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Abstract: Home range estimation is the basis of ecology and animal behavior research. Some
popular estimators have been presented; however, they have not fully considered the impacts of
terrain and obstacles. To address this defect, a novel estimator named the density-based fuzzy home
range estimator (DFHRE) is proposed in this study, based on the active learning method (ALM).
The Euclidean distance is replaced by the cost distance-induced geodesic distance transformation to
account for the effects of terrain and obstacles. Three datasets are used to verify the proposed method,
and comparisons with the kernel density-based estimator (KDE) and the local convex hulls (LoCoH)
estimators and the cross validation test indicate that the proposed estimator outperforms the KDE
and the LoCoH estimators.
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1. Introduction

Home range (HR) estimation is a central topic in spatial ecology studies and is fundamental
to understanding animal behavior [1–3]. An HR was originally defined as the area inhabited by an
animal or group of animals in which an animal acquires resources, mates, reproduces, and takes
care of its offspring [3]. Fleming et al. defined the HR area as a percent coverage of the region
encompassing the probability distribution of all possible locations [4]. A large number of complex
factors influence the locations and sizes of animal HRs [5–7], such as the behavioral characteristics of
animals, the geographical environment, body size and group size; therefore, estimating the extent of
an HR is still challenging in the ecological domain [7]. Powell [8] noted that “A HR estimator should
delimit where an animal can be found with some level of predictability, and it should quantify the
animal’s probability of being in different places or the importance of different places to the animal.”
Getz and Wilmers [1] noted that an HR is subject to two types of statistical errors: type I (excluding
valid areas) and type II (including invalid areas) errors. Chirima and Owen-Smith [9] introduced
several criteria to assess the performance of alternative HR estimation methods. These criteria are as
follows: (1) ability to naturally represent the probability or possibility of the distribution of an animal;
(2) ability to bypass obstacles such as cliffs, mountains, rivers and roads for some types of animals;
(3) ability to consider the impact of the terrain; and (4) minimal bias in the size of the HR. The criteria
2 means that an animal cannot live in or cross some geographic objects; for example, a deer cannot live
in water or cross a deep river. Criterion 3 indicates that different topographic features have different
effects on animal activities; for example, deer prefer relatively flat marginal areas of forest to rough
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areas. These two criteria indicate that animal activities are anisotropic. In addition to these criteria,
two new requirements must also be considered. The first requirement is that a HR should include
some areas with some non-zero possibility of animal activation and the second is that type I error be
reduced as much as possible. Currently, global positioning system (GPS) transmitters are commonly
used to track the locations of animals [3], and the transmitter will return location data for animals at
certain time intervals. At the hourly scale, animals rarely walk in a straight line. Therefore, there is
some non-zero possibility that an animal walked along the red line, which may be part of the home
range of this animal (Figure 1).
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Figure 1. The potential location and path of an animal. 

1.1. Previous Work 

One of the oldest and simplest estimators may be the minimum convex polygon (MCP), which 
calculates the HR extent by drawing a convex polygon around the location points of an individual. 
Although MCP has limitations, it is still widely applied [10,11]. Downs and Horner [12Error! 
Reference source not found.] used the characteristic hull polygons (CHPs) as a new method of home 
range estimation to overcome the deficiencies of MCP. This method, however, does not explicitly 
reveal high- and low-density use areas or clusters of points in cores [1]. 

Kernel density-based estimators (KDEs) [13Error! Reference source not found.], including 
fixed-kernel and adaptive-kernel methods, can express the probability of the natural HR distribution 
of an animal or animal group. However, KDEs suffer from difficulties in determining a suitable 
bandwidth and overestimating the HR [1,5,14]. In addition, traditional KDEs are based on the 
Euclidean distance, and the influence of terrain and obstacles on the distance between objects in space 
is difficult to consider. In other words, these methods struggle to account for the anisotropy of animal 
activities. 

The local convex hulls (LoCoH) method [15] has three variants: k-LoCoH (fixed number of 
neighbors), r-LoCoH (certain radius r of each reference point) and a-LoCoH (all points within a 
variable sphere around a reference point, such that the sum of the distances between these points and 
the reference point is less than or equal to a). One assumption of the MCP and LoCoH methods is 
that the location of an animal has no error, but this condition is impossible in the real world. Another 
issue is that LoCoH methods yield a sharp boundary for the core area or HR; however, the HR of 
animals usually has fuzzy boundaries, and it is not sharp in some location of boundaries of the core 
area or HR. However, Getz and Wilmers [15] claimed that LoCoH methods perform much better than 
kernel methods in fitting utilization distributions (UDs) to HRs with distinct boundaries determined 
by geographic or physiographic features such as cliffs and rivers. These methods were better than 
the α-hull methods at incorporating all points into the HR. However, when obstacles exist or the 
terrain of the active region is uneven, the methods mentioned above have limitations. 

In recent years, some estimators have been developed to overcome the limitations of the 
abovementioned estimators, and these estimators include the Brownian-bridge method (BB) [16,17] 
and the potential path area (PPA) approach (Long et al., 2012) [18]. However, these methods model 
the occurrence distribution, which does not quantify the HR, but instead, estimates where an animal 
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1.1. Previous Work

One of the oldest and simplest estimators may be the minimum convex polygon (MCP),
which calculates the HR extent by drawing a convex polygon around the location points of an
individual. Although MCP has limitations, it is still widely applied [10,11]. Downs and Horner [12]
used the characteristic hull polygons (CHPs) as a new method of home range estimation to overcome
the deficiencies of MCP. This method, however, does not explicitly reveal high- and low-density use
areas or clusters of points in cores [1].

Kernel density-based estimators (KDEs) [13], including fixed-kernel and adaptive-kernel methods,
can express the probability of the natural HR distribution of an animal or animal group. However,
KDEs suffer from difficulties in determining a suitable bandwidth and overestimating the HR [1,5,14].
In addition, traditional KDEs are based on the Euclidean distance, and the influence of terrain and
obstacles on the distance between objects in space is difficult to consider. In other words, these methods
struggle to account for the anisotropy of animal activities.

The local convex hulls (LoCoH) method [15] has three variants: k-LoCoH (fixed number of
neighbors), r-LoCoH (certain radius r of each reference point) and a-LoCoH (all points within a variable
sphere around a reference point, such that the sum of the distances between these points and the
reference point is less than or equal to a). One assumption of the MCP and LoCoH methods is that
the location of an animal has no error, but this condition is impossible in the real world. Another
issue is that LoCoH methods yield a sharp boundary for the core area or HR; however, the HR of
animals usually has fuzzy boundaries, and it is not sharp in some location of boundaries of the core
area or HR. However, Getz and Wilmers [15] claimed that LoCoH methods perform much better than
kernel methods in fitting utilization distributions (UDs) to HRs with distinct boundaries determined
by geographic or physiographic features such as cliffs and rivers. These methods were better than the
α-hull methods at incorporating all points into the HR. However, when obstacles exist or the terrain of
the active region is uneven, the methods mentioned above have limitations.

In recent years, some estimators have been developed to overcome the limitations of the
abovementioned estimators, and these estimators include the Brownian-bridge method (BB) [16,17]
and the potential path area (PPA) approach (Long et al., 2012) [18]. However, these methods model
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the occurrence distribution, which does not quantify the HR, but instead, estimates where an animal
is located during an observation period [4]. These types of methods are beyond the scope of this
study. Additionally, some estimators have addressed the problem of obstacles [19–21]; for example,
Long addressed the problem using the cost surface produced based on the slope [19]. However,
the costs of uphill and downhill gradients are often different for animal activities, leading to cost
surfaces produced by the slope alone being insufficient for HR estimation.

1.2. Purpose and Organization

As previously discussed, existing methods have both advantages and shortcomings.
When obstacles and terrain are taken into account, the anisotropic perspective should be introduced into
HR estimations [19], because the movements of animals are directional, leading to anisotropic locations.
We propose a novel HR estimator based on fuzzy set theory [22–24] because the HR is a typical fuzzy
phenomenon, namely, the density-based fuzzy home range estimator (DFHRE), which integrates the
advantages of active learning methods (ALMs) [25]. The remainder of this paper is organized as
follows. In Section 2, two datasets are introduced. Section 3 provides the methodology. In Section 4,
the results are presented, and we discuss the DFHRE and the other estimators. Section 5 presents
the conclusion.

2. Materials

Two datasets are used to verify the methods proposed in this study. The first dataset was acquired
by a GPS locator attached to a rescued oriental white stork (Ciconia boyciana), which was rescued by
our school’s migratory bird rescue team in the spring of 2016. The error of the GPS locator was 5 m.
The oriental white stork is a large wading bird that often forages in swamp, wetland, and pond waters,
mainly eating fish, frogs and insects. The distribution of oriental white stork breeding was mainly
concentrated in the Russian Far East and Northeast China, and wintering areas were concentrated
in the Yangtze River Basin, China. The oriental white stork arrives at its breeding ground in March
every year and begins to leave from late September to early October. The Beidagang Reservoir is a
natural reservoir for migratory birds and an important migratory stopping point for oriental white
storks. The reservoir is located in the Tianjin Binhai New Area at a latitude of 38◦41´ to 38◦50´ E and a
longitude of 117◦15´ to 117◦15´ N, as shown in Figure 2.
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The locator sends the coordinates of the bird to the receiver every hour, and the movement
trajectory of the bird is recorded. In the spring, this bird mainly lived in the south zone (Figure 2).
Two distinct outliers (ID = 48 and ID = 163) were deleted, and 271 points were ultimately obtained.

The second dataset (Figure 3) is a simulated dataset about sika deer (Cervus nippon), which like
to live on the edges of forest and grassland areas but not in dense forests or thickets; additionally,
they prefer regions with little human disturbance and abundant open spaces and water sources [26,27].
According to these habits, we use a digital elevation model (DEM) and remote sensing image to select
sample points manually. We concentrated the sample points in the valley and edge areas of a forested
region, and obstacles such as highways, farmlands, water bodies and villages were avoided when
choosing sites. The DEM data were provided by the National Geomatics Center of China at a spatial
resolution of 25 m. The elevation in this region is between 689 m and 2129 m. In this study, regions
with elevations higher than 1800 m (labeled A in Figure 4), pools (B in Figure 4), expressway service
areas (C in Figure 4), expressways (D in Figure 4), and farms (E in Figure 4) were considered obstacles
to sika deer activities (Figure 4). Because the animals prefer to live on flat terrain rather than in rugged
and steep areas, the height differences derived from the DEM are used to measure the cost distance in
this region.
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The third dataset is the tracked data for Cilla, an individual African buffalo [15,28] that was
tracked at the Lower Sabie region of the Kruger National Park for 147 days between July and December
2005, yielding 3528 location points. The DEM was downloaded from the Geospatial Data Cloud
(http://www.gscloud.cn/), and its spatial resolution is 30 m. The waterway layer was obtained from the
OpenStreetMap (https://www.openstreetmap.org). Almost all the points are on the east side of the
Sabie River, so in this experiment, the Sabie River is an obstacle to Cilla’s activities, and the nearby
mountains (Labeled A in Figure 5) also restrict activities.ISPRS Int. J. Geo-Inf. 2019, 8, 490 5 of 23 
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3. Methods

In this section, we introduce a new HR estimator, based on the ALM. To consider the anisotropy
of animal monitoring points, the cost distance based on geodesic distance transformation is used as a
distance measurement between points.

3.1. Framework of the DFHRE

The framework of the proposed DFHRE is composed of four stages (Figure 6). The DFHRE is
operated in raster space, so all data should be digitalized in raster format. The resolution of the raster
is important for subsequent analysis. These three datasets introduced in Section 2 correspond to three
different experiments. As a result, the resolution of the first dataset is set to 20 m, which is consistent
with the resolution of the remote sensing data used in subsequent research, and the resolutions of
dataset 2 and dataset 3 are set to 25 m and 30 m, respectively, which are consistent with the resolution
of the DEM.

http://www.gscloud.cn/
https://www.openstreetmap.org
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3.2. Determining the Cost Distance

Sample points can be anisotropic when obstacles and terrain are considered in natural environments.
For example, point 1 in Figure 7 is a source point; the center of the purple circle is at point 1, and the
radius is 700 m. As a result, the Euclidean distances from point 1 to points 2, 3 and 4 are equal. However,
the elevation increases from point 1 to point 2 and decreases from point 1 to point 3, and the elevation
of point 1 is similar to that of point 4; thus, it is intuitively believed that it is easier to move from point
1 to 3 than from point 1 to 2 and from point 1 to 4. Considering the anisotropy of animal movements,
the cost distance induced by least-cost modelling and the map algebra-distance transformation with
obstacles (MA-DTO) algorithm [29] are adopted in this study. This algorithm is implemented in raster
space and based on the structure of eight neighbors (Figure 8a). Let the image size be M × N, and the
size of the neighbor window be 3 × 3. Then, the height difference between a cell in this image (relief
amplitude) and one of its neighbors in Figure 8a is expressed as follows:

∆dRi, jRw,v = HRi, j −HRw,v , (1)

where Ri, j(0 ≤ i ≤M− 1, 0 ≤ j ≤ N − 1) is any cell in the DEM, Rw,v(i− 1 ≤ w ≤ i + 1, j− 1 ≤ v ≤ j + 1)
is any neighbor of Ri, j, and HRi, j and HRw,v are the elevations of points Ri, j and Rw,v, respectively. Then,
the cost distance of the original point to any point in space can be calculated in terms of the following
three steps.

Step 1: Let the image size be M × N. The distance matrix D(M × N) is used to express the distance of
any point to the original point, and the initial distance is set to a very large value, such as the maximum
value of the integer type. If point (m, n) is the original point, set D(m, n) is equal to 0.
Step 2: Scan matrix D from the upper left corner to the lower right corner, where i = 0, 1, 2, . . . , M–1
and j = 0, 1, 2, . . . , N–1, as shown in Figure 8b. The distance matrix D is updated by:

di, j = min

 di, j, di, j−1 + S + k× ∆dRi, jRi, j−1 , di−1, j−1 +
√

2S + k× ∆dRi, jRi−1, j−1 ,
di−1, j + S + k× ∆dRi, jRi−1, j , di−1, j+1 +

√
2S + k× ∆dRi, jRi−1, j+1

, (2)

where S is the resolution of the raster data and k is the parameter used to adjust the movement difficulty.
If Ri, j is an obstacle, no further steps are required.
Step 3: Scan matrix D from the lower right corner to the upper left corner, where i = M–1, M–2, . . . , 0
and j = N–1, N–2, . . . , 0, as shown in Figure 8c. The distance matrix D is updated as follows.

di, j = min

 di, j, di, j+1 + S + k× ∆dRi, jRi, j+1 , di+1, j+1 +
√

2S + k× ∆dRi, jRi+1, j+1 ,
di+1, j + S + k× ∆dRi, jRi+1, j , di+1, j−1 +

√
2S + k× ∆dRi, jRi+1, j−1

, (3)

If Ri, j is an obstacle, no further steps are required.
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Figure 8. Scan process in the map algebra-distance transformation with obstacles (MA-DTO) algorithm.
(a) Eight neighbors of target cell Ri, j; (b) the scanning order from top to bottom; and (c) the scanning
order from bottom to top.

Through steps 2 and 3, we can obtain the cost distance from any point to the source point in the
raster space. In Figure 7, the green lines represent the cost distance to point 1. It is clear that although
the Euclidean distances between points 1 and 2, 1 and 4, and 1 and 3 are equal, the cost distance from
point 1 to 2 is larger than that from point 1 to 4 and from point 1 to 3. The reason for this difference
is that the elevation of point 2 is higher than that of points 3 and 4. If there are obstacles between
one point and the original point, the movement of animals will bypass these obstacles, as shown in
Figure 7. Generally, the value of k depends on the living habits and environment of animals. Notably,
if the terrain is flat, the influence of the terrain factor should not be considered; in this situation, k is set
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to 0. Additionally, different animal species have different climbing abilities; for example, tigers, goats,
and horses have different climbing abilities. Tigers like to live in mountainous areas, and horses like to
live in flat regions. Therefore, a rough and simple approach to determining k is the method of ranking
the climbing ability of different animals; in this solution, k can be a static value. A more detailed
approach is the resource selection method [30,31]. In this method, the resource selection probability
function (RSPF) gives the probability that a particular resource, as characterized by a combination of
environmental variables, will be used by an individual animal. Horne et al. [31] adopted this approach
and proposed a synoptic model s(x) of animal space use as a function describing the probability density
of environmental covariates. In this study, s(x) is adopted to determine the value of k for different relief
amplitude values. Because we concentrate on the influence of different relief amplitude values on
HR, there is one covariate in s(x), and it is a function of the relief amplitude. Thus, s(x) is expressed
as follows:

s(x) =
f0(x)(1 + H(x))∫

x f0(x)(1 + H(x))
, (4)

where H(x) is the relief amplitude at location x and f0(x) is the Gaussian density function of the relief
amplitude. The larger the value of s(x) is, the higher the preference degree of animals for a relief
amplitude value, and vice versa. The influencing coefficient of relief amplitude on distance is expressed
as follows:

k(x) = 1−
s(x)

max(s(x))
(5)

3.3. Determining the Possibility Distribution with IDS Operations

Usually, the probability theory offers a good quantitative model for randomness and indecisiveness,
and possibility theory offers a good qualitative model of partial ignorance [24]. As a classical measure
of possibility [22,23], the fuzzy set uses the membership value to describe the possibility of an object
belonging to a set, with the range of membership values being [0,1]. Usually, Gaussian, triangular
and trapezoid membership functions are used to describe the fuzziness of the attributes of an object
in practice.

The ink drop spread (IDS) operator is the core of ALMs and acts as a fuzzification operator. ALMs
have been successfully used for function approximation [32] and classification [33]. First, the possibility
distribution is estimated by the IDS operator; then the membership degree of the HR, which indicates
the importance of different places to an animal, is produced. To improve the IDS operation and
consider the terrain and obstacles, the cost distance [34,35] is used to replace the Euclidean distance.
The classical IDS operator assumes that each data point is isotropic, meaning that the ink drops extend
to the surroundings, and when the ink drops overlap, some regions become increasingly dark and form
arbitrarily shaped ink patterns. Moreover, this operator assumes that the surface should be planar and
contain no obstacles. However, a real surface is often inclined, and ink drops should spread in the
direction of downward inclination in this case. When obstacles are encountered during the spreading
process, the ink drops will bypass the obstacles. In addition, the activities of animals are very different
from those of water droplets. Animals can go uphill and downhill. In addition, it is comparatively
easy for animals to go downhill and more difficult for them to climb than move on flat land. As a
result, animal movements are anisotropic, which should be considered, and the cost distance is used to
replace the Euclidean distance in this stage.

In classical ALMs, an ink drop spreads isotopically in the IDS plane when considering the degree
of uncertainty in the vicinity of a data point [33]. The influence area of adjacent points or the uncertainty
regions around these points may overlap. In this study, the triangular fuzzy number is used to express
the influence range D (Figure 9a) of sample points and is expressed as follows:

h(d) =
{

1− 1
D , d ≤ D

0, d > D
(6)
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where d is the distance from a target point to a source point and D is the influence range of a source
point. The membership value of a point describes the influence degree of a sample point on this point;
thus, the larger the influence degree is, the larger the possibility of this point belonging to the HR.
For example, the influence degree of p1 is larger than that of p2, and p1 has a larger possibility of
belonging to the HR than does p2. Here, the influence range D is the maximum radius of movement of
animals in a given period of time under normal conditions. The ad hoc smoothing method is a useful
way to determine the value of D, and we will discuss this approach later in the paper.
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distance, respectively.

The influence area of a sample point can be determined by Equation (6). Assuming that D is
800 m, the Figure 9b shows the influence area of a source point when the Euclidean distance is used in
a classical ALM. Target points 2, 3, and 4 have the same influence on the source point because these
three points have the same Euclidean distance to the source point. Target point 5 is not influenced
by the source point because the Euclidean distance from point 5 to the source point is larger than the
value of D. The influence area of the source point is shown in Figure 9c when the Euclidean distance is
replaced by the cost distance (Section 3.2); although points 2, 3 and 4 have the same Euclidean distance
to the source point, their cost distances are clearly different. We can see that target points 3 and 4 have a
different influence degree of the source point. Point 2 is not influenced by the source point because the
cost distance from it to the source is larger than D, and the influence value at point 5 is 0.32 because the
cost distance from it to the source is less than D. Therefore, the difference between the cost distances
from points 2, 3 and 4 to the source point leads to different influence degrees, and with this approach,
the anisotropy of animal activity is described.

If a cell in the IDS plane is influenced by several source points, it is necessary to overlap all of the
ink patterns of these source points. Usually, the overlap of all ink patterns can be modeled by sum
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operators, and the full IDS plane can be filled by the ink patterns that describe the influence degree of
all sample points. Let H be the influence area of sample t, which is converted from the cost surface by
Equation (6); then, the full IDS plane is expressed as follows:

IDS
(
Ri, j

)
=

T∑
t=1

Ht
(
Ri, j

)
(7)

where T is the number of source points. The Ht
(
Ri, j

)
is the influence degree of source point t on cell (i, j),

as shown in Figure 9. Then, the full IDS plane is normalized to the range of (0,1), and the possibility
distribution function (PDF) or the membership grade of the HR can be determined. In this study, the
proposed method assumes that data are independent and identically distributed (IID).

3.4. Detecting Core Areas and HRs

HR size is usually estimated from the 90% or 95% isopleths of the probability or possibility
distribution, and the core areas are typically distinguished within the 50% isopleths [5,15,36,37]. In this
study, 50% and 90% isopleths are used to estimate the core area and HR, respectively.

3.5. Determining the Initial Parameters

Two parameters are crucial for the DFHRE. We adopt the resource selection method to optimize
the topographic influence parameter k. The influence range D is very similar to the bandwidth of the
kernel density estimators, so we can adopt the identification method of the bandwidth to select an
appropriate D. There are some automated methods that can be used to select an appropriate bandwidth.
The reference method (hre f ) assumes a normally distributed dataset, but generally performs poorly,
except for applications involving unimodal distributed datasets [38]. The least-squares cross validation
(LSCV) method (hLSCV) is widely used in related studies, but it has a tendency to select low bandwidth
values that produce fragmented UDs [39,40] and numerical limitations of points [41]. The ad hoc
smoothing method (had−hoc) was designed to prevent over- or under-smoothing, and this method
involves choosing the smallest increment of hre f that results in a contiguous 95% kernel HR polygon
that contains no lacuna [42]. This technique is repeatable and defensible given that the proper biological
questions are posed prior to analysis [40]. In this study, we adopt the ad hoc smoothing method to
select the appropriate D. It should be noted that when k in Equations (2) and (3) is equal to 0 and no
obstacle is taken into account, the cost distance is simplified to the Euclidean distance and D is reduced
to an ordinary bandwidth.

3.6. Implementation in Java

The algorithm described in this section is implemented in Java, and the open-source package
Geotools [43] is used. At first, all sample points are digitalized as a raster layer. For the second
experiment, the DEM is needed, and the obstacle data are processed in ArcMap. For each sample
point, the cost surface from this sample to any location in space is calculated by Equations (1)–(3).
In calculating the parameter k, the relief amplitude is calculated from the DEM, and the Gaussian
density function of the relief amplitude can be obtained. Then, the influencing coefficient of relief
amplitude k is calculated from Equations (4) and (5). The influence area of each sample can be produced
by Equation (6), and the PDF of the HR is obtained from Equation (7).

4. Results and Discussion

Because the Beidagang Reservoir is very flat and there are no obstacles in this reservoir that can
interfere with the activities of the oriental white stork, the effects of terrain and obstacles are not taken
into account. The sample layer is digitalized into a raster layer with a resolution of 20 m, and the
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Euclidean distance is used, which means that k = 0 in Equations (2) and (3). D is set to 421 m with the
ad hoc smoothing method.

For the Dataset 2, as described in Section 2, five types of obstacles are taken into account. The cost
distance layer of each sample is calculated by Equations (1)–(3) with the DEM and obstacle layer,
and the value of k for different height differences in Equations (2) and (3) is determined by Equations
(4) and (5). The best choice of D is 278 m according to the ad hoc smoothing method.

Similarly, the best choice of D for Dataset 3 is 840 m based on the ad hoc smoothing method,
and the value of k is determined by Equations (4) and (5).

4.1. Results

4.1.1. Results for Dataset 1

Using the DFHRE method presented in Section 3, we can obtain four core areas (Figure 10a),
and the HR is divided into five parts (Figure 10b). The sizes of the core areas and the HRs are listed in
Table 1.ISPRS Int. J. Geo-Inf. 2019, 8, 490 11 of 23 
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4.1.2. Results for Dataset 2

The IDS, which is the membership grade or HR possibility distribution of this dataset, is modeled
by Equation (6), as shown in Figure 11. The sizes of the core areas and the HRs are listed in Table 2.
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4.1.3. Results for Dataset 3

The IDS and HR of Dataset 3 are shown in Figure 12, and the areas of each core area and the
extent of the HR are calculated, as shown in Table 3. The HR is not crossed by the Sabie River, and the
overlap area of the HR with the mountains (labeled in Figure 5) is very small.ISPRS Int. J. Geo-Inf. 2019, 8, 490 12 of 23 
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4.2. Analysis of the DFHRE

The characteristics of the DFHRE can be summarized as follows.
(1) The DFHRE can consider the undulating terrain and bypass the obstacles via a geodesic

distance transformation with the DEM and obstacles. The Euclidean distance will be used if the terrain
and obstacles are not considered.

(2) The DFHRE uses a membership grade to express the gradual change in the possibility degree
of any location belonging to a HR; thus, it is suitable to express the fuzzy scope of the HR.

4.3. Comparisons with Other Estimators

To verify the effectiveness of the proposed method, we compare it with two popular methods:
KDE and LoCoH. The multivariate kernel density estimation (MKDE) based on the plug-in
selector [40,41] is an effective fixed-kernel method, and it is used in this section; the adaptive
kernel method in KDE is implemented by the Home Range Tools package for ArcGIS®10.x (HRT
2.0) [42]. While the LoCoH is implemented with the HR Analysis and Estimation (HoRAE) toolbox [38].
As previously mentioned, the MCP method results in extensive overestimation; thus, we will not
compare it with the presented method. Specifically, the MKDE and adaptive kernel methods in KDE
and the r-LoCoH and k-LoCoH methods are compared.
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4.3.1. Comparison for Dataset 1

For the MKDE, the bandwidth matrix is determined by the multistage plug-in bandwidth selector

as H =

[
37862.34 36555.94
36555.94 87963.47

]
; the adaptive kernel method is an automated method that uses a

different bandwidth for each data point [13], and the estimated results are shown in Figure 13. Two core
areas are produced by two kernel methods, and the results are relatively concentrated. Table 1 reports
the sizes of the core areas and HR. From the perspective of size, the MKDE produces smaller core areas
and a smaller HR than the adaptive kernel method, and the proposed DFHRE approach produces the
smallest HR.ISPRS Int. J. Geo-Inf. 2019, 8, 490 13 of 23 
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Table 1. Sizes of the core areas and HRs estimated by the DFHRE, KDE and LoCoH methods for
Dataset 1.

Method Core Area
(m2)

HR
(m2)

DFHRE 754,400 4,124,000
Fixed kernel 738,432 42,23,832

Adaptive kernel 4,340,866 12,513,091
r-LoCoH (r = 500) 723,752 2,118,506
k-LoCoH (k = 16) 247,620 1,736,049

For the LoCoH method, the parameter k in k-LoCoH is determined by the recommended method
(k = 2√n), where k = 16. The parameter r in r-LoCoH is determined by experiments and set as 500 m.
The results of LoCoH are shown in Figure 14. The 60%, 91%, and 100% isopleths are achieved by
r-LoCoH (Figure 14a), and the 53%, 90%, and 100% isopleths are achieved by k-LoCoH (Figure 14b).
The boundaries of the core areas and HR are crisp, and at some locations, the 60%, 91%, and 100%
isopleths overlap. In other words, the possibility of these locations being HRs sharply declines from
0.6 to 0, and some non-zero probability regions are excluded. Therefore, it seems very rough to express
the vagueness of the HR, and the predicted HR can even be considered inconsistent with the actual
situation. In contrast, the DFHRE expresses the fuzzy boundaries of HR by the possibility degree, and
all non-zero possibility regions are included (KDE expresses a fuzzy boundary based on a probability),
so the results of the DFHRE and KDE seem very reasonable (Figures 10 and 13). From the perspective
of size, the results of the LoCoH methods are shown in Table 1. Because some regions with non-zero
probability are ignored by the LoCoH methods, the two LoCoH methods yield smaller areas than the
DFHRE and KDE methods.
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Figure 14. HRs estimated by the LoCoH methods for Dataset 1.

4.3.2. Comparison for Dataset 2

The bandwidth matrix of MKDE for this dataset is H =

[
101018.26 44071.41
44071.41 57924.78

]
, and the

bandwidth of adaptive KDE is automatically determined. The results are shown in Figure 15, and the
sizes of the core areas and HR of the five methods are reported in Table 2. We can see that the MKDE
and adaptive KDE results overlap with some obstacles, so they have no ability to bypass obstacles.
In this study, the two KDE methods based on the Euclidean distance do not consider the effects of
terrain and obstacles, so the results are inferior to those of the DFHRE. Deer like to live in valley areas,
which are flatter than hillsides and suitable for deer life. In other words, mountains and obstacles will
limit the sphere of activity of this type of animal. Therefore, from this perspective, the results of the
DFHRE are more reasonable than those of the KDE methods. If the sizes of the core areas and HR are
considered, then the core areas and HR (Table 2) are larger than those estimated by DFHRE. Therefore,
for this dataset, the DFHRE is performs better than KDE.
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Table 2. Sizes of the core areas and HRs estimated by the DFHRE, KDE and LoCoH methods for
Dataset 2.

Isopleth Core Area
(m2)

HR
(m2)

DFHRE 813,750 366,8125
Fixed kernel 1,251,385 7,339,245

Adaptive kernel 1,544,052 6,826,268
r-LoCoH (r = 500) 868,200 2,655,871
k-LoCoH (k = 16) 682,955 3,524,019

For the LoCoH method, r = 300 m for the r-LoCoH and k = 25 for the k-LoCoH are used, and the
results are shown in Figure 16. The extent of the r-LoCoH result is narrower than those of other methods.
If the size of the region is concerned, k-LoCoH yields the smallest core areas but a large HR, because
it covers all the samples of the dataset. The size of the 100% HR estimated by r-LoCoH is obviously
smaller than that estimated by k-LoCoH because r-LoCoH removes some outliers. An obvious attribute
of the result of the LoCoH method is that all boundaries corresponding to the 50%, 90% and 100%
isopleths are crisp, and the latter method is used to express the degree of activity range; however,
the degree of activity ranges estimated by the DFHRE and KDE exhibit gradual transitions. Therefore,
from this perspective, the LoCoH method is coarser than other methods. Another default is that some
regions with a non-zero probability of animal activity, as discussed in Section 1, are missing; however,
the DFHRE and KDE methods can detect some regions with a non-zero possibility or probability
of animal activity, and the type I error is reduced. Additionally, this method does not consider the
influences of obstacles, and the HRs estimated by the LoCoH methods may overlap with obstacles,
so the HRs estimated by the LoCoH methods still have defects. For example, the lake is completely
covered by the HR extent, and the expressway is overlapped by the HR extent; thus, this method
cannot completely circumvent the obstacles, and type II error exists. By contrast, the DFHRE method
excludes all types of obstacles, and then the type II error is reduced.
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4.3.3. Comparison for Dataset 3

The bandwidth matrix of the MKDE for this dataset is H =

[
201717.75 −72171.05
−72171.05 389682.69

]
, and the

bandwidth of adaptive KDE is automatically determined. Figure 17 shows the results, and Table 3
illustrates the sizes of the core areas and HRs of the five methods. The results of the MKDE and
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adaptive KDE overlap with the Sabie River. Additionally, the HRs of the MKDE and adaptive KDE
overlap with the mountains (Labeled in Figure 5) in a large area. However, the proposed DFHRE
method based on the cost distance can consider the effects of terrain and obstacles, so the results of
the DFHRE do not overlap the Sabie River but do overlap the mountains in a small area. In general,
buffaloes like to live in flat areas, and deep rivers restrict their activities, but streams do not have that
effect. Therefore, from this perspective, the results of the DFHRE are more reasonable than those of the
KDE methods. From the point of view of area, the core areas and HRs (Table 3) of the KDE are larger
than those estimated by the DFHRE, and then the result of the DFHRE has less type II error than that
of the KDE. Therefore, for this dataset, the DFHRE performs better than the KDE.ISPRS Int. J. Geo-Inf. 2019, 8, 490 16 of 23 
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Table 3. Sizes of the core areas and HRs estimated by the DFHRE, KDE and LoCoH methods for
Dataset 3.

Isopleth Core Area
(m2)

HR
(m2)

DFHRE 29,290,500 101,241,000
Fixed kernel 31,807,074 124,029,946

Adaptive kernel 60,533,862 232,011,617
r-LoCoH (r = 1000) 32,101,265 90,196,218
k-LoCoH (k = 59) 26,282,337 126,126,900

For the LoCoH method, r = 1000 m for the r-LoCoH and k = 59 for the k-LoCoH, with the results
shown in Figure 18. Similar to experiment 2, the extent of the r-LoCoH result is narrower than that
of other methods, but the HR of r-LoCoH is very fragmented. The result of the LoCoH method is
coarser than the results of other methods, and some regions with a non-zero probability of animal
activity are missing. Thus, the results of the DFHRE and KDE are better than those of LoCoH. From the
perspective of the obstacles, the HR of LoCoH slightly overlaps the Sabie River, and the HR of r-LoCoH
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almost avoids the mountains, but the HR of k-LoCoH does not. Therefore, the results of the DFHRE
and LoCoH methods are better than those of the KDE.ISPRS Int. J. Geo-Inf. 2019, 8, 490 17 of 23 
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In summary, the proposed method can naturally represent the possibility degree or density of
the distribution of an animal, bypass obstacles and consider the impact of the terrain; additionally,
some areas with a non-zero possibility of animal activity can be expressed, and the two types of
statistical errors are effectively reduced. According to the criteria introduced in Section 1, it can be
concluded that the results of the proposed DFHRE method are better than the results of the KDE and
LoCoH methods.

4.3.4. Cross Validation

In this section, the leave-one-out cross-validation method [4] is used to test the performance of the
proposed method and compare it with the MKDE and k-LoCoH. The results are shown in Figures 19–21,
and the area changes of the results are listed in Table 4. For the DFHRE, when the number of samples
is reduced to half of the original dataset, all core areas and HRs are also reduced, but no substantial
changes occur. However, the result of MKDE shows the reverse trend. The results of k-LoCoH display
no consistent trend, and the area of core areas based on k-LoCoH for Dataset 1 increased by 32.38%.
From the perspectives of obstacles and terrain, the result of the MKDE overlaps the Sabie River and
almost covers the mountain area (labeled in Figure 5). The result of LoCoH overlaps the river and the
mountains. In contrast, the result of the DFHRE does not overlap the Sabie River, and the overlapping
area between the HR and mountains is very small. Therefore, this cross-validation method shows that
the results of the DFHRE are more stable and reasonable than those of the MKDE and k-LoCoH.
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accurately describe animal activity as a fuzzy phenomenon. This paper presents a novel estimator 
based on the ALM. The cost distance is used to replace the Euclidean distance when the effects of 
terrain and obstacles need to be considered, which can effectively take into account the anisotropy of 
the sample points. The proposed method is implemented in Java, and three experiments and a cross-
validation test show that this method can model the HRs of animals as fuzzy regions and effectively 
consider the terrain and avoid obstacles. 

To simplify the study, we assume that animals cannot reach the obstacles and that all obstacles 
must be avoided. Because different land cover types may have different influences on animal 
activities, quantitatively determining the influence coefficients of different land cover types is 
important to HR estimation, especially when the land cover type is fuzzy; this topic will be explored 
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wetlands will also be investigated, such as topological and directional relationships. Through these 
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Table 4. Area changes in the results of the DFHRE, MKDE, and k-LoCoH for the three datasets.

Data Method
Core HR

Full (m2) Half (m2) Reduction (%) Full (m2) Half (m2) Reduction (%)

Dataset 1
DFHRE 754,400 711,200 5.73% 4,124,000 3,479,600 15.63%
MKDE 738,432 940,039 −27.30% 4,223,832 5,313,703 −25.80%

k-LoCoH 247,620 327,806 −32.38% 1,736,049 1,890,265 −8.88%

Dataset 2
DFHRE 813,750 808,750 0.61% 3,668,125 3,211,250 12.46%
MKDE 1251,385 1,529,783 −22.25% 7,339,245 8,027,278 −9.37%

k-LoCoH 682,955 639,636 6.34% 3,524,019 2,834,798 19.56%

Dataset 3
DFHRE 29,290,500 27,856,800 4.89% 101,241,000 95,163,300 6.00%
MKDE 31,807,074 33,326,862 −4.78% 124,029,946 134,312,919 −8.29%

k-LoCoH 26,282,337 26,145,740 0.52% 126,126,900 124,467,800 1.32%

5. Conclusions

HR estimation is the basis of ecology and animal behavior research. The results of a HR estimator
can illustrate the fuzzy patterns of the range of animal activity; thus, an ideal estimator should
accurately describe animal activity as a fuzzy phenomenon. This paper presents a novel estimator
based on the ALM. The cost distance is used to replace the Euclidean distance when the effects of
terrain and obstacles need to be considered, which can effectively take into account the anisotropy
of the sample points. The proposed method is implemented in Java, and three experiments and
a cross-validation test show that this method can model the HRs of animals as fuzzy regions and
effectively consider the terrain and avoid obstacles.

To simplify the study, we assume that animals cannot reach the obstacles and that all obstacles
must be avoided. Because different land cover types may have different influences on animal activities,
quantitatively determining the influence coefficients of different land cover types is important to HR
estimation, especially when the land cover type is fuzzy; this topic will be explored in future work.
Additionally, the spatial relationships between the HR of the oriental white stork and wetlands will
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also be investigated, such as topological and directional relationships. Through these spatial analyses,
we can further reveal the dependence of a migratory bird on wetlands.
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