Figure A3.

Algorithm A1. Adding Uniformly Distributed Points on NCS

function points = uniformKnots (ncs,delta_t,w)
% ncs refers to the output of cscvn(.)
% delta_t (∆t) is a user-defined value (<=0.01)
% the output of uniformKnots(.) is denser points on NCS in the coordinate format
points = [];
d_res = 0;
for i=1:1:ncs.pieces

T = ncs.breaks(i+1) - ncs.breaks(i);
% T is the chord length

x = ppmak ([0 T],ncs.coefs(2*i-1,:));
y = ppmak ([0 T],ncs.coefs(2*i,:));
t = 0:delta_t:T;
p1 = [ppval(x,t(end)) ppval(y,t(end))];
p2 = [ppval(x,T) ppval(y,T)];
% p1 and p2 are last two points with gap less than delta_t
g = @(p) ncs.coefs(2*i-1,1)*3*p.ˆ2 + ncs.coefs(2*i-1,2)*2*p + ...

ncs.coefs(2*i-1,3);
f = @(p) ncs.coefs(2*i,1)*3*p.ˆ2 + ncs.coefs(2*i,2)*2*p + ...

ncs.coefs(2*i,3);
s = sqrt(f(t).ˆ2 + g(t).ˆ2) * delta_t;
num = length(t)-1;

lengthOfNcs = sum(s(1:end-1)) + norm(p1-p2);
% lengthOfNcs is s in Figure 9
remOft = rem(lengthOfNcs + d_res,w);
% remOft is τ in Figure 9

delta_d = 0;
for j = 1:1:num

delta_d = delta_d + s(j);
indicator = sign(delta_d - (w-d_res));
lengthOfNcs = lengthOfNcs - s(j);
if indicator >= 0

points = [points;ppval(x,t(j+1)) ppval(y,t(j+1))];
delta_d = 0;
d_res = 0;

else
continue;

end
if lengthOfNcs <= remOft

d_res = lengthOfNcs;
break;

end
end

end
end
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