
 International Journal of

Geo-Information

Article

Hierarchical Semantic Correspondence Analysis on
Feature Classes between Two Geospatial Datasets
Using a Graph Embedding Method

Yong Huh

Geospatially Enabled Society Research Division, Korea Research Institute for Human Settlements, Sejong 30147,
Korea; yhuh@krihs.re.kr; Tel.: +82-44-960-0404

Received: 19 August 2019; Accepted: 21 October 2019; Published: 24 October 2019
����������
�������

Abstract: A method to find corresponding feature class pairs, including hierarchical M:N pairs
between two geospatial datasets is proposed. Applying an overlapping analysis to the object sets
within the feature classes, the similarities of the feature classes are estimated and projected onto
a lower-dimensional vector space after applying the graph embedding method. In this space,
conventional mathematical tools—agglomerative hierarchical clustering in this study—could be
used to analyze semantic correspondences between the datasets and identify their hierarchical M:N
corresponding pairs. The proposed method was applied to two cadastral parcel datasets; one for latest
land-use records in an urban information system, and the other, for original land-use categories in the
Korea land information system. To quantitatively assess identified feature pairs, F-measures for each
pair are presented. The results showed that it was possible to find various semantic correspondences
of the feature classes and infer regional land development characteristics.

Keywords: hierarchical semantic analysis; graph embedding; feature class; land-use category;
land-use survey

1. Introduction

Establishing data integration between different geospatial information systems is necessary
in order to set up geospatial data infrastructures for collecting and disseminating the data from
different systems [1]. As each dataset belonging to these systems represents similar real-world
entities or phenomena according to their own abstraction models and surveying rules, syntactic,
structural, semantic, and geometric heterogeneities occur between corresponding objects of different
datasets [2]. Among the mentioned heterogeneities, the first two can be addressed by applying
well-known knowledge representation techniques, such as the web ontology language (OWL) or
resource description framework (RDF), while remaining semantic; geometric ones, however, are still
complicated problems [3]. This is due to the fact that corresponding spatial objects of different datasets,
which represent the same real-world entity, have their own conceptual meanings and geometric
representations according to the application purposes of datasets. For example, a small narrow road
connecting a main road and a parking lot in a large commercial center may be represented as a polyline
object attributed as “road” in one dataset, whereas it may be represented as a polygon object attributed
as “auxiliary facility” in another dataset.

In the field of the map conflation, various methods have been developed to address the
aforementioned semantic and geometric heterogeneity problems [4,5]. Authors in [5] proposed
a conceptual framework for a general process to address these problems, as shown in Figure 1.
In this process, a pre-processing step is performed to transform two geospatial datasets (GeoDSs)
to have a uniform format, scale, reference system, and so on. Then, a semantic filter step is applied

ISPRS Int. J. Geo-Inf. 2019, 8, 479; doi:10.3390/ijgi8110479 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://dx.doi.org/10.3390/ijgi8110479
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/8/11/479?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2019, 8, 479 2 of 17

to identify the corresponding feature class pairs, which represent the same geographic entities or
phenomena. While these two steps are related to model- (or dataset)-oriented analysis, the remaining
steps correspond to the object-oriented analysis used to identify matching object pairs, and then, to
address the geometric discrepancies between them.
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When the geospatial datasets to be integrated originate from a similar domain, a simple comparison
of feature class names would provide the desired results for the semantic filter step. However, in
the case when they are from different domains, the names can be the same or similar, even though
the feature classes represent substantially different real-world entities or phenomena. Moreover, the
corresponding relations may vary from 1:1 to 1:N or M:N. In these cases, detailed data specifications
of the datasets to be compared are necessary. However, most of the datasets do not provide such
information [6].

To address this problem, various object-based analysis techniques have been proposed. These
techniques use matching objects between two datasets to identify corresponding feature classes. They
assume that, if spatial objects of a certain feature class in one geospatial dataset correspond to spatial
objects in another feature class in the other dataset with a high probability, there is high semantic
similarity between the two feature classes [7]. Uitermark et al. [2] extended this method by introducing
taxonomical and partonomical relationships of feature classes within each dataset, so that relations of
feature classes between datasets, as well as within each dataset, can be obtained. Similarly, authors
in [8,9] have proposed an ontology integration method based on searching for relations between objects,
which are able to infer taxonomic relations between the feature classes. Cruz and Sunna [10] applied a
graph-matching method, where a graph is constructed for each geospatial dataset, and the taxonomic
and partonomical relations of feature classes of one geospatial dataset are represented as nodes and
edges, respectively. This graph model has been adopted in some studies that proposed their own
similarity measurement methods. Khatami et al. [3] combined several similarities for feature class name
pairs and derived the overall object correspondence between feature classes (consequently, between
geospatial datasets), as well as the semantic structure among feature classes (within a geospatial dataset).
Buccella et al. [11] propose a novel system that manually creates domain ontologies and automatically
enriches domain ontologies with standard information using semantic, syntactic, and structure analyses.
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Then, ontology integration is carried out with the information. Bhattacharjee and Ghosh [12] proposed
the semantic hierarchy-based similarity measurement for semantic similarity between land cover
feature classes, which considers a hop number from the top feature class node to a certain node in their
graph. Kuo and Hong [13] proposed a conceptual framework for semantic integration of geospatial
datasets, which allows identifying matching geospatial feature classes. In this framework, hierarchical
semantic relations between the datasets such as “is_subset_of”, “is_superset_of”, or “is_same_to” were
determined by analyzing intersection relations of objects belonging to feature classes. Kuai et al. [14]
focused on natural language barriers for semantic matching between feature classes in different
geospatial datasets. Recently, Zhang et al. [15] proposed a multi-feature-based similarity measurement
based on geospatial relationships, feature catalog, and name tag, and then applied a supervised
machine learning process to identify corresponding pairs.

Although the above studies showed good results, there is room for improvement by applying
recent semantic analysis techniques [16–18] and developing new approaches to obtain hierarchical
corresponding relations of feature classes between geospatial datasets, as well as within each dataset.
These techniques begin from a co-occurrence matrix in which rows and columns represent individual
entities used for analysis; in this study, feature classes are these entities. Considering the aforementioned
object-based methods [7–15], these co-occurrence values could be measured by degrees of object sharing
or intersection between feature classes from two geospatial datasets. This matrix representation easily
shows overall degrees between feature classes—conventional mathematical tools—which are suitable
for feature vector data but not matrix data and cannot be easily applied to the matrix for identifying
corresponding feature class pairs. To address this problem, several dimensionality reduction techniques,
such as latent semantic analysis or graph embedding, are employed to define a new vector space where
individual entities are represented as feature vectors to which conventional mathematical tools can be
easily applied [17,19,20].

In this study, the Laplacian graph embedding proposed in [20] was applied to address the above
issue. This method was developed to identify the multi-level corresponding object–set pairs between
two remote sensing data. It constructed a bipartite graph representing each object as a node, and
node pairs’ similarities between datasets as an edge with a weighted value. Thereafter, by applying
Laplacian graph embedding, objects with higher similarity were distributed on closer coordinates in
the embedding space. Finally, a clustering analysis on the projected nodes in the space was conducted,
and the hierarchical corresponding object–set pairs could be found. In this study, nodes are used to
represent feature classes rather than individual objects, so that the feature class pairs between datasets
with a greater number of shared objects have close coordinates in the embedding space. Thus, this
space can be understood as a semantic feature space, where two feature classes representing similar
real-world entities or phenomena have geometrically close embedding coordinates. Therefore, with the
knowledge of these coordinates and their distances, which are proportional to semantic dissimilarity,
the previously mentioned complicated correspondence relationship between the feature classes of the
two geospatial datasets can be found, and the semantic relationships of the feature classes can also be
compared and inferred.

In this paper, the proposed method is applied to cadastral parcels’ latest land-use records obtained
from the urban information system (UIS) and their original land-use categories obtained from the Korea
land information system (KLIS). These two systems have the same parcel dataset, however, attributes of
their parcels could be different; a land-use category is assigned in the perspective of taxation, whereas
the land-use record is assigned in the perspective of urban management. Consequently, even for the
same parcels, their categories and records can be different, so that corresponding relations between these
feature classes cannot be properly derived without having background information. These relations
include not only M:N corresponding relations, but also their nested hierarchies. Moreover, these
relations can be distinctive for specific areas due to unique geographical conditions typical for areas in
question. The proposed method defines a semantic feature space where feature classes (in this study,
the land-use category or land-use record) are represented as vectors. As conventional mathematical
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tools can be easily applied to vectors, and the distance between vectors in this study is proportional to
semantic dissimilarity, the complicated relationships could be identified using proper mathematical
tools such as clustering analysis.

The rest of the paper is organized as follows. In the subsequent section, an explanation of Laplacian
graph embedding is given; in Section 3, the proposed method is explained; and in Section 4, it is applied
for two areas, Seoul city to represent an urban area, and the Jeonnam Province to represent a rural area;
then, their results are compared. Finally, in Section 5, the conclusions of this study are discussed.

2. Laplacian Graph Embedding

2.1. One-dimensional Embedding

In this paper, we assume an undirected and connected graph. The graph G = (V, E) is represented
by sets of vertices V = {vi|i = 1, · · · , N} and edges E =

{(
vi, v j

)∣∣∣vi, v j ∈ V
}
. Given a weighted graph,

edge weights are represented as a weight matrix W ∈ RN×N. One-dimensional graph embedding finds
a configuration of embedded vertices in one-dimensional space, such that the vertices’ proximities
from the edge weights are preserved as the embedded vertices’ distances. Assuming each entry of
a column vector x = (x(1), · · · , x(n))T as coordinates of the embedded vertices, this problem can be
solved through minimization of the following objective function [21].∑

(i, j)∈E

(x(i) − x( j))2 wi, j (1)

This function could be minimized when vertices i and j with large wi, j are embedded at close
coordinates, whereas vertices with small wi, j are embedded into distant coordinates. In this study, this
mathematical property is applied as follows: feature classes (e.g., land-use category and record) with a
greater degree of object sharing have close coordinates in their embedding space and feature classes
with a lesser degree of object sharing have distant coordinates. Equation (1) can be expressed in a
matrix operation form with a Laplacian matrix L, and can be represented as Equation (2) [19–21].

1
2

∑
(i, j)∈E

(x(i) − x( j))2 wi, j = xT L x (2)

where, the Laplacian matrix L is defined as Equation (3) with a vertex degree matrix D whose diagonal
entries are obtained as di,i =

∑
j,i w i, j and the remaining entries are 0.

L = D−W (3)

Now, the problem can be changed to find a vector x that minimizes xTLx, and can be represented
as Equation (4).

x = argmin xTLx (4)

Since the value of xTLx is vulnerable to the scaling of a vector x, a constraint xT B x = 1 is imposed
to remove any such arbitrary scaling effect [17]. The diagonal matrix B provides weights on the vertices,
so that the higher bi,i is, the more important is that vertex [21]. Equation (4) with the constraint can be
solved by the Lagrange multiplier method as in Equations (5)–(7).

F(x) = 〈Lx, x〉 − λ(〈Bx, x〉 − 1) (5)

∂F(x)
∂x

= xT
(
L + LT

)
− λxT

(
B + BT

)
(6)

2(Lx)T = 2λ(Bx)T
⇒ Lx = λBx (7)
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Thus, the solution of one-dimensional embedding, x, is obtained by solving the eigenproblem
Lx = λBx. However, according to the rank of matrix L, there could be more than one eigenvector.
In the field of graph spectral theory, the eigenvector corresponding to the smallest eigenvalue larger
than 0 is the proven solution, which is called a Fiedler vector. Thus, the coordinates of vertices in
one-dimensional embedding are obtained as components of the Fiedler vector as represented by
Equation (7).

2.2. k-dimensional Embedding

Now, consider k-dimensional graph embedding. These embedded coordinates are represented
as an n × k matrix X = [x1, · · · , xk], so that the ith row of X, x(i ) = (x1(i), · · · , xk(i)), contains the
k-dimensional coordinates of vertex vi. Now, an objective function is defined as Equation (8) with the
constraint, XT B X = I.

1
2

∑
i, j

‖x(i ) − x( j ) ‖ 2 wi, j = trace
(
XTLX

)
(8)

Sameh and Wisniewski [22] proved that the solution to this trace minimization problem is obtained
by the k-eigenvectors of LX = λBX that correspond to its smallest eigenvalues other than 0. Thus, the
solution of Equation (8) is obtained by a matrix X = [x1, · · · , xk], where xi represents an eigenvector
corresponding to eigenvalue λi under the condition 0 = λ 0 < λ 1 ≤ · · · ≤ λk.

However, the constraint XT B X = I normalizes the scales of the coordinates in each dimension.
Thus, it is necessary to rescale them according to each dimension’s relative importance. Sameh and
Wisniewski also proved that the minimum value of XTL X in Equation (8) equals the sum of the
corresponding eigenvalues, as shown by Equation (9) [22].

min trace
(
XTL X

)
=

k∑
i=1

λi (9)

Accordingly, we can assume the eigenvalue λi as the amount of either the penalty or the cost
caused by the ith dimensional space in the embedding problem. So, when k < l, it is appropriate
to apply more weight to

∣∣∣xk(i) − xl( j)
∣∣∣ than

∣∣∣xk(i) − xl( j)
∣∣∣ in measuring the proximity for a clustering

analysis. Based on these mathematical properties, we determined the embedded coordinates as
Equation (10), because the increase in distance is proportional to that of the root-squared coordinate
difference [20].

X =

[
x1
√
λ1

, · · · ,
xk
√
λk

]
(10)

3. Proposed Method

The proposed method begins with an edge weight matrix whose cells represent the degree of object
sharing between two feature classes (Step 1). From this matrix, k-dimensional feature vectors for each
feature class are obtained by the Laplacian graph embedding technique (Step 2). Then, agglomerative
hierarchical co-clustering is applied to find hierarchically corresponding feature class–set pairs (Step 3).
Figure 2 presents a pseudocode of the proposed method and details of each step are explained in the
following sections.
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3.1. Step 1: Constructing Edge Weight Matrix W

The proposed method begins with a weighted bipartite graph represented by a similarity matrix
S ∈ Rn×m, where n and m stand for the numbers of feature classes in two datasets A and B respectively,
and cell values are calculated by Equation (11).

s(i, j) =
N( fi ∩ f j)

min(N( fi), N( f j))
(11)

where, N( ) is a function that returns the number of spatial objects, fi and f j represents feature class i
and j in two datasets A and B, respectively. This similarity measure effectively explains a partial and
complete relationship of two feature classes, which is necessary to find complicated corresponding
pairs such as N:1, 1:M, or N:M [23,24].

Since Laplacian graph embedding assumes a normal graph, an edge weight matrix W ∈ RN×N,
where N = n + m, is obtained by Equation (12). With this matrix W, its Laplacian matrix L is obtained
by Equation (3).

W =

[
0 S

ST 0

]
(12)

3.2. Step 2: Solving Eigenproblem and Obtaining K-dimensional Coordinates

The process of Laplacian graph embedding in Section 2 considered each vertices’ weight using a
diagonal matrix B. However, in this study, each feature class has the same importance so that B is set
to an identity matrix and Equation (13) is applied instead of Equation (7).

L x = λx (13)
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Although all the eigenvectors of Equation (13) are orthogonal and convey distinct information,
we need to determine the optimal dimensionality k, because eigenvectors corresponding to small
eigenvalues are appropriate for the embedding problem, as shown in Equation (9). The optimal
dimensionality k for an expected number of clusters was proposed by [25]. Assuming each eigenvector
has information to partition vertices into at least two clusters, he determined k as

⌈
log2 c

⌉
, where c is

the expected number of clusters. d e is a function to present the minimum integer larger than a given
value. Similarly, we determine k with Equation (14), because the maximum number of corresponding
feature class pairs could not exceed the numbers of feature classes in either of two datasets.

k =
⌈
log2 (min(n, m))

⌉
(14)

Accordingly, the embedded coordinates of the vertices in datasets A and B are obtained by
k-rescaled eigenvectors corresponding to the k smallest eigenvalues other than 0, as in Equation (10).

3.3. Step 3: Agglomerative Hierarchical Clustering Analysis and Assessment of Clusters

Given clusters (at the initial condition, each feature class are considered as clusters), the
agglomerative hierarchical clustering method searches the two closest clusters and merges them
into one cluster. These searching and merging steps are repeated until all entities are merged into a
single cluster. Thus, it presents a sequence of nested partitions of hierarchical cluster structure in the
form of a dendrogram [26]. To apply the method, it is necessary to determine the criteria to measure the
distance between two clusters. Among the several criteria, a single-link measure which considers the
average distance of all entity pairs between clusters, as given in Equation (15), is chosen. The single-link
measure defines the dissimilarity as the minimum distance among all the entity distances between two
entity clusters and tends to find elongated clusters.

D(Ca, Cb) = min
i∈Ca j∈Cb

d
(
ei, e j

)
(15)

where, D (Ca, Cb) is a cluster distance of cluster Ca, Cb, d
(
ei, e j

)
is an entity distance between embedded

coordinates of feature class fi, f j. A dendrogram is a tree diagram that shows a structure of clusters
where the bottom row of nodes represents individual entities (in this study, feature classes of two
datasets) and the remaining nodes represent the merging of their sub-nodes. Thus, by analyzing the
feature types in the remaining nodes, semantically corresponding feature classes between two datasets
could be obtained.

The clustering analysis in the above step presents a clustering sequence, but not obtained are
clusters from which semantically corresponding feature class–set pairs are determined. Thus, statistical
assessment of these clusters is necessary. Given an lth cluster, C(l) needs to be divided into two feature
class–sets, C (l)

a and C (l)
b , according to the datasets to which the feature classes belong. Then, a criterion

could be applied to assess the pairs C (l)
a and C (l)

b with the F-measure of Equation (16), which is often
used in the field of semantic engineering and information retrieval [27]. F-measures of each and every
cluster are calculated, and then the clusters whose F-measure is higher than a threshold are determined
as semantically corresponding feature class–set pairs.

F−measure =
2× P (l)

a × P (l)
b

P (l)
a + P (l)

b

(16)

where, P(l)
a and P (l)

b are obtained by

∑
i∈C(l)a , j∈C(l)b

N( fi∩ f j)∑
i∈C(l)a

N( fi)
and

∑
i∈C(l)a , j∈C(l)b

N( fi∩ f j)∑
j∈C(l)b

N( f j)
, respectively.
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4. Experiment and Results

4.1. Experimental Dataset

To evaluate the proposed method, two representative areas have been chosen, Seoul city and the
Jeonnam Province, as shown in Figure 3, as the first one is the most urbanized area in the country,
and the other is the Southwestern part of the country, which is well-known for fertile farmlands with
vast plains. Land parcel datasets of the two areas were extracted from UIS and KLIS. Thereafter, each
parcel’s land-use record and category were compared as shown in Tables 1 and 2. In these tables,
1 to 21 refer to the record index, and A to T refer to the category index. The values of cells in the
tables represent the number of land parcels having a certain index pair with record and category.
There are several pairs whose record and category index names are the same, such as (9, A) of a dry
paddy field, (11, B) of a paddy field, (20, H) of a parking lot, (17, N) of a river, which seem to be 1:1
corresponding pairs. However, for the land parcels of “N (River)”, there are 1416 parcels with “17
(river)” and 1345 parcels with “Road (16)”, which means that in terms of the land-use category in
KLIS, the land parcels with “N (river)” are currently used for hydrology or transportation purpose
with similar proportions. In terms of the land-use record in UIS for “17 (river)”, the land parcels were
mainly registered as “N (River)” (1416 parcels); however, significant number of parcels (756 parcels)
were registered as O (Ditch). This demonstrated that the corresponding land-use record and category
pairs can be unexpectedly expanded according to concatenated one-to-many corresponding relations;
consequently, a new method is required to identify complicated M:N corresponding feature class
pairs between geospatial datasets. This method also needs to be based on the data itself, not on the
geographic background knowledge of the area under consideration. In Table 2, the above relations are
not valid and show completely different relations. This means that a data-driven learning method
such as the one proposed in the present paper is required to obtain distinctive results for each area, for
example, such as Seoul city and the Jeonnam Province.
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Table 1. Comparison between land-use record in urban information system (UIS) and land-use category in the Korean land information system (KLIS) of about
800,000 land parcels in Seoul city.

A B C D E F G H I J K L M N O P Q R S T

1 1101 213 3 1329 364,662 6 25 17 3 2 955 272 24 85 126 0 16 11 57 307
2 85 18 0 57 11,364 0 1 1 0 1 45 6 0 0 2 0 0 0 0 23
3 101 28 0 112 69,118 0 1 0 0 2 130 5 2 1 18 0 12 0 2 36
4 215 45 0 382 20,065 9 16 1 1 0 629 29 2 28 30 1 0 9 11 51
5 309 139 0 180 97,089 106 5 35 843 2 313 148 7 32 38 8 7 9 9 281
6 71 47 0 25 11,852 29 8 4 14 1 120 12 1 8 26 0 1 1 5 144
7 145 66 1 57 79,864 12 6 4 2 0 278 31 2 18 25 2 3 0 6 86
8 158 118 1 17 3870 919 1 1 0 5 52 17 4 14 44 3 0 1 1 89
9 8392 5690 3 414 669 0 1 0 0 1 138 15 34 186 123 9 20 3 2 1167

10 224 22 80 128 4 0 0 0 0 0 1 0 0 0 5 1 0 0 0 2
11 62 3333 0 7 1 0 0 0 0 0 6 0 4 1 19 5 8 0 0 75
12 17 4 0 161 21 0 0 0 0 0 0 0 0 0 6 0 2 6 0 0
13 428 43 0 10,258 645 2 21 0 0 0 97 4 2 9 61 0 28 172 14 156
14 289 38 0 1254 395 1 10 0 0 0 24 1 0 8 16 1 1 50 1 208
15 26 6 0 415 35 0 8 0 0 0 5 0 1 2 14 0 9 9 17 22
16 2732 1865 1 2624 30,767 110 197 13 5 2 69,102 1460 346 1345 2977 80 301 291 45 1764
17 219 261 0 104 65 2 1 0 0 0 120 19 348 1416 756 59 6 4 0 97
18 119 79 0 247 1834 1 3 1 1 0 161 30 10 75 38 1 31 2200 8 109
19 120 89 0 29 114 5 1 0 0 0 44 12 2 14 7 1 1 15 0 14
20 46 104 0 36 381 1 0 387 2 0 45 2 3 6 30 5 0 7 0 52
21 61 10 0 36 144 0 5 0 1 0 19 16 3 157 12 3 3 1 0 166

1 (detached house), 2 (row house), 3 (multiplex house), 4 (apartment house), 5 (commercial building), 6 (business building), 7 (multipurpose building), 8 (industrial building), 9 (dry paddy
field), 10 (orchard), 11 (paddy field), 12 (forestation field), 13 (natural forest field), 14 (grass field), 15 (bare soil field), 16 (road), 17 (river), 18 (park), 19 (gymnasium), 20 (parking lot),
21 (miscellaneous). A (Dry paddy field), B (Paddy field), C (Orchard), D (Forestry), E (Building site), F (Factory site), G (School site), H (Parking lot), I (Gas station site), J (Warehouse site),
K (Road), L (Railway site), M (Bank), N (River), O (Ditch), P (Marsh), Q (Water supply site), R (Park). S (Gymnasium site), T (Miscellaneous).
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Table 2. Comparison between land-use record in UIS and land-use category record in KLIS of about 4,000,000 land parcels in Jeonnam Province.

A B C D E F G H I J K L M N O P Q R S T

1 29,886 13,270 187 4603 537,129 25 218 9 6 92 350 112 6 73 55 110 6 1 238 3684
2 109 92 3 15 778 1 1 3 0 0 4 0 0 0 0 1 0 0 0 12
3 75 34 0 6 700 0 1 0 0 2 2 0 0 1 0 1 0 0 1 5
4 192 131 1 67 1289 3 4 0 0 0 17 0 0 0 15 1 0 0 0 13
5 1257 1567 15 269 33,248 88 14 38 936 85 114 27 0 2 9 10 2 0 7 2273
6 297 237 3 71 2978 4 46 12 4 30 2 24 0 2 2 0 1 0 10 242
7 1000 1148 11 148 27,633 15 9 11 51 32 24 22 0 4 8 19 1 0 19 976
8 875 688 7 257 1972 4634 0 2 14 125 40 0 7 9 7 22 1 7 0 1970
9 962,643 50,201 934 46,482 12,995 36 135 4 7 63 1038 401 17 448 115 623 57 13 116 4726

10 11,374 4357 7009 2382 337 1 8 3 0 13 15 2 2 5 2 21 1 0 6 161
11 27,823 1,170,616 338 4468 2736 23 43 3 0 48 1053 73 51 656 302 1613 50 4 34 7872
12 320 266 0 27,706 17 0 0 0 0 33 6 0 0 4 0 2 0 96 0
13 2442 1034 30 505,169 430 0 22 0 1 2 346 75 5 27 103 143 47 7 19 159
14 7919 4437 30 79,618 722 0 15 0 0 0 80 26 2 14 7 47 4 0 7 378
15 169 83 5 5155 64 2 9 1 0 19 11 37 1 0 2 21 77 9 98 255
16 14,357 20,976 47 8066 10,027 68 179 8 3 24 90,897 1605 121 916 774 459 751 8 39 1301
17 3182 8267 8 1752 450 5 11 0 0 2 343 20 1474 6083 9342 9110 97 1 2 792
18 169 140 0 109 194 0 0 1 0 0 6 4 0 4 3 10 0 240 3 69
19 114 201 0 83 311 0 212 0 0 0 23 29 0 2 4 1 5 7 0 0
20 124 151 1 45 231 1 9 214 5 0 20 2 0 0 3 2 2 0 2 152
21 885 889 5 313 713 2 123 0 1 7 19 18 17 5 5 221 18 0 20 1343

1 (detached house), 2 (row house), 3 (multiplex house), 4 (apartment house), 5 (commercial building), 6 (business building), 7 (multipurpose building), 8 (industrial building), 9 (dry paddy
field), 10 (orchard), 11 (paddy field), 12 (forestation field), 13 (natural forest field), 14 (grass field), 15 (bare soil field), 16 (road), 17 (river), 18 (park), 19 (gymnasium), 20 (parking lot),
21 (miscellaneous). A (Dry paddy field), B (Paddy field), C (Orchard), D (Forestry), E (Building site), F (Factory site), G (School site), H (Parking lot), I (Gas station site), J (Warehouse site),
K (Road), L (Railway site), M (Bank), N (River), O (Ditch), P (Marsh), Q (Water supply site), R (Park). S (Gymnasium site), T (Miscellaneous).
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4.2. Results and Discussion

Figure 4 shows the projection of the data provided in Table 1 onto the three-dimensional space
using the proposed method. Although the projection was originally done onto five-dimensional space,
the coordinates of up to three principle dimensions are used for the visual analysis. As described above,
the land-use record and category that are close to each other in this space share more land parcels, such
as (11, B), as can be seen at the bottom left in the figure (this cell corresponds to a paddy field).
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Figure 4. Projection of the land-use record and category of Table 1 onto a 3-dimensional space with the
proposed method for visual presentation. Feature class pairs that share more objects, such as (11, B)
and (20, H) in Table 1, have closer coordinates.

Figure 5 shows the dendrogram of agglomerative hierarchical clustering on the embedded
coordinates of the data provided in Table 1. In the dendrogram, nodes and links represent the process
used to identify the clusters. For example, “8 (industrial building)” and “J (Warehouse site)” first
constitute a cluster C1, to which “F (Factory site)” is clustered sequentially to transform the cluster
into C26. According to this clustering process, the corresponding land-use record and category pairs
between UIS and KLIS were analyzed, and subsequently, the corresponding feature class clusters could
be derived and analyzed accordingly. This clustering process allows the identification of not only 1:1
correspondences (at the right side of the dendrogram), but also complex correspondences. In addition,
clusters such as C18 and C19 are combined to define a supercluster for higher-level geographic concepts
for a so-called trans-hydro network. From the clustering results provided in Figure 5, it can be seen
that the following feature correspondences could be obtained:
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• C1 (8:J): Although a small portion of “8 (industrial building)” are located in “J (Warehouse site)”,
these two feature classes have the closest embedded coordinates, as shown in Figure 4. This is
because the proposed method performs data normalization in the form of relative frequency, as in
Equation (11). Thereafter, “F (Factory site)” is clustered sequentially to process the cluster into C26

• C8 ({2,3,4,6,7}:E): Seoul city is a typical megacity and the capital of the Republic of Korea with a
population equal to approximately 10 million, therefore, there are so many residential buildings
constructed on the land with land-use category registered as “E (Building site)”. It should be
noted that, according to its high land price, detached houses are not popular in the city, except
suburban areas. Thus, C8 represents this residence characteristic of the city.

• C21 ({2,3,4,5,6,7}:E), C22 ({1,2,3,4,5,6,7}:E): During the clustering process, “5 (commercial building)”
and “1 (detached house)” are sequentially merged into C8. As previously explained, “1 (detached
house)” is subsequently merged into the cluster after “5 (commercial building)”.

• C27 ({1,2,3,4,5,6,7,8}:{E,F,J,I,S): C27 is a combination of C24 and C26, which together constitute the
main urban development area. Then, “I (Gas station)” is merged into this cluster, which seems
to be an isolated land-use category in the urban development area. This is because the safety
regulation and high land prices of Seoul city lead to the fact that gas stations are located at a
significant distance from central residential and/or commercial sites.

• C10 (17:M), C16 (17:{M, N, O, P}): “17 (river)” and “M (Bank)” are firstly clustered and then, “N
(River)”, “P (Marsh)”, and “O (Ditch)” are clustered to form the water-system area. In Seoul
city, central and local governments have constructed the banks along most of rivers and streams
to prevent flood damage, which explains why “17 (river)” and “M (Bank)” are firstly clustered
together, rather than remaining as three considered land-use categories.
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• C5 (16:K): This cluster shows that in the two datasets of the land-use record and category, feature
classes named “Road” represent nearly the same real-world entity, which means that they have
similar geographic concepts for roads.

• C14 ({16, 21}:{K, L}): “21 (miscellaneous)” and “L (Railway site)” are then merged into C5.
• C20 ({16, 17, 21}:{G, K, L, Q, M, N, P, O}): C20 is a combination of C18 and C19 which represents a

so-called trans-hydro network. In an urban area such as Seoul city, many small streams have been
covered to construct more roads as a part of the continuous urbanization process. In this process,
the original land-use category of many land parcels have not been properly changed according
to the substantive land-use condition. The inclusion of “G (School site)” seems to be erroneous.
In Table 1, there is no proper land-use record class for educational facilities, and this means that
the UIS does not manage these facilities. This is due to the fact that according to the Korean
administrative legal system, the management of elementary school, middle school, and high
school should be governed by local education offices, and not by the local government; therefore,
the relevant data is not sufficiently reflected in the UIS, which is managed by local governments.

• C15 ({12,13,14,15}:D): This cluster represents the forest area.
• C36 (11:B), C29 (18:R), C35 (10:C), C34 (20:H): These clusters represent paddy fields, parks, orchards,

and parking lot areas, respectively.

Table 3 shows the clusters in Figure 5 and their F-measure with Equation (16). The above cluster
analysis does not consider a quantitative criterion. In Table 3, some feature class–set pairs such as
C1, C8, and C21 have low F-measure values; meanwhile, other pairs such as C5, C9, C12 have high
values. When the proposed method is applied to identify exact corresponding feature class–set pairs, a
proper F-measure threshold needs to be determined. In the case of Table 3, 0.700 seems to be such
a threshold, considering the above analysis. However, the determination of this threshold requires
sufficient statistical experiments. The following feature class–set pairs have been identified for the
Jeonnam Province:

• C’1 (17:N): In the clustering process, the first pair of feature classes identified is “17 (river)” and
“N (River)”. In the previous clustering analysis performed for Seoul city, it had a low weight
(125/577 = 0.22) according to Equation (11), however, it has a high weight (6083/8225 = 0.74) for the
Joennam Province. This is because, in urban areas such as Seoul city, many roads are constructed
along rivers or banks; however, in rural areas such as the Jeonnam Province, river-side areas are
reserved undeveloped; consequently, the above feature classes are clustered firstly.

• C’21 (17:{M, N, O, P}): Although the order of clustering is different, the result of the analysis is
similar to that of Seoul city. It can be confirmed that the 1:N feature class correspondence is the
same for the city and the province; however, there is a difference in the correspondence priority of
the sub-feature class depending on the regional characteristics.

• C’16 (11:B), C’14 (9:A): Unlike for Seoul city, the cluster order of the feature class related to the
agricultural land was higher than that of Seoul city owing to the characteristics of the Jeonnam
Province, which has a very high proportion of agricultural land. In other words, it can be confirmed
that the actual land-use is performed in the same form as the land plan related to agriculture.

• C’17 (19:G): It shows that various physical education facilities other than educational buildings
are installed and operated on the school site. It can be confirmed that physical education facilities
are being promoted in connection with the development of school grounds being driven by the
welfare projects organized by the local community.

• C’25 ({1, 9, 11, 19, 21}:{A, B, G, T}): This cluster represents the suburban and agriculture area,
where “G (School site)” and “T (Miscellaneous)” are included. This is explained by the data
management problem similar to that of Seoul city, or by the fact that many sports or agricultural
facilities are constructed in the closed school sites in old villages.
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• C’13 (16:{K, L}), C’15 (16:{K, L, Q}): Similar to the aforementioned analysis result for Seoul city,
“16 (road)” and “K (Road)” were firstly clustered; however, unlike the result for Seoul city, “21
(miscellaneous)” was clustered in the suburban and agriculture area, not the transportation area.

• C’18 ({12,13,14,15}:D): This cluster represents the forest area, similarly to that in the aforementioned
case for Seoul city.

• C’36 (8:F), C’33 (10:C), C’34 (18:R): These clusters represent industrial/factory, orchard, park
areas, respectively.

Table 3. Feature class–set pairs in Figure 5 and their F-measures.

No Feature
Class-Set Pair F-Measure No Feature Class-Set Pair F-Measure

C1 {8}:{J} 0.003 C20 {16,17,21}:{G,K,L M,N,O,P} 0.772
C2 {3,6}:Null C21 {2,3,4,5,6,7}:{E} 0.586
C3 {2,3,6}: Null C22 {1,2,3,4,5,6,7}:{E} 0.964
C4 {13,15}: Null C23 {16,17,21}:{G,K,L M,N,O,P,Q,T} 0.773
C5 {16}:{K} 0.734 C24 {1,2,3,4,5,6,7}:{E,S} 0.964
C6 {4}:{E} 0.056 C25 {9,19}: Null
C7 {4,7}:{E} 0.251 C26 {8}:{F,J} 0.283
C8 {2,3,4,6,7}:{E} 0.433 C27 {1,2,3,4,5,6,7,8}:{E,F,J,S} 0.966
C9 {16,21}:{K} 0.732 C28 {1,2,3,4,5,6,7,8}:{E,F,I,J,S} 0.967
C10 {17}:{M} 0.163 C29 {18}:{R} 0.569
C11 {Nan}:{35,37} C30 {1,2,3,4,5,6,7,8,16,17,21}:{E,F,G,I,J,K,L,M,N,O,P,Q,S,T} 0.987

C12 {13,15}:{D} 0.703 C31
{1,2,3,4,5,6,7,8,9,

16,17,19,21}:{E,F,G,I,J,K,L,M,N,O,P,Q,S,T} 0.979

C13 {13,14,15}:{D} 0.730 C32
{1,2,3,4,5,6,7,8,9,16,17,19,21}:

{A,E,F,G,I,J,K,L,M,N,O,P,Q,S,T} 0.987

C14 {16,21}:{K,L} 0.739 C33
{1,2,3,4,5,6,7,8,9,12,13,14,15,16,17,19,21}:

{A,D,E,F,G,I,J,K,L,M,N,O,P,Q,S,T} 0.992

C15 {12,13,14,15}:{D} 0.735 C34 {20}:{H} 0.493
C16 {17}:{M,N,P} 0.464 C35 {10}:{C} 0.288
C17 {16,21}:{G,K,L} 0.740 C36 {11}:{B} 0.424

C18 {16,21}:{G,K,L,Q} 0.741 ...
C19 {17}:{M,N,O,P} 0.422 C40 All:All 1.000

The above clustering sequence describes local characteristics because even though they have the
same land category, the results of substantive land development or land-use could be different across
the regions. Figure 6 shows such a difference clustering result of the Jeonnam Province data in Table 2.

Table 4 shows F-measure values of the clusters in Figure 6, similar to Table 3. Comparing to Table 3,
the clusters related to suburban and agriculture areas, such as C’14 and C’16, have high F-measure values.
Meanwhile, those related to the development area, such as C’5, C’6, C’7, and C’8, have low values.

Considering the above analysis results provided for Seoul city and the Jeonnam Province, the
characteristics of the proposed method could be identified as follows. First, it is possible to explore
the various semantic correspondences of the feature classes through analyzing the clustering order
in the embedded space. Adjacent feature classes in the space share more spatial objects, which
means that they have a high probability to represent the same real-world entity or phenomena.
According to the assumptions of this research and many previous related studies, these feature classes
can be classified as semantically corresponding pairs. Therefore, applying agglomerative hierarchical
clustering, hierarchical semantic relations of the feature classes such as “is_subset_of”, “is_superset_of”,
or “is_same_to” could be obtained, similarly to [13].

Second, it is possible to infer regional characteristics of the feature classes. For example, the
lands for which the land-use category is T (Miscellaneous) were generally used for the transportation
area in Seoul city, and for the suburban and agricultural areas in the Jeonnam Province, as shown in
Figures 4 and 5, respectively. This is because there is high land development demand for transportation
services in urban areas such as Seoul city. However, in the Jeonnam Province, where only a small
part of its area is urbanized, there is no specific land development demand, and thus, the lands for
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which the land-use category is T (Miscellaneous) were developed in various forms. However, the
water-system area and the forest area showed very similar clustering results. This can be explained by
the natural environment protection due to the intervention of the central government, which results in
similar land development tendencies for both urban and rural areas.ISPRS Int. J. Geo-Inf. 2019, 8, 479 15 of 18 
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Figure 6. Dendrogram constructed based on agglomerative hierarchical clustering of the coordinates of
the land-use record and category in the Jeonnam Province data as per Table 2, using the proposed method.

Table 4. Feature class–set pairs in Figure 6 and their F-measures.

No Feature
Class-Set Pair F-Measure No Feature Class-Set Pair F-Measure

C’1 {17}:{N} 0.247 C’18 {12,13,14,15}:{D} 0.933
C’2 {6}:{E} 0.009 C’19 {11,21}:{B} 0.937
C’3 {15}: {D} 0.015 C’20 {11,19,21}:{B,G} 0.936
C’4 Null:{M,O} C’21 {17}:{M,N,O,P} 0.702
C’5 {4,6}:{E} 0.013 C’22 {2,3,4,6,7,20}:{E} 0.100
C’6 {2,4,6}:{E} 0.016 C’23 {11,19,21}:{B,G,T} 0.934
C’7 {2,3,4,6}:{E} 0.018 C’24 {1,11,19,21}:{B,G,T} 0.768
C’8 {2,3,4,6,7}:{E} 0.099 C’25 {1,9,11,19,21}:{A,B,G,T} 0.864
C’9 {12,14}:Null C’26 {1,2,3,4,7,6,9,11,19,20,21}:{A,B,E,G,T} 0.965

C’10 {12,13,14}:Null ...
C’11 {17}:{N,P} 0.493 C’33 {10}:{C} 0.408
C’12 {16}:{K} 0.742 C’34 {18}:{R} 0.384

C’13 {16}:{K,L} 0.747 C’35
{1,2,3,4,5,6,7,9,11,12,13,14,15,16,19,20,21}:

{A,B,D,E,G,H,I,J,K,L,Q,ST} 0.993

C’14 {9}:{A} 0.897 C’36 {8}:{F} 0.596

C’15 {16}:{K,L,O} 0.750 ...
C’16 {11}:{B} 0.938 C’40 All:All 1.000
C’17 {19}:{G} 0.207
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5. Conclusions

In this article, we proposed a new method to identify semantic correspondences between two
datasets by means of finding hierarchical M:N corresponding feature class–set pairs. Applying the
overlapping analysis to the object sets within the feature classes, the similarities of the feature classes
are estimated and projected onto a lower-dimensional vector space after applying the graph embedding
method. Thereafter, as the feature classes of high similarity are distributed close to each other in the
projection space, distance-based clustering is conducted to identify the semantically corresponding
feature class pairs. The above method was applied to the cadastral parcels’ land-use record in UIS
and the corresponding land-use category in KLIS for two different test sites, Seoul city and the
Jeonnam Province. As a result, it was possible to find various semantic correspondences of the feature
classes between UIS and KLIS. In addition, hierarchical structures of the correspondences could be
obtained. Moreover, upon analyzing these structures to obtain sequential clustering orders, regional
characteristics of the feature classes were also inferred.

The proposed method is based only on the results of the overlay analysis between datasets.
Therefore, aside from the location information, other prior information related to the construction of
similarity measures was not required. This is an advantage in terms of generality as the proposed
method can be applied to various geospatial datasets. Moreover, an advanced method could be
developed by combining various similarity measures, such as lexical similarity, structural similarity,
category similarity, shape similarity, and so on [18,28,29] into the co-occurrence matrix, in which rows
and columns represent entities under analysis, such as feature classes in this study. To combine these
various similarity measures between these entities, it is necessary to determinate their weight. We will
consider these aspects to improve the proposed method in future studies.
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Springer: Berlin, Germany, 1999; pp. 189–202.

8. Duckham, M.; Mason, K.; Stell, J.; Worboys, M. A formal approach to imperfection in geographic information.
Comput. Environ. Urban Syst. 2001, 25, 89–103. [CrossRef]

http://dx.doi.org/10.1016/j.jag.2005.03.002
http://dx.doi.org/10.1080/14498596.2010.521974
http://dx.doi.org/10.1080/13658816.2010.519707
http://dx.doi.org/10.1016/S0198-9715(00)00040-5


ISPRS Int. J. Geo-Inf. 2019, 8, 479 17 of 17

9. Duckham, M.; Worboys, M. An algebraic approach to automated geospatial information fusion. Int. J. Geogr.
Inf. Sci. 2005, 19, 537–557. [CrossRef]

10. Cruz, I.F.; Sunna, W. Structural Alignment Methods with Applications to Geospatial Ontologies. Trans. GIS
2008, 12, 683–711. [CrossRef]

11. Buccella, A.; Cechich, A.; Gendarmi, D.; Lanubile, F.; Semeraro, G.; Colagrossi, A. Building a global
normalized ontology for integrating geographic data sources. Comput. Geosci. 2011, 37, 893–916. [CrossRef]

12. Bhattacharjee, S.; Ghosh, S.K. Measuring semantic similarity between land-cover classes for spatial analysis:
An ontology hierarchy exploration analysis. Innov. Sys. Softw. Eng. 2016, 12, 193–200. [CrossRef]

13. Kuo, C.L.; Hong, J.H. Interoperable cross-domain semantic and geospatial framework for automatic change
detection. Comput. Geosci. 2016, 86, 109–119. [CrossRef]

14. Kuai, X.; Li, L.; Luo, H.; Hang, S.; Zhang, Z.; Liu, Y. Geospatial Information Categories Mapping in
a Cross-lingual Environment: A Case Study of “Surface Water” Categories in Chinese and American
Topographic Maps. ISPRS Int. J. Geo. Inf. 2016, 5, 90. [CrossRef]

15. Zhang, Y.; Yang, P.; Li, C.; Zhang, G.; Wang, C.; He, H.; Hu, X.; Guan, Z. A multi-feature based automatic
approach to geospatial record linking. Int. J. Semt. Web Inf. Sys. 2018, 14, 73–91. [CrossRef]

16. Huang, Y. Conceptual categorizing geographic features from text based on latent semantic analysis and
ontologies. Ann. GIS 2016, 22, 113–127. [CrossRef]

17. Sedoc, J.; Gallier, J.; Ungar, L.; Foster, D. Semantic word clusters using signed normalized graph cuts. arXiv
2016, arXiv:1601.05403.

18. Sun, K.; Zhu, Y.; Song, J. Progress and Challenges on Entity Alignment of Geographic Knowledge Bases.
ISPRS Int. J. Geo. Inf. 2019, 8, 77. [CrossRef]

19. Hendrickson, B. Latent semantic analysis and Fiedler embedding. Linear. Algebra Appl. 2007, 421, 345–355.
[CrossRef]

20. Huh, Y.; Kim, J.; Lee, J.; Yu, K.; Shi, W. Identification of multi-scale corresponding object-set pairs between
two polygon datasets with hierarchical co-clustering. ISPRS J. Photo. Rem. Sens. 2014, 88, 60–68. [CrossRef]

21. Belkin, M.; Niyoki, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural
Comp. 2003, 15, 1373–1396. [CrossRef]

22. Sameh, A.; Wisniewski, J. A trace minimization algorithm for the generalized eigenvalue problem. SIAM J.
Num. Anal. 1982, 19, 1243–1259. [CrossRef]

23. Min, D.; Zhilin, L.; Xiaoyong, C. Extended Hausdorff distance for spatial objects in GIS. Int. J. Geogr. Inf. Sci.
2007, 21, 459–475. [CrossRef]

24. Li, L.; Goodchild, M. An optimisation model for linear feature matching in geographical data conflation.
Int. J. Image Data Fus. 2011, 2, 309–328. [CrossRef]

25. Dhillon, I. Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of
the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, 26–29 August 2001.

26. Cho, M.; Lee, J.; Lee, K. Feature correspondence and deformable object matching via agglomerative
correspondence clustering. In Proceedings of the 12th IEEE International Conference on Computer Vision,
Kyoto, Japan, 27 September–4 October 2009.

27. Euzenat, J.; Shavaili, P. Ontology Matching, 2nd ed.; Springer: New York, NY, USA, 2013; p. 304.
28. Van den Brink, L.; Janssen, P.; Quak, W.; Stoter, J. Towards a high level of semantic harmonisation in the

geospatial domain. Comp. Environ. Urban Sys. 2017, 62, 233–242. [CrossRef]
29. Yu, L.; Qiu, P.; Liu, X.; Lu, F.; Wan, B. A holistic approach to aligning geospatial data with multidimensional

similarity measuring. Int. J. Dig. Earth 2018, 11, 845–862. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/13658810500032339
http://dx.doi.org/10.1111/j.1467-9671.2008.01126.x
http://dx.doi.org/10.1016/j.cageo.2011.02.022
http://dx.doi.org/10.1007/s11334-016-0276-8
http://dx.doi.org/10.1016/j.cageo.2015.10.011
http://dx.doi.org/10.3390/ijgi5060090
http://dx.doi.org/10.4018/IJSWIS.2018100104
http://dx.doi.org/10.1080/19475683.2016.1144648
http://dx.doi.org/10.3390/ijgi8020077
http://dx.doi.org/10.1016/j.laa.2006.09.026
http://dx.doi.org/10.1016/j.isprsjprs.2013.11.017
http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1137/0719089
http://dx.doi.org/10.1080/13658810601073315
http://dx.doi.org/10.1080/19479832.2011.577458
http://dx.doi.org/10.1016/j.compenvurbsys.2016.12.002
http://dx.doi.org/10.1080/17538947.2017.1359688
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Laplacian Graph Embedding 
	One-dimensional Embedding 
	k-dimensional Embedding 

	Proposed Method 
	Step 1: Constructing Edge Weight Matrix W 
	Step 2: Solving Eigenproblem and Obtaining K-dimensional Coordinates 
	Step 3: Agglomerative Hierarchical Clustering Analysis and Assessment of Clusters 

	Experiment and Results 
	Experimental Dataset 
	Results and Discussion 

	Conclusions 
	References

