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Abstract: A contextual effects model, built based on Bayesian spatial modeling strategy, was used
to investigate contextual effects on neighborhood burglary risks in Wuhan, China. The contextual
effects denote the impact of the upper-level area on the lower-level units of analysis. These effects
are often neglected in Bayesian spatial crime analysis. The contextual effects model accounts for
the effects of independent variables, overdispersion, spatial autocorrelation, and contextual effects.
Both the contextual effects model and the conventional Bayesian spatial model were fitted to our
data. Results showed the two models had almost the same deviance information criterion (DIC).
Furthermore, they identified the same set of significant independent variables and gave very similar
estimates for burglary risks. Nonetheless, the contextual effects model was preferred in the sense that
it provides insights into contextual effects on crime risks. Based on the contextual effects model and
the map decomposition technique, we identified, worked out, and mapped the relative contribution
of the neighborhood characteristics and contextual effects on the overall burglary risks. The research
contributes to the increasing literature on modeling crime data by Bayesian spatial approaches.
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1. Introduction

Geographers and criminologists have had an everlasting interest in the geography of crime [1].
An empirical study of crime can investigate the geographical variations of crime risks and potential
risk factors underling those variations. Clearly, a comprehensive understanding of this relationship
contributes to better-informed crime intervention and prevention efforts. From the existing literature,
researchers have adopted non-spatial regression models in ecological studies of crime [2]. These
models are not adequate to analyze crime at a small-area scale, as they do not take into account any
spatial relationships between units of analysis. In practice, however, small-area crime data are usually
spatially auto-correlated. Neglecting this spatial autocorrelation can result in biased inference [3].

Methodologically, spatial autocorrelation has been accounted for by frequentist spatial statistical
models. For instance, Morenoff et al. [4] employed a spatial lag model to probe into the association
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between neighborhood-level characteristics and violent crime. Andresen [5] employed a spatial
error model to investigate the impact of socioeconomic features on crime rates at the census tract
level. However, these frequentist statistical models have shortcomings. They cannot handle the small
number problem [6], possibly leading to unstable risk estimates and underestimated standard errors [7].
Another methodological problem difficult to solve by frequentist statistical models is overdispersion
in count data. It has been recognized as a particular problem in generalized linear modeling for the
analysis of grouped data [8]. Accounting for overdispersion is essential as it has an impact on the
estimates for regression parameters [9].

In addition to frequentist approaches, Bayesian methods have also been applied in spatial data
analysis. The Bayesian approach, differing from the frequentist approach, views a parameter as a
random variable with a probability distribution. Its basic principle is that prior knowledge is combined
with data to produce posterior distributions of parameters on which the posterior estimates are based.
Implementation of the Markov chain Monte Carlo (MCMC) simulations makes Bayesian statistics and
modeling fashionable in a wide range of scientific research [10]. By MCMC, it is feasible to fit complex
models computationally intractable by frequentist statistics. In parallel, the rapid evolution of software
such as WinBUGS has further promoted the popularity of Bayesian methods.

Bayesian approaches in spatial data analysis have grown rapidly since the 1990s. They have
advantages in fitting complex spatial models and can overcome shortcomings of frequentist approaches.
Through random effects terms, Bayesian models account for overdispersion and spatial autocorrelation.
They can provide more stable risk estimates than comparable frequentist methods. In spite of these
advantages, their application in small-area crime analysis is still not common. Nonetheless, there is a
growing awareness of the strengths of the Bayesian spatial modeling approaches. An increasing number
of studies have used Bayesian models. Specifically, the influence of socioeconomic variables on property
crime [11–13], suicide [14], juvenile offenders [15], and violent crime [16], and the spatio-temporal
patterns of crime [17,18] have been investigated. Bayesian spatial modeling approaches have gradually
gained popularity among researches of crime analysis. Despite the growing awareness of and the
increased literature on Bayesian spatial modeling, little work has focused on contextual effects in
crime analysis.

Contextual effects generally denote the impact of the upper-level area on the lower-level
units of analysis. Take the neighborhood and sub-district in China as an example to illustrate
the contextual effects. The neighborhood set is a unique subdivision of the sub-district set in
China. Each neighborhood falls uniquely within a sub-district and each sub-district consists of
several neighborhoods. Neighborhoods are clustered within sub-districts. It is therefore likely that
additional clustering of high (or low) crime risks common to neighborhoods falling within the same
sub-district may exist due to urban construction, planning policy, urban administration, and public
social control. Some grouping effect based on sub-district could be found for neighborhoods lying
within a given sub-district. Specifically, the sub-district level should have a contribution from effects at
the neighborhood level. As a consequence, there is multiscale information theoretically in the sense that
the lower-level neighborhood units fall completely and uniquely within the upper-level sub-district
units. Due to this clustered and hierarchical structure of data, local crime pattern is simultaneously
affected by characteristics of the environment at multiple spatial scales [19,20]. It results from the joint
effects of different layers of crime potential [21]. Furthermore, the influence of crime risk factors is
potentially conditional on context and can operate across multiple scales. Neglecting these information
can lead to incorrect inferences on risk factors [22]. One natural way using the multiscale information
is to take into account the contextual effects. From the practical perspective, crime risks are influenced
by both neighborhood characteristics themselves and contextual effects. Disentangling and identifying
the contribution of the two sources of variation on risks are valuable for crime prevention and control.
If most of the variation in crime risks is due to neighborhood characteristics, attention should be given
to neighborhood-level factors. In contrast, if contextual effects account for most of the variation, a focus
on upper-level sub-districts can contribute to a more effective crime prevention strategy.
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Contextual effects have been examined in past studies by hierarchical linear models. For example,
Johnson and Bowers [23] focused on the relationship between permeability of a street network and
burglary risk while taking account of the nesting in the data. Davies and Johnson [24] examined
the role of road structure (betweenness and linearity) on the spatial variability of burglary risks by a
quantitative network analysis. Steenbeek and Weisburd [25] examined variability of crime for street
segments, neighborhoods, and districts in Hague city. Deryol et al. [26] illustrated the effects of nodes,
paths, and the macro-environmental context on the formation and development of crime hotspots.
Schnell et al. [27] explored the impact of street segments, neighborhood clusters, and community areas
on the distribution of violent crime in Chicago. The models these researchers adopted accounted
for the hierarchical structure of the data and were fitted by frequentist approaches. More recently,
Quick [28] applied a Bayesian cross-classified multilevel modeling approach, accommodating the
influence of non-hierarchical upper-level units, to analyze the spatiotemporal patterns of crime in the
Region of Waterloo.

In the current research, we aim to shed light on contextual effects on burglary risks. We adopt
a contextual effects model to investigate contextual effects on burglary risks. The model is built
based on Bayesian spatial modeling strategy and accounts for the hierarchical structure of data.
The research contributes to the increasing literature on modeling crime data by Bayesian spatial
approaches, as contextual effects are generally overlooked.

The remainder of this paper consists of five parts. Following an introduction, the study area and
data are briefly described. Then, we thoroughly introduce the research methodology. Subsequently,
results of our analysis are provided. Afterwards, we discuss the results. Finally, we conclude our study.

2. Materials

2.1. Study Area

Our research focused on Jianghan District, located in Wuhan City of Hubei Province, China.
Wuhan is the political, economic, educational, and transportation center of Central China. The Jianghan
District is one of the most prosperous urban districts of Wuhan, consisting of 13 sub-districts and 116
neighborhoods (Figure 1). The neighborhoods’ area ranges between 0.024 and 5.753 square kilometers,
with a mean of 0.320 square kilometers. The sub-districts’ area ranges from 0.406 to 11.028 square
kilometers, with a mean of 2.852 square kilometers. In Jianghan, each neighborhood falls uniquely
and completely within one sub-district and each sub-district is composed of several neighborhoods.
Consequently, some contextual effects based on sub-district could be found for neighborhoods lying
within a given sub-district. We aim to investigate these contextual effects on burglary risks while
controlling for neighborhood characteristics. Two neighborhoods were not included in our research
due to lack of data, resulting in a data set of 114 neighborhoods.
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2.2. Dependent Variables

Burglary data, including the residential and commercial burglaries, were provided by the city’s
police department. They were retrieved from the city’s 110-reporting system, a major source of official
crimes in China. We used four years of burglary data from 1 January 2012 to 31 December 2015
to minimize the influence of annual fluctuations and get reliable risk estimates for neighborhoods.
During the period, 8589 burglaries were recorded. The reported burglary incidents were aggregated to
neighborhoods. The neighborhoods range in total burglaries from one to 1457; the mean is 75.34 and
the standard deviation is 148.74. We took these burglary data as dependent variables.

2.3. Independent Variables

Two common but predominant theories related to the geography of crime are the social
disorganization theory [29] and the routine activity theory [30]. The first theory indicates that
crime is strongly related to social disorganization, and characteristics of a neighborhood, including
demographic, economic, and other factors, can account for variations in crime [31]. Low socioeconomic
status can disrupt social control, which in turn can increase crime rates [32]. The second theory
associates occurrence of a crime with people’s daily activities [30]. This theory highlights that the
convergence of motivated offenders and suitable targets in situations where capable guardians are
absent is a prerequisite for a crime to occur [33]. The routine activity and social disorganization theories
are frequently used in spatial analysis of crime [5]. Thus, based on these two theories, a list of seven
variables representing neighborhood characteristics were considered to be potential risk factors.

Population density referred to the resident population of each neighborhood divided by its area in
square kilometers. We included this variable to allow for differences in population and neighborhood
size. The variable has been used in previous studies of crime [34,35]. Young males was measured
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by the percentage of men aged 15–24. Age and gender are factors often related to offenders and
victims [12,36]. Researchers have discovered that criminal behaviors are overrepresented in young
males [37]. The population density and percentage of young males are two demographic variables.

High education was the percentage of residents with a high school degree or more over 20 years
of age. Unemployment was the percentage of unemployed people aged 18–60 in labor force. These
two variables are often selected and used as indicators of neighborhood socioeconomic status [2,5,15].

Bar density was the quantity of bars per 10,000 residents. The presence of particular land use
has long been of interest to researchers [38]. Past studies have examined the effects of bars [39] and
alcohol outlets [40] on crime. In the current research, apart from bars, we also explored the influence of
department stores on variations of urban crime.

Policing was the sum of police rooms and monitoring rooms per 10,000 population. The local
police station sets up and maintains these rooms to preserve the public safety and provide services for
residents. A police room is usually staffed by several policemen. Policing should prevent crime and
enhance the perception of safety. However, a greater policing existence might be a response to higher
crime areas. Its relationship with crime has been investigated in previous research [16,34].

We used these seven variables as potential risk factors. Multi-collinearity should be diagnosed
before running regressions. As can be seen from the correlation matrix (Table 1), the absolute value of
the correlation coefficient between population density and unemployment was largest, reaching 0.42.
This indicates that the correlation between this variable pair was moderate according to Evans [41].
The rest values imply a weak or very weak correlation. Besides, the determinant of the matrix was
0.44, not close to 0, suggesting collinearity is not high [42]. As a consequence, we no longer consider
the multi-collinearity problem.

Table 1. Correlation matrix of the seven variables 1.

X1 X2 X3 X4 X5 X6 X7

X1 1.00
X2 −0.17 * 1.00
X3 −0.10 0.02 1.00
X4 0.42 *** −0.20 ** −0.27 *** 1.00
X5 −0.26 *** 0.26 *** −0.19 ** 0.18 * 1.00
X6 −0.19 ** −0.01 −0.13 −0.22 ** −0.03 1.00
X7 −0.05 −0.15 −0.15 −0.05 −0.10 −0.08 1.00

1 Variables from top (left) to down (right) respectively are population density, young males, high education,
unemployment, bar density, department store density, and policing. ***, ** and * represent significant at 0.01, 0.05
and 0.1 level, respectively.

3. Methodology

3.1. Modeling Strategy

The dependent variable was modeled as a random variable following a Poisson distribution:

Yi ∼ Poisson(Eiri) (1)

where Yi represents counts of burglaries occurred in neighborhood i, Ei signifies counts of burglaries
expected, and ri denotes the relative burglary risk. To investigate the influence of independent variables
and contextual effects, we decomposed the expectation of the Poisson distribution Eiri by a log—link
function:

log[Eiri] = log[Ei] + α+ β1X1,i + . . .+ βkXk,i + Ui + Si + VI:i∈I + HI:i∈I (2)

where log[Ei] is an offset term, α is the intercept, X1,i, · · · , Xk,i represent observations of independent
variables, β1, · · · , βk are regression coefficients. Ui and Si are two random effects terms, one unstructured
and the other structured, to capture overdispersion and spatial autocorrelation at the neighborhood
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level, respectively. I : i ∈ I represents the sub-district I neighborhood i falling within. VI:i∈I refers to the
unstructured contextual effects term not accounting for spatial autocorrelation at the sub-district level.
HI:i∈I measures the spatially-correlated contextual effects that take into account spatial autocorrelation
at the sub-district level.

The form of the commonly used conventional Bayesian spatial model is:

log[Eiri] = log[Ei] + α+ β1X1,i + . . .+ βkXk,i + Ui + Si (3)

This model does not account for the contextual effects as it only contains Ui and Si. Our contextual
effects model extends the conventional model by including another two random effects terms.

3.2. Prior Specification

The Bayesian modeling approach uses the Bayes theorem to combine data and prior distributions
to obtain posterior distributions of parameters. Thus, the priors specified for model parameters are
import in Bayesian modeling. We chose a uniform prior dflat() for the intercept term α [43]. As to the
regression coefficients, we specified a vague normal distribution N(0, 10000) in the absence of a clear
knowledge about the impacts of independent variables [11]. A vague prior provides little information,
allowing the data to speak for themselves and dominate posterior distributions [44]. Ui and VI were
assigned a normal distribution with mean both zero and variance σ2

u, σ2
v respectively. Priors for Si

and HI were determined by an intrinsic conditional autoregressive (ICAR) distribution that has been
adopted extensively in Bayesian spatial data analysis [45]. Specifically, all the model parameters were
specified as follows:

α ∼ d f lat( ) (4)

βk ∼ N(0, 10000), k = 1, 2, 3, 4, 5 (5)

Ui ∼ N
(
0, σ2

u

)
(6)

S[1 : n] ∼ ICAR
(
ω, σ2

s

)
(7)

VI ∼ N
(
0, σ2

v

)
(8)

H[1 : M] ∼ ICAR
(
W, σ2

h

)
(9)

where n (M) denotes counts of neighborhoods (sub-districts). ω is the spatial adjacency matrix of
neighborhoods with size n × n, where ωi, j = 1 if neighborhoods i and j are adjoining and ωi, j = 0,
otherwise. W is the spatial adjacency matrix of sub-districts defined in the same way as ω. σ2

s and σ2
h

are the variance parameters of the ICAR distribution.
As for ICAR, it specifies that the structured random effects term Si given S j is normally distributed:

Si|S j, j,i ∼ N

∑
j,i

ωi, jS j/ni, σ2
s /ni

 (10)

where ni represents the number of the neighbors of neighborhood i. To be specific, the mean and
variance of Si given S j are

∑
j,i
ωi, jS j/ni and σ2

s /ni, respectively. The same principle applies to HI.

With regard to hyperparameters σ2
u, σ2

s , σ2
v and σ2

h, the precision parameters of the four were
determined through the commonly used vague Gamma hyperprior distribution [46]:

σ2
u
−1
∼ Gamma(0.5, 0.0005) (11)

σ2
s
−1
∼ Gamma(0.5, 0.0005) (12)

σ2
v
−1
∼ Gamma(0.5, 0.0005) (13)
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σ2
h
−1
∼ Gamma(0.5, 0.0005). (14)

An analysis with a uniform prior dunif(0,100) for the standard deviation parameters of the random
effects terms was undertaken to assess the sensitivity of choice for hyperparameters [47].

3.3. Model Implementation

To fully demonstrate the contextual model (Equation (2)), we also fitted the commonly used
conventional Bayesian spatial model (Equation (3)) by the MCMC method in WinBUGS 1.4.3 and
contrasted their results.

Independent variables are often measured on different scales. These scale differences may bring
computational problems within sampling algorithms. To speed convergence, independent variables
were standardized in advance before models were fitted [48].

Both models were run with three chains. We assessed the convergence by checking the history
plot and the Gelman-Rubin statistic plot [49]. After convergence, each chain was run further to produce
samples used for posterior inference.

3.4. Model Assessment

The deviance information criterion (DIC) [50] was adopted to evaluate the performance of the
contextual effects and the conventional Bayesian spatial models. It is defined as:

DIC = D + pd (15)

where D and pd are the posterior mean deviance and the number of effective model
parameters, respectively.

As a Bayesian measure of model adequacy, DIC balances model fit (measured by D) and model
complexity (represented by pd) [50]. Low-value DICs indicate better-fitted models.

4. Results

4.1. Deviance Summaries of the Models

Table 2 reports the deviance summaries of the conventional Bayesian spatial model and the
contextual effects model. In addition to independent variables, the conventional Bayesian spatial
model includes only two random effects terms, one unstructured and the other structured. It does not
consider the contextual effects. The contextual effects model, on the basis of the conventional model,
contains another two random effects term at the sub-district level, accounting for the contextual effects.

Table 2. Deviance summaries of the conventional and the contextual effects models.

Conventional Bayesian Spatial Model Contextual Effects Model

D 733.509 733.606
pd 107.550 107.368

DIC 841.059 840.974

The two models were nearly indistinguishable in terms of DIC (841.059 versus 840.974). On the
one hand, the D for the conventional Bayesian spatial model and the contextual effects model were
733.509 and 733.606, respectively. This indicated the fit of the two models was nearly equal. On the
other hand, the two models had an almost identical pd (107.550 versus 107.368), despite the additional
two random effects terms in the contextual effects model. The sensitivity testing suggested that results
were robust to the selection of different hyperprior distributions. DIC had a difference of 1.175 (841.059
versus 839.884) and 1.088 (840.974 versus 839.886), respectively, for the conventional and the contextual
effects models.
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To summarize, the conventional Bayesian spatial model and the contextual effects model had almost
the same DIC. With a difference of only 0.085 (840.974 versus 841.059) in DIC values, the contextual
effects model could not be considered better than the conventional Bayesian spatial model. Nonetheless,
it was preferred in the sense that it can provide insights into contextual effects on crime risks.

4.2. Analysis of Independent Variables and Variance Parameters

Table 3 represents the intercept term, regression coefficients, and variance parameters estimated
by the conventional Bayesian spatial model and the contextual effects model. As can be seen from the
table, three independent variables (population density and the two land-use variables) were significant
at the 95% credible interval (CI) in both models. These variables had a definite correlation with
burglary risks. The other four independent variables were not significant in both models and their
signs in the regression estimates given by the two models were also the same. The percentage of young
males and unemployment were positively related to burglary risks. High education was negatively
associated with burglary risks. Although these three independent variables did not have a strong effect
on burglary risks, the directions of the effects were expected. The association between policing and
burglary risks was also unclear.

Table 3. The intercept term, regression coefficients, and variance parameters estimated by the
two models.

Variables
Conventional Bayesian Spatial Model Contextual Effects Model

Mean
(95% CI)

Mean
(95% CI)

Intercept −0.3981
(−0.5509, −0.2471)

−0.3927
(−0.5691, −0.2142)

Population density −0.3597
(−0.5749, −0.1393)

−0.3639
(−0.5783, −0.1490)

% of young males 0.0225
(−0.1616, 0.2050)

0.0148
(−0.1747, 0.2038)

High education −0.0427
(−0.2325, 0.1483)

−0.0408
(−0.2300, 0.1453)

Unemployment 0.0380
(−0.1793, 0.2508)

0.0353
(−0.1852, 0.2522)

Bar density 0.3617
(0.1613, 0.5651)

0.3636
(0.1674, 0.5617)

Department store density 0.1858
(0.0152, 0.3561)

0.1830
(0.0146, 0.3538)

Policing 0.0154
(−0.1657, 0.1968)

0.0114
(−0.1689, 0.1896)

σ2
u

0.6251
(0.1879, 0.9301)

0.6501
(0.3363, 0.9219)

σ2
s

0.3041
(0.0002, 2.0700)

0.1422
(0.0002, 1.1950)

σ2
v NA 0.0208

(0.0002, 0.1560)

σ2
h NA 0.0271

(0.0002, 0.2464)

Regarding the significant independent variables, population density was negatively while bar
and department store densities were positively related to burglary risks. In addition to identifying
the same set of significant independent variables, the conventional and the contextual effects models
made similar estimates for the regression coefficients of the three significant independent variables.
The posterior mean regression coefficients for the three variables estimated by the conventional
Bayesian model were −0.3597, 0.3617, and 0.1858, respectively. The corresponding estimates given by
the contextual effects model were −0.3639, 0.3636, and 0.1830, respectively.
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The variance parameters of the random effects terms were also reported in Table 3. Both the
conventional Bayesian spatial and the contextual effects models suggested that risk variation due to
neighborhood heterogeneity Ui is greater than that due to spatial autocorrelation Si. Results of the
contextual effects model further indicated that variation due to local random effects is greater than that
due to contextual effects. After accounting for contextual effects, the posterior mean of σ2

u increased
from 0.6251 to 0.6501, while the mean of σ2

s decreased from 0.3041 to 0.1422.

4.3. Mapping the Risks

The posterior mean burglary risks given by the conventional model and the contextual effects
model are demonstrated in Figure 2. The risks shown in Figure 2a accounted for the impacts of
independent variables, overdispersion, and spatial autocorrelation. The risks shown in Figure 2b
further considered the contextual effects. All neighborhoods in Figure 2a,b had a burglary risk greater
than zero. In addition, each neighborhood had the same relative risk magnitude as it fell into the same
interval in Figure 2a,b. Actually, the conventional Bayesian spatial model and the contextual effects
model gave a very similar estimate of burglary risk for each neighborhood. The difference between the
estimates for any neighborhood given by the two models was not greater than 0.02.
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Figure 2. Burglary risks given by (a) the conventional Bayesian spatial model and (b) the contextual
effect model.

The mapped burglary risk for each neighborhood in Figure 2 represents the risk value relative to
the average for the whole Jianghan District. Figure 2a,b both suggest that 38 neighborhoods had a
value larger than 1.0. Specifically, 21 neighborhoods had a value greater than 1.5, five neighborhoods
greater than 3.0, and three neighborhoods greater than 10.0. When making efforts on the prevention
and control of burglaries, more attention should be paid to these neighborhoods.

4.4. Identifying and Mapping the Relative Contribution

We adopted the map decomposition strategy [3] to investigate the influence of independent
variables and contextual effects on burglary risks. Based on Equation (2), the relative burglary risk ri
can be formulated as:

ri = exp(α) ∗ exp[βXi] ∗ exp[Ui] ∗ exp[Si] ∗ exp[VI:i∈I] ∗ exp[HI:i∈I] (16)
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where exp[] = 1.0 is the critical value, since if each component on the right-hand side of Equation (16)
is 1.0, ri equals 1.0. The effects of independent variables on burglary risks can be deduced by exp[βXi],
while the magnitude of contextual effects can be deduced by exp[VI:i∈I] and exp[HI:i∈I].

Figure 3 displays the distribution of exp[βXi] deduced by the posterior means of corresponding
parameters. It indicates the relative burglary risk due to independent variables. Figure 4a,b demonstrate
the maps of exp[VI] and exp[HI], respectively. Figure 4 suggests the relative burglary risk due to
contextual effects. Figures 3 and 4 together demonstrate the relative contribution of neighborhood
characteristics (represented by the independent variables) and contextual effects (represented by exp[VI]

and exp[HI]) on the overall burglary risks (Figure 2b).
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Regarding the contextual effects, Figure 4a,b show that seven sub-districts, i.e., Hanxing,
Changqing, Beihu, Minyi, Qinjin, Minquan, and Minzu, had both exp[VI] and exp[HI] greater than 1.0.
These sub-districts have positive impacts on the rise of burglary risks for neighborhoods lying within
them. The other six sub-districts, i.e., Tangjiadun, Wansong, Xinhua, Shuita, Hualou, and Manchun,
had values of exp[VI] and exp[HI], both smaller than 1.0. These sub-districts had negative impacts on
the rise of burglary risks for neighborhoods falling within them.

Figure 5 further demonstrates the posterior probabilities of the contextual effects having positive
impacts on neighborhood burglary risks. In contrast to values shown in Figure 4, posterior probabilities
consider the variance of exp[VI] (exp[HI]). They express the strength exp[VI] (exp[HI]) is greater than
1.0. In disease-mapping studies, Richardson et al. [51] proposed to use a value around 0.7 to 0.8 as the
threshold on posterior probabilities to detect increased-risk areas. Figure 5 indicates that all the values
of the posterior probabilities were smaller than 0.7. Nonetheless, the dark color in Figure 5 indicates
the strong probability that the sub-district has a positive impact on burglary risks for neighborhoods
falling within it.
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5. Discussion

This article applied a contextual effects model to investigate contextual effects on burglary risks
in Wuhan, China. The model was built based on Bayesian spatial modeling strategy. Crime risks
are possibly due to a combination of both individual and its upper-level factors. To disentangle the
impacts of the two factors on the overall crime risks, the conventional Bayesian spatial modeling
approach should be adapted to suit the clustered and hierarchical structure of data. In our research,
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each neighborhood falls uniquely within a sub-district and each sub-district consists of several
neighborhoods. Neighborhoods are clustered within sub-districts. This suggests that neighborhoods
from within the same cluster have characteristics in common and may be more alike because of their
shared environment. The sub-district level should have a contribution from effects at the neighborhood
level. One way of identifying this contribution is to account for the contextual effects of sub-districts
on neighborhoods.

We extended the conventional Bayesian spatial model by adding two random effects terms to
account for contextual effects (Equation (2)). Both the conventional Bayesian model (Equation (3)) and
the contextual effects model (Equation (2)) were used to fit the data. Our analyses showed the two
models were nearly indistinguishable in terms of DIC (Table 2). They had almost the same D and pd
values. Although the contextual effects model could not be considered superior to the conventional
Bayesian spatial model based on their DICs, it was preferred in the sense that it provides insights into
contextual effects on crime risks and can work out the relevant contribution.

The results of the study suggested that the conventional and the contextual effects models identified
the same set of significant independent variables (Table 3). To be specific, density of population, bar
and department store had a strong association with burglary risks. Population density was inversely
related to burglary risks. This is consistent with past research finding that the variable had a negative
impact on crime rate [2,5,34,35]. This may be due to the fact that the Jianghan District is the most
populous district of Wuhan and thus there are more opportunities for visual surveillance exit. The two
land-use variables, i.e., bar density and department store density, both had a significant positive
correlation with burglary risks. Our findings are in line with other studies suggesting that bars [39]
and alcohol outlets [40] have strong positive impacts on crime. In addition to identifying the same set
of significant independent variables, the conventional and the contextual effects models gave similar
estimates for their regression coefficients.

The rest of the independent variables, i.e., young males, unemployment, high education and
policing, were not significant in both the conventional and the contextual effects models (Table 3). Their
signs in the regression estimates given by the two models were all about the same. Specifically, the
percentage of young males did not clearly have a positive effect on burglary risk. This is in accordance
with prior study indicating that the variable virtually has no effect on crime [38]. High education and
unemployment were negatively and positively correlated with burglary risks, respectively. This is
somewhat contradictory to previous studies founding that unemployment had a significant positive [5]
and the percentage of residents that were well-educated had a significant negative impact on crime [35].
One possible reason why they were not significant in our analyses may be that our measure of
socioeconomic status using only these two variables was not adequate. In addition, issues surrounding
the ecological fallacy [52] are also worthy of attention. Although the magnitude was not significant,
the direction of the effects of these two socioeconomic variables was expected. The positive coefficient
for policing was not entirely unanticipated. Policing can prevent crime and enhance the perception of
safety. However, a greater policing may also be a natural reaction to higher crime rates in the region.
Gracia et al. [16] also found that policing activity had a positive effect on intimate partner violence.

We reported the variance parameters of the random effects terms (Table 3). Results suggested that
risk variation due to neighborhood heterogeneity Ui is greater than that due to spatial autocorrelation
Si. The contextual effects model further indicated variation due to local random effects is greater than
that due to contextual effects.

We mapped the posterior means of burglary risks estimated the conventional and the contextual
effects models (Figure 2). The values demonstrated in Figure 2a took account of the effects of the
independent variables, overdispersion, and spatial autocorrelation. The risks shown in Figure 2b
further considered the contextual effects. It was implemented by extending the conventional Bayesian
spatial model to include another two random effects term at the sub-district level. The conventional
Bayesian spatial model and the contextual effects model gave almost the same estimate of burglary risk
for each neighborhood, with a biggest difference of only 0.02. Both models indicated that there were 38
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neighborhoods having a risk value lager than 1.0. Specifically, 21 neighborhoods had a value greater
than 1.5, five neighborhoods greater than 3.0, and three neighborhoods greater than 10.0. By illustrating
the spatial distribution of burglary risks, the maps demonstrated in Figure 2 laid a foundation for
crime prevention programs.

We adopted the map decomposition technique to work out the contribution of both neighborhood
characteristics and contextual effects on burglary risks (Equation (16)). Map decomposition is
particularly helpful in visualization and indicative analysis of individual area. It can disentangle the
influence of neighborhood characteristics and contextual effects on crime risks. Based on Figure 2b,
by identifying and mapping the relative contribution of neighborhood characteristics (Figure 3) and
contextual effects (Figure 4), and further demonstrating the posterior probabilities of contextual effects
having positive impacts on crime risks (Figure 5), crime prevention practitioners and police officers
can assess their crime reduction measures.

6. Conclusions

This study demonstrated a contextual effects model to investigate contextual effects on crime
risks. Contextual effects generally denote the impact of the upper-level area on the lower-level units of
analysis. Research focusing on crime patterns is often conducted at one spatial scale or at different
scales by separate models. Such studies neglect contextual effects and the complex spatial structure
of the urban environment [53]. They do not realize that local crime patterns result from the joint
effects of different layers of crime potential [21] and is simultaneously affected by characteristics of the
environment at multiple spatial levels [19,20]. Due to the clustered and hierarchical structure of spatial
data, crime risks are possibly due to a combination of both individual and its upper-level factors.
The influence of crime risk factors is potentially conditional on context and can operate across multiple
spatial levels [22]. Lower-level crime patterns may vary with the characteristics of the upper-level
spatial unit they fall within. The variation, to some degree, can be accounted for by including the
upper-level factors. However, for some reason, these factors may be unavailable, leading their effects
not be captured specifically.

To work out the contribution of the lower-level and upper-level factors on the overall crime
risks, conventional regression approaches must be adapted. Our contextual effects model was built
based on Bayesian spatial modeling strategy. It was implemented by extending the conventional
Bayesian spatial model (Equation (3)) to include two random effects terms at the upper-level area
(Equation (2)). The upper-level random effects terms are used to capture the effects of the upper-level
factors. The contextual effects model accounts for the effects of independent variables, overdispersion,
spatial autocorrelation, and contextual effects. By the model, we can not only identify the relative
contribution of the lower-level independent variables and contextual effects on crime risks, but can
also obtain the probabilities of contextual effects having positive impacts on lower-level crime risks.
Our research contributes to the increasing literature on modeling crime data by Bayesian spatial
approaches, as contextual effects are generally neglected.

The analyses presented in this paper have theoretical and practical implications. Theoretically,
data are often clustered among hierarchies. This can lead to the emergence of clusters. In our research,
neighborhoods are clustered within sub-districts. Neighborhoods within the same sub-district may
share the environment and thus have characteristics in common. It is possible that some grouping
effect based on sub-district could be found for neighborhoods lying within a certain sub-district.
Therefore, the sub-district level should have a contribution from effects at the neighborhood level.
The neighborhood’s crime risk may be pulled towards the sub-district level expected risk. Analyzing
crime patterns while accounting for contextual effects provides insight regarding the crime-generating
process arising across multiple spatial scales and facilitates the identification of the role of each spatial
scale on the variation of crime risks. From the practical perspective, police focusing on burglaries in
Jianghan ought to focus on neighborhoods having a high bar or department store density. Furthermore,
careful thought must be given to neighborhoods having a high burglary risk. An in-depth investigation
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to identify the distinctive local characteristics of these neighborhoods is necessary. In addition, by
illustrating the spatial distribution of neighborhood burglary risks (Figure 2b), the relative contribution
of neighborhood characteristics (Figure 3) and contextual effects on the risks (Figure 4), and the
posterior probabilities of contextual effects having positive impacts on burglary risks (Figure 5),
our analyses provide the evidential base essential to underpin the decision making process. It can
facilitate practitioners, such as police managers and crime analysts, to evaluate crime intervention and
prevention efforts that could be strategically targeted towards the characteristics of the problem.

There are also several limitations to our research. The first limitation concerns the contextual
effects model itself. As our main aim was to present and illustrate a contextual effects model, we gave
the full form of the model but did not further discuss the necessity of incorporating both the two
contextual effects terms in the model. Future researchers can specify their contextual effects model
according to specific objectives and the actual situation based on our work. The second limitation
regards the crime data used in the study. Our burglary data was from the city’s 110-reporting system.
Such data could suffer from the problems of entry error and underreporting [54], and may not accurately
reflect the scope of victimization [55]. The third limitation of the paper involves the independent
variables. We used the residential population instead of other measures of population, such as the
ambient population [56] and the commuting population [57]. This may influence the results of our
analyses [56,57]. In addition, variables acting as proxies for socioeconomic status, i.e., high education
and unemployment, are not comprehensive and adequate. Other commonly used variables, including
immigration [12] and the percentage of families receiving public assistance [58], were not incorporated
into our model due to the unavailability of data. Further, we did not assess how the processes
hypothesized by social disorganization and routine activity theories to be applied in multiple spatial
scales as data at the sub-district level were not available. The fourth limitation relates to the measure
of model complexity. We used pd to capture model complexity in our research and did not consider the
complexity of the geographical space examined. However, the wide range of spatial and functional
complexities involved in studying geographical problems can affect the complexity of the Bayesian
models [59], which in turn has an impact on the computational performance of the models themselves,
particularly when used in networks [60] or trees [61]. Another limitation concerns the modifiable areal
unit problem (MAUP) [62]. Our data were aggregated to neighborhoods and the results of our analysis
might have been influenced by the MAUP.

This research could be expanded in the near future in several ways. First, the applicability of
the contextual effects model should be further validated. Further application of the model at other
spatial scales with other types of crime is recommended. Second, the contextual effects model can
be utilized for a joint analysis at multiple spatial scales. If data are available at different aggregation
levels, the model can be used to model them jointly within an analysis. This joint multiscale analysis is
worth conducting. Third, through a spatio-temporal analysis, future studies should investigate the
temporal dynamics of crime patterns as they change over time [63].
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