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Abstract: Data about the movements of diverse objects, including human beings, animals,
and commodities, are collected in growing amounts as location-aware technologies become pervasive.
Clustering has become an increasingly important analytical tool for revealing travel patterns from
large-scale movement datasets. Most existing methods for origin-destination (OD) flow clustering
focus on the geographic properties of an OD flow but ignore the temporal information preserved in
the OD flow, which reflects the dynamic changes in the travel patterns over time. In addition, most
methods require some predetermined parameters as inputs and are difficult to adjust considering the
changes in the users’ demands. To overcome such limitations, we present a novel OD flow clustering
method, namely, TOCOFC (Tree-based and Optimum Cut-based Origin-Destination Flow Clustering).
A similarity measurement method is proposed to quantify the spatial similarity relationship between
OD flows, and it can be extended to measure the spatiotemporal similarity between OD flows.
By constructing a maximum spanning tree and splitting it into several unrelated parts, we effectively
remove the noise in the flow data. Furthermore, a recursive two-way optimum cut-based method is
utilized to partition the graph composed of OD flows into OD flow clusters. Moreover, a criterion
called CSSC (Child tree/Child graph Self-Similarity Criterion) is formulated to determine if the clusters
meet the output requirements. By modifying the parameters, TOCOFC can obtain clustering results
for different time scales and spatial scales, which makes it possible to study movement patterns
from a multiscale perspective. However, TOCOFC has the disadvantages of low efficiency and large
memory consumption, and it is not conducive to quickly handling large-scale data. Compared with
previous works, TOCOFC has a better clustering performance, which is reflected in the fact that
TOCOFC can guarantee a balance between clusters and help to fully understand the corresponding
patterns. Being able to perform the spatiotemporal clustering of OD flows is also a highlight of
TOCOFC, which will help to capture the differences in the patterns at different times for a deeper
analysis. Extensive experiments on both artificial spatial datasets and real-world spatiotemporal
datasets have demonstrated the effectiveness and flexibility of TOCOFC.

Keywords: OD flow; spatial clustering; spatiotemporal joint clustering; flow similarity measurement

1. Introduction

Origin-destination data, namely, OD flow data, that contain paired location information and
temporal information, hold great potential to discover the links between two areas. Visual approaches
such as flow maps [1,2] offer an easy way to analyze the mode of movements because of their intuitive
nature. However, in the era of big data, the rapid increase in the amount and complexity of OD

ISPRS Int. J. Geo-Inf. 2019, 8, 477; doi:10.3390/ijgi8110477 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://dx.doi.org/10.3390/ijgi8110477
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/8/11/477?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2019, 8, 477 2 of 20

flow data make the visualization blurry, which drives the development of new approaches to more
effectively discover the unknown information implicit in the data itself.

A series of enhanced OD visualization methods [3–11] have been investigated to improve the
ability to analyze OD flows from multiple research perspectives. With the purpose of eliminating the
occlusion problem, Buchin [3] applied a spiral tree to the flow map, which makes the flow map very neat
and clear by merging lines smoothly, although predefined study areas such as TAZs or administrative
areas are needed. Selassie [4] presented a divided edge bundling method that bundles related edges by
the graph structure to reduce the clutter and improve the readability. For the expression of attributes
in visualizations, Guo [5] adopted a highly interactive flow map component to map both the flow
and multivariate patterns on the basis of geographical regions constructed by a spatially constrained
graph partitioning method. Boyandin [6] presented a new interactive visualization approach called
“flowstrates”, in which the origins and destinations of the flows are displayed in two separate views,
and the changes in the flow magnitudes over time are represented in a separate, central heat map view
to support exploration in the temporal dimension. In addition, the OD matrix [7,8] and OD map [9]
are useful tools for understanding the detailed patterns of OD flows.

However, most enhanced OD visualization methods require predefined research regions,
which inevitably reduces the accuracy of the analysis results. In recent years, clustering has become a
hot topic because of its characteristic ability to identify spatial linkages without fixed boundaries and
distill general rules from messy OD flows.

Inspired by the deep insight of the similarity relationship between flows [10], the excellent
performance of the optimum cut-based clustering [12], and the good scalability of the minimum
spanning tree [13,14], we put forward a novel OD flow clustering method in this article, namely,
Tree-based and Optimum Cut-based Origin-Destination Flow Clustering (TOCOFC), which is capable
of extracting flow clusters with different spatial and temporal resolutions. In detail, we develop an
OD flow similarity measurement method that includes a spatial version and a spatiotemporal version
to quantify the similarity relationship between OD flows. Then, a brand new flow data model that
considers each OD flow as one vertex in a tree or graph combined with a two-way recursive cut-based
clustering strategy is applied to identify flow clusters; of course, the effectiveness of the clustering
results is guaranteed by the newly proposed clustering criteria.

The remainder of this paper is organized as follows: Section 2 reviews the existing OD flow
clustering algorithm, and the details of TOCOFC are described in Section 3. In Section 4, we describe
the extensive experiments conducted on both artificial spatial datasets and real-world datasets.
Finally, conclusions are drawn in Section 5.

2. Related Work

The main purpose of OD flow spatial clustering is to group flows that are geographically close to
each other into a cluster. A major limitation of the clustering process is the definition of the proximity
between OD flows, which is different from that of spatial points, the proximity of which can simply be
expressed by the value of the Euclidean distance between points.

Guo et al. [15,16] presented a method for defining the neighborhood of a flow and, based on
this method, extracted a representative flow via a kernel-based flow density estimation sampling
method, which has the advantages of avoiding the modifiable area unit problem and automatically
detecting clusters at multiple scales. This method is weak in detecting the subtle features that are
essential for analyzing the movement patterns of nonhotspots. In addition, this method also faces
the problem of optimal parameter selection. Zhu et al. [17,18] developed parametric distance metrics
to measure the dissimilarities between OD flows and further used DBSCAN to obtain flow clusters.
This method can aggregate flows with different lengths by tuning the parameter used in the distance
metrics; however, the selection of a parameter is still a problem that has to be seriously considered. Gao
et al. [19] presented a multidimensional spatial scan statistics approach to detect highly concentrated
flow clusters with a new spatial data model that integrates each OD flow into a 4D point. The obvious
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drawback of this method is that it is insufficient to accurately depict the sizes and shapes of clusters.
AntScan_flow was proposed by Ci et al. [20], which identified arbitrarily shaped flow clusters and
made up for the insufficiencies of Gao et al. [19] by replacing the data model and introducing the ant
colony optimization (ACO) strategy into flow clustering.

However, a lack of research on the geometric characteristics of the flow itself, such as direction
and length, exists in the above methods, which may lead to large differences within the clusters.
He et al. [12] adopted entropy theory and the probability distribution function for parameter selection
to acquire significant clustering results on the basis of discovering strong spatial linkages via OD lines
rather than separated points. Taking into account the importance of the time factor in movement
pattern analysis, Yao et al. [21] proposed a stepwise spatiotemporal flow clustering method to discover
significant flow trends through space and time. This method extensively explored the spatial similarity
of OD flows based on the direction and length of the flows and proposed a temporal similarity
measurement to preserve the temporal patterns. However, this method cannot implement more
efficient and generalized temporal clustering because it requires that there exists an overlap between
the time span distributions of different OD flows.

3. Tree-Based and Optimum Cut-Based Origin-Destination Flow Clustering

In this section, we propose a novel OD flow-clustering algorithm called “Tree-based and Optimum
Cut-based Origin-Destination Flow Clustering” (TOCOFC) to obtain OD flow clusters from an
enormous amount of raw OD flow data. TOCOFC can identify the spatial and spatiotemporal joint
clustering of OD flow data, and different clustering results can be obtained by tuning the clustering
parameters. TOCOFC has four steps. First, an OD flow similarity measurement method that quantifies
the spatial similarity relationship between OD flows into a quantitative value is used. Furthermore, we
extend this method to measure the spatiotemporal similarity between OD flows. Second, a maximum
spanning tree MST(V, E) is constructed, and we define the similarity value between pairs of OD flows
as the weight of the corresponding E. Then, we break the MST to filter the noise flows and acquire a set
of child trees. Third, we develop the CSSC (Child tree/Child graph Self-Similarity Criterion) to estimate
whether the OD flows (Vs) in the child tree or child graph can be organized as an OD flow cluster for
output. Last, we reshape the child tree that does not satisfy CSSC into an undirected graph G(V, E).
Then, a recursive, graph-based optimum-cut method is used to partition G into child graphs, and the
recursion process stops when the child graph satisfies the CSSC. We repeat the partition process until
all the child trees that were partitioned into child graphs satisfy the CSSC. The whole clustering process
is displayed in Figure 1.
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3.1. Similarity Measurement Method of the OD Flow

To ensure that there is a similarity relationship between two OD flows, it is required that these
two flows are not only geographically adjacent but also remain similar in direction.

Definition 1. Spatial similarity between OD flows: The quantitative value of the similarity relationship between
two flows in terms of spatial position. The spatial similarity sim(fi, fj) between two OD flows fi and fj is defined as

sim
(

fi, f j
)
= 1− f unc(ratioO) ∗ f unc(ratioD)/4. (1)

The variables ratioO, ratioD, and func(ratio) are defined as

ratioO = dist
(
Oi, O j

)
/disLimit, (2)

ratioD = dist
(
Di, D j

)
/disLimit, and (3)

f unc(ratio) =
{

ratio + 1 ratio ≤ 1
(ratio + 1)a ratio > 1

, (4)

where dist(Oi,Oj) and dist(Di,Dj) represent the Euclidean distance between two origin points of a flow
and two destination points of a flow, respectively. disLimit is a parameter related to the length of fi,
which we explain clearly in Remark 1, and a is a parameter used for preventing a local effect caused by
the numerical value of one of the ratios (ratioO, ratioD) being extremely small, which we explain clearly
in Remark 2.

The range of the similarity value of two OD flows, which are calculated by Equations (1)–(4), is 0
to 0.75. Zero is the minimum value of two similar OD flows, and the more similar the two flows are,
the greater the similarity value is.

Remark 1. In Figure 2, there are three cases used for showing the spatial similarity relationship between OD
flows and proving it has to do with the length of the OD flows.
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In Figure 2a, Oi and Oj are the origin points of OD flows fi and fj, respectively, Di and Dj are the
destination points of OD flows fi and fj, respectively, and the parameter disLimit is the radius of the
circle whose center is Oi or Dj. If both dist(Oi,Oj) and dist(Oi,Oj) are less than disLimit, then we can say
fi and fj are similar. However, the value of disLimit is hard to determine; if we set disLimit to a fixed
value, it will cause two errors:

1. Intuitively, the extent of similarity of the flows in Figure 2a is higher than that of the flows in
Figure 2b, but under the circumstances of a fixed disLimit, the ratio dist(Oi,Oj)/disLimit and the
ratio dist(Di,Dj)/disLimit in Figure 2a,b are similar. That is, the quantitative error is caused by a
fixed disLimit.

2. In Figure 2c, fi and fj are obviously not similar, but they are concluded to be similar flows if they
are judged by a fixed disLimit.
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Thus, disLimit cannot be a fixed value. He. et al. [12] proposed that the length of an OD flow must
be greater than 2disLimit/sin45◦ (≈2.83disLimit) to guarantee an angle between two OD flows of less
than 45. Therefore, in this paper, we set disLimit to vary with the length of the flow, that is

disLimit =
length( fi)

k
, (5)

where k is a parameter greater than 2.83. Usually, we set k to 2.83.

Remark 2. Two ratios, ratioO (dist(Oi,Oj)/disLimit) and ratioD (dist(Di,Dj)/disLimit), are used to calculate the
similarity value of two flows to determine whether they are similar or the extent of their similarity. When both
ratios are less than or equal to 1, we can say these two flows are similar, and the smaller the value of the ratios, the
higher the similarity. It is worth noting that when one of the ratios is small, the similarity value calculated by the
above equations is greater than 0 even when the other ratio is larger than 1, which is the local effect we mentioned
above. Therefore, a piecewise function Equation (4) is proposed to prevent this local effect. In the cases where the
ratio is greater than 1, the parameter a of the power function, func(ratio) in Equation (4), will alleviate this
negative local effect when a is larger than 1. The larger the value of parameter a, the better the mitigation effect.
One plus the ratio also achieves such a mitigation effect.

Remark 3. Clearly, the similarity value calculated by Equations (1)–(4) has a feature: asymmetry. In other
words, sim(fi, fj) and sim(fj, fi) are not equivalent when the length of fi is not equal to the length of fj. Although the
difference between sim(fi, fj) and sim(fj, fi) is not large because there is not much difference in the length of two
similar flows, we adopt the larger one as the uniform similarity value for the sake of convenience for subsequent
research. With the above description, the uniform spatial similarity between two OD flows can be calculated as

sim fi, f j = max
(
sim

(
fi, f j

)
, sim

(
f j, fi

))
. (6)

Definition 2. Spatiotemporal similarity between OD flows: The quantitative value of the similarity relationship
between two flows taking into account the spatial and temporal information. The spatiotemporal similarity
(sim_ST(fi, fj)) between two OD flows fi and fj, which is extended from Equation (1), is defined as

sim_ST
(

fi, f j
)
= 1− f unc(ratioO) ∗ f unc(ratioD) ∗ f unc(ratioT)/8, (7)

where ratioT is defined as

ratioT =
timeSpan

(
fi, f j

)
timeLimit

. (8)

timeSpan(fi, fj) represents the time difference between OD flow fi and fj, and there are two ways to
calculate the time difference:

1. Calculating the time difference on the basis of the starting time of the OD flows.
2. Calculating the time difference on the basis of the ending time of the OD flows.

If timeSpan(fi, fj) is larger than timeLimit, then we can say that fi and fj have no temporal similarity.
Thus, timeLimit is a parameter similar to disLimit because both are used for calculating the ratios;
however, disLimit is a parameter that depends on the length of the OD flow, and timeLimit is set
artificially, without any relation to the OD flow itself. We can set timeLimit to any value, such as 5 min,
10 min, 15 min, 30 min, 45 min, and 1 h, depending on what kind of clustering results we want.

Remark 4. The uniform spatiotemporal similarity of two OD flows is defined as follows:

sim_ST fi, f j = max
(
sim_ST

(
fi, f j

)
, sim_ST

(
f j, fi

))
. (9)
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3.2. Construct the Maximum Spanning Tree and Its Child Tree

Definition 3. Maximum spanning tree. The maximum spanning tree is a concept opposite to that of the
minimum spanning tree. In an undirected connected graph, if there is a connected subgraph containing all the
nodes and part of the edges of the original graph and there is no loop (or simple circuits) in the subgraph, then we
call this kind of subgraph a spanning tree of the original graph. A maximum spanning tree has the maximum
weight among all the spanning trees.

The variable V is a collection of OD flows, MST represents the maximum spanning tree for V,
and E represents the set of edges in the MST. For each edge(u,v) ∈ E, we set the edge(u,v) weight with
simu,v or sim_STu,v.

The MST is constructed from an arbitrary root vertex (an OD flow) and grows until the MST spans
all the vertices in V. At each step in the process of growing the MST, we add the heaviest edge that
connects V to an isolated vertex (one has not been added to the MST before) to the MST.

After the MST has been constructed, a factor named “Edge Breakup Factor (EBF)” is utilized to
split the MST into many child trees. The value of the EBF is usually set to 0 because 0 is the lowest
similarity value of two similar flows. CT denotes the child tree.

By searching for edges whose weight value is less than that of the EBF in the MST and removing
them, we can obtain several relatively small CTs. A simple and intuitive example is shown in Figure 3,
with the purpose of illustrating the procedure of constructing an MST and splitting it into child trees.
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Figure 3. Schematic illustration of the method for constructing a maximum spanning tree (MST) and
its child trees (CTs): (a) The original OD flows; (b) Treating the OD flows as vertices; (c) Constructing the
MST starts with an arbitrary vertex and finding the heaviest edge that connects the MST and an isolated
vertex step by step; (d) the MST; (e) Finding the inappropriate edges; (f) Removing the inappropriate
edges; (g) the CTs and noise flows.

Remark 5. If there exists a CT that has only one vertex and no edge, we call it a noise flow.

Remark 6. There is no similarity relationship between the CTs. According to the characteristics of the MST,
the edge with the greatest weight between the CTs is the one that has been broken up due to its weight being lower
than the value of the EBF (which is actually 0), so there is no vertex (OD flow) in one of the CTs related to the
other CTs.

The benefits of constructing the MST and splitting it into CTs are as follows:

• Extracting noise flows and excluding them from the next clustering steps to prevent a loss of
clustering accuracy.
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• Splitting the high-scale MST into several smaller CTs that do not have similar relationships to each
other can increase the clustering efficiency of the subsequent steps without any accuracy loss.

• There is no similarity relationship between the CTs, so we can cluster all the CTs separately parallel
to each other.

3.3. Child Tree/Child Graph Self-Similarity Criterion

Given that CTs vary widely, a criterion called Child tree/Child graph Self-Similarity Criterion
(CSSC) is formulated to evaluate whether the vertices in CT can be organized as an OD flow cluster.
CSSC is also applicable to the child graph, which we will introduce in the next clustering steps.

Definition 4. Child tree/Child graph Self-Similarity. Child tree/Child graph Self-Similarity (CSS) that is used
to calculate the internal similarity of CTs is defined as

CSS(CT) =

∑numCT
i=0

∑numCT
j=0, j,i sim fi, f j ≥ 0?1 : 0

numCT ∗ (numCT − 1)/2
(10)

where numCT represents the number of vertices (OD flows) in CT, fi represents one of the flows in CT, and so is fj.

Definition 5. Child tree/Child graph Self-Similarity Tolerance. The Child tree/Child graph Self-Similarity
Tolerance (CSST) is an artificial threshold. For each CT, if its CCS is greater than or equal to the CCST, then we
can say that all the vertices in the CT can be organized into a cluster; otherwise, the CT needs further cutting.
Our method provides a simple but effective criterion for obtaining OD flow clusters, and the user can acquire
their customized clustering results by modifying the CCST. However, we think it is necessary for us to give a
recommended range of CCST values (CCST ≥ 0.5), which is reasonable to guarantee the sufficient similarity
within the OD flow clusters.

3.4. Cut-Based Graph Clustering Method

The procedure of cut-based graph clustering is employed if there are some CTs that cannot meet
the requirements of the CSSC. In this part, we first convert the CT that needs to be cut into an undirected
connected graph. Then, a cut-based graph clustering algorithm using a global cut criterion is used to
partition this graph into several child graphs that meet the requirements of the CSSC.

Graph theory cutting algorithm [15,22–25] is now a very mature clustering algorithm, which has
very significant effects in clustering complex data.

The cut-based graph clustering algorithm using a global cut criterion, also named spectral
clustering, has become more popular in recent years because it is simple to implement and usually has
a better clustering result than that of the tradition clustering algorithm. There have been many global
cut criteria, such as the minimum cut [22], normalized cut [23] and ratio cut [26]. Although these cut
criteria can indeed prevent skewed cuts efficiently, they usually perform poorly when the number of
vertices in the graph is large. Considering the number of clusters required for the clustering method,
based on the criteria mentioned above and the reality that CTs vary greatly, it is impossible to give an
exact number of clusters to guarantee that all the clustering results satisfy the CSSC. To overcome the
limitations above, a recursive two-way optimum-cut graph clustering method proposed by Li [15] is
utilized to partition the graph into child graphs. We will introduce the details of this method applied
in the OD flow clustering below.

Given a CT that needs to be cut, we convert it into a weighted undirected graph G (V, E) where
the vertex set V is the same as the V in the CT and the edge set E is the set of unordered pairs of V.
The weight of each edge is first calculated by the similarity measurement method of the OD flow,
then we set the weight of the edge(u,v) with a weight less than 0 to 0. N = |V| denotes the number of
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vertices and W is a symmetrical matrix with W(i, j) = w(Vi, Vj), where w(Vi, Vj) represents the weight
between vertex Vi and Vj.

During the clustering process, we tried to find the best cut to partition G into two disjointed child
Graphs, CG1 and CG2, where CG1 , Ø, CG2 , Ø, CG1 ∩ CG2 = Ø, and CG1 ∪ CG2 = G.

Definition 6. Intraweight. The intraweight (IW) of the CG is defined as

IW(CG) =
n∑

i=0

n∑
j=0, j,i

w
(
Vi, V j

)
. (11)

Definition 7. Cut-weight. The cut-weight (CW) of the G is defined as

CW(G) =
∑

u∈CG1,v∈CG2

w(u, v). (12)

The best cut tries to minimize the value of the CW(G) and maximize the value of the IW(CG1) and
IW(CG2) simultaneously. To achieve this, we propose the following optimum-cut criterion:

Ocut(CG1, CG2) = min(max(
CW(G)

IW(CG1)
,

CW(G)

IW(CG2)
)), (13)

which is similar to the optimum-cut criterion proposed by Li [15].
Li [15] has discussed the feasibility of optimizing the optimum-cut criterion and gave an effective

sample-based method to obtain the division results. On the theoretical basis of Li [15], the steps of the
optimum cut-based graph partition are as follows:

Step 1: Given a G(V, E) converted from a CT, let d(u) = d(u) =
∑

v w(u, v) be the total weight
from vertex u to all the other vertices. With the definition of N and d, D is an N × N diagonal matrix
with d = (d(V1), d(V2), . . . , d(VN)) on its diagonal. The normalized Laplacian matrix is denoted by L,
which is represented as follows:

L = D−
1
2 (D−W)D−

1
2 . (14)

Step 2: Let λ2 be the second smallest eigenvalue of L, α2 be the eigenvector corresponding to λ2
and x2 = D−1/2α2.

Step 3: Draw n (usually 400) independent random sample points uniformly from [min(x2),
max(x2)].

Step 4: Select each sample point as a split point to partition x2 into two parts and calculate the
value of

max(
CW(G)

IW(CG1)
,

CW(G)

IW(CG2)
)

Step 5: Choose the sample point as the optimal split point whose value of

max(
CW(G)

IW(CG1)
,

CW(G)

IW(CG2)
)

is the smallest value of all the sample points. Then, use the optimal split point to bisect G into
CG1 and CG2.

Remark 7. The value of IW(CG) is 0 when the number of vertices in CG is 1, which violates the principle
that the denominator must not be zero. Therefore, we replace IW(CG) with a small positive number when this
situation happens.
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However, this sample-based division method is not suitable for a very large amount of data
because of its low computational efficiency. Thus, we chose k-means as an alternative method to
partition x2 into two parts, which was also proven to be feasible by Li [15].

Furthermore, a recursive strategy is adopted to repartition the CG that cannot meet the requirements
of the CSSC. Based on the CSSC, we can decide which CT should be partitioned, which CG should be
repartitioned, and when the process of recursive repartition should be stopped.

Remark 8. Two serious problems occur in the process of repartitioning the CGs:
Problem 1. If, in the CG that needs to be further cut, there exists one or more noise flows, the matrix D

corresponding to CG will be a singular matrix, which is forbidden in the process of calculating the normalized
Laplacian matrix.

Problem 2. When the CSST is less than 1, there exist some CGs that satisfy the CSSC, but it can be
partitioned into two CGs without any similarity relationship.

Figure 4 intuitively illustrates these two problems with two simple examples. Clearly, Problem 1
disturbs the partitioning process, and Problem 2 makes the clustering results untrustworthy.ISPRS Int. J. Geo-Inf. 2019, 8, 477 9 of 19 
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To cope with these two problems, we extract the vertices of the CGs that exist from one of the
above problems and use them to construct an MST, and then we split it into CTs; this is similar to the
step that we introduced in Section 3.2, which is very helpful for dealing with these two problems.

After obtaining all the CGs that satisfy the CSSC, we organize all the vertices in each CG into a
flow cluster.

3.5. Algorithm and Performance Analysis

From the description in the previous sections, it can be seen that our algorithm mainly consists of
three steps:

step 1. Compute the similarity value between flows.
step 2. Construct the MST.
step 3. Cut the tree or graph.

Given n OD flows, step 1 has the time complexity of O(n2) for calculating the similarity value
between flows, and the result of the calculation is stored as a matrix for the subsequent steps to
prevent repeated calculations. In step 2, the MST’s construction runs in time O(E+VlgV) by using
Fibonacci heaps [26]. As n OD flows can be seen as n vs. and there are (n−1)*n/2 Es between the n Vs,
the complexity for constructing the MST is equivalent to O(n2+nlgn). Step 3 takes O(n) to compute the
diagonal matrix D in each iteration if there is no noise flow. Assuming that the MST has been split
into k balanced CTs, the time complexity of computing the normalized Laplacian matrix L is O(n3/k2).
It is worth noting that the weight matrix W is a sparse matrix. By using some tricks of sparse matrix
operation, the time complexity of computing L can be reduced to O(n2/k2). Then, the k-means algorithm
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takes O(n) to partition the eigenvector. Therefore, the overall time complexity spent in the first iteration
of step 3 is O(n2/k2+2n). In the worst case, the first iteration is calculated in O(n2+2n). In the next
iteration, as an increasing number of flows are output as clusters, k becomes increasingly large, and the
time consumption is less than that of the first iteration. Assume that the clustering process ends after
m iterations, and the whole computation procedure of step 3 is less than O(m*n2+2n*m).

According to the above steps, the whole computation procedure of the TOCOFC algorithm
costs approximately O((m+1)*n2+2n*m+n*lgn+n). Since m� n, the time complexity of TOCOFC is
approximately O(n2).

Next, we introduce the memory consumption of the TOCOFC algorithm. In step 1, the similarity
value between the flows is calculated and stored as a matrix, which needs a large memory space.
We realize that most of the values in this matrix are 0 because there is not a similar relationship between
most flows, which means that the matrix storing the similarity information between the flows is a
sparse matrix. Therefore, we use a triple table in our experiments to store useful information for
practical applications, which reduces the space complexity of step 1 from O(n*n) to O(a*n) (a is the
average number of similar flows). In the next steps, we use the same method to store the calculation
results. The space complexity consumed by each iteration in the above iterative process is similar to or
less than that of step 1. Since a� n, the overall space complexity of TOCOFC is O(n).

4. Experiments and Results

In this section, we will apply TOCOFC to two artificial spatial datasets, DS1 and DS2, and
two real-world spatiotemporal datasets, DS3 and DS4, to demonstrate the effectiveness of TOCOFC.
To reveal the effects of the CSST and timeLimit parameters involved in TOCOFC on the clustering
results, we conduct a series of related comparison experiments on these datasets.

The OD flows in the artificial spatial datasets DS1 and DS2 only include spatial information, so
we use the spatial version of TOCOFC to experiment on DS1 and DS2. For DS4, we experiment with
the spatiotemporal version of TOCOFC. Although DS4 includes time information, the dataset is used
for comparison with previous work, so here we experiment with the spatial version of TOCOFC.

All the experiments can be separated into three groups: experiments on artificial spatial datasets,
the practical application of TOCOFC and comparison with previous research.

4.1. Experiments on Artificial Spatial Datasets

Experiment 1. This experiment shows the clustering process of TOCOFC. The dataset DS1 is shown
in Figure 5a, which consists of 40 OD flows of equal length. We demonstrate the clustering process of
TOCOFC in Figure 5b–e. In this experiment, we set the parameter CSST to 1. As shown in Figure 5,
we first built an MST and then split it into two CTs, but these CTs cannot satisfy the CSSC under CSST = 1,
so these CTs are organized into Gs to be partitioned until, finally, the CGs satisfy the CSSC.

Experiment 2. In this experiment, we conduct a series of clustering steps under different values of
CSST for comparison. Figure 6a shows the dataset DS2, which contains many OD flows with different
lengths. The clustering results are shown in Figure 6b–g, where different clusters are depicted in
different colors, and Figure 6h shows the noise flows discovered by TOCOFC when the CSST is 1.
It is clear that the clusters discovered by TOCOFC become increasingly detailed as the value of the
CSST increases. Apparently, in terms of identifying the intrasimilarity of the clusters, the parameters
used to create Figure 6g perform better than the others. For the OD flows in the lower left corner,
one cluster is discovered by TOCOFC when the CSST is equal to 0.5, and this cluster is partitioned
into two clusters when the CSST is 0.6, 0.7, or 0.8. Furthermore, this cluster is split into three clusters
when CSST is 0.9 or 1. However, this does not mean that the larger the value of the CSST, the better
the clustering results. There still exists some strong similarity relationship between clusters that are
adjacent to each other. From the clustering results, we know that the CSST is a parameter associated
with the clustering results; users can choose the appropriate value of the CSST based on their demand
for clustering results.
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In the case of Figure 6g, there is a significant difference between the two elliptical regions in
terms of the flow length, but there is not much difference in the range of OD points between these two
regions. The clustering result indicates that the OD flows in the lower left ellipse are grouped into
three clusters; however, the flows in the other ellipse are grouped into just one cluster. The flexible
parameter disLimit, which is related to the flow length results in the abovementioned phenomenon,
effectively ensures the accuracy of clustering results.

In addition, Figure 6h illustrates that TOCOFC can effectively identify noise flows that may
decrease the accuracy of clustering results.

Experiment 3. To demonstrate that the optimum cut-based algorithm we used outperforms the
traditional spectral clustering, such as normalized cut and ratio cut, we further use these three methods
to perform a comparative experiment on DS2. The clustering results with different cutting methods are
shown in Figure 7. After fully observing the details of the clustering results of these three methods,
we find that our method can guarantee strong similarity within clusters, and the difference between
clusters is obvious. In contrast, the normalized cut and ratio cut perform much worse in terms of the
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details of the clustering results. For the normalized cut, the flow in some clusters is more similar to the
flow in other clusters, which means it is unable to find the genuine clusters. The ratio cut performs
better than the normalized cut; however, it has the same drawback. Therefore, the optimum-cut
method we adopted is the best cutting method.

ISPRS Int. J. Geo-Inf. 2019, 8, 477 11 of 19 

 

two regions. The clustering result indicates that the OD flows in the lower left ellipse are grouped 
into three clusters; however, the flows in the other ellipse are grouped into just one cluster. The 
flexible parameter disLimit, which is related to the flow length results in the abovementioned 
phenomenon, effectively ensures the accuracy of clustering results. 

In addition, Figure 6h illustrates that TOCOFC can effectively identify noise flows that may 
decrease the accuracy of clustering results. 

 
Figure 6. Clusters discovered by TOCOFC under different values of the Child tree/Child graph Self-
Similarity Tolerance (CCST): (a) Raw data se tDS2; (b)-(g) Different clustering results when the 
parameter CCST is equal to 0.5, 0.6, 0.7, 0.8, 0.9, 1.0; (h) Noise flow detected by TOCOFC when the 
parameter CCST is equal to 1. 

Experiment 3. To demonstrate that the optimum cut-based algorithm we used outperforms the 
traditional spectral clustering, such as normalized cut and ratio cut, we further use these three 
methods to perform a comparative experiment on DS2. The clustering results with different cutting 
methods are shown in Figure 7. After fully observing the details of the clustering results of these three 
methods, we find that our method can guarantee strong similarity within clusters, and the difference 
between clusters is obvious. In contrast, the normalized cut and ratio cut perform much worse in 
terms of the details of the clustering results. For the normalized cut, the flow in some clusters is more 
similar to the flow in other clusters, which means it is unable to find the genuine clusters. The ratio 
cut performs better than the normalized cut; however, it has the same drawback. Therefore, the 
optimum-cut method we adopted is the best cutting method. 

 
Figure 7. Clusters discovered by different spectral clustering methods: (a) Clusters discovered by 
optimum cut; (b) Clusters discovered by NCut; (c) Clusters discovered by Ratio cut; 

4.2. Experiments on Real Datasets-A Case Study 

For the purpose of illustrating the practicability of the TOCOFC algorithm, two case studies are 
carried out with DIDI travel datasets in this section. Our study area is Chengdu, the second largest 

Figure 7. Clusters discovered by different spectral clustering methods: (a) Clusters discovered by
optimum cut; (b) Clusters discovered by NCut; (c) Clusters discovered by Ratio cut.

4.2. Experiments on Real Datasets—A Case Study

For the purpose of illustrating the practicability of the TOCOFC algorithm, two case studies are
carried out with DIDI travel datasets in this section. Our study area is Chengdu, the second largest city
in western China. By the end of 2018, Chengdu had a residential population of 16.33 million in an area
of 14,335 km2. DIDI, founded in 2014, is one of the most popular taxi platforms in this region and has
generated a large amount of data concerning residents’ travel.

The DIDI travel dataset we used, referred to as DS3 for convenience of description, has 181,172
OD flows on 1 November 2016. Unlike artificial datasets, each flow in the DS3 dataset contains position
and temporal information, including the starting and ending times.

In all the remaining studies, we fix CSST to 0.7 and calculate the time difference on the basis of the
starting time of the OD flow.

We first extract all the outflows of a residential area in the Huamanting community and use the
spatial version of TOCOFC for these outflows to conduct an experiment to find possible problems
in its practical applications. The Huamanting community is a mature high-rise residential area with
complete supporting facilities. The north side of this community is the planned subcenter of the city,
and the south side is the city center. There are 4446 households in the district, but the subway line does
not extend to the area. Therefore, people have a relatively high demand for taxi service, so we choose
Huamanting Community as a research area. In addition, the quantity of outflows is 1546.

Figure 8 illustrates all the outflows that are extracted from the DS3 dataset and the image map
of the Huamanting community. The clustering results from the spatial version of TOCOFC are
shown in Figure 9a, where the number of flows in each cluster exceeds 30. However, research shows
a phenomenon: the value of the parameter disLimit is large when the length of the flows is long,
resulting in the range of the spatial distribution of the O points or D points of the related clusters being
large, which is not conducive to the accurate analysis of the taxi travel modes. As shown in Figure 9a,
the spatial range of the clusters of the D points (the scope is drawn with a dashed ellipse) is very large.
To guarantee that the spatial extent of the clustering results is fine enough to analyze the travel patterns
of residents accurately, we give a limitation for the value of disLimit, that is, while the length of the
flow exceeds 5 km, the parameter disLimit is a fixed value: 5/k km. This limitation relies on experience;
users can decide whether to add this kind of limitation based on their data and their research needs.
The clustering results after the above modification are shown in Figure 9b. Comparing the clustering
results with the original OD flows, it is clear that TOCOFC can effectively discover flow clusters from a
variety of disorganized data. Figure 9c shows the centers of the clusters, which makes the visualization
easier to understand.
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Further, we analyzed the impacts of the parameter timeLimit on the clustering results. In Figure 10,
we demonstrate all the centerlines of the flow clusters with a flow number greater than 5 and use the
average starting time of the flows in each cluster as the temporal information for that cluster. We then
visualize all the flow clusters in different colors based on the temporal information for each cluster.

In Figure 10a, the time span of the flow within the cluster is approximately 30 min because the
parameter timeLimit is set to 30 min. Similarly, the time span of the flow within the cluster depicted in
Figure 10b is approximately one hour, etc.

Most of the outflow clusters are concentrated in the morning and at lunchtime, which are common
travel times for people in residential areas. Additionally, we can identify the most popular destinations
for the residents living in the Huamanting community and when they go there. Figure 11, which shows
the time spans of the OD flow clusters over the area named “#1”, provides a close look at the different
results caused by the timeLimit parameter. To distinguish each cluster clearly, we use different markers
and colors to represent different flow clusters. The time spans of the flow clusters become longer as the
value of timeLimit increases; when the value of timeLimit is 30 min, 17 flow clusters are discovered in
area #1, but when timeLimit is equal to 3 h, the number of flow clusters is 3. The timeLimit parameter
yields clustering characteristics that can be used for multiple different purposes: TOCOFC with a short
timeLimit can be used to analyze the travel modes of the residents in a detailed way; conversely, a larger
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value of the timeLimit parameter will allow the analysis of the resident travel patterns from a macro
perspective. In addition, the time span of the flow cluster is not strictly less than or equal to the value
of timeLimit, while CSST is less than 1.
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timeLimit values. (a) Parameter timeLimit is equal to 30 min; (b) Parameter timeLimit is equal to 1 h;
(c) Parameter timeLimit is equal to 1 h and 30 min; (d) Parameter timeLimit is equal to 2 h; (e) Parameter
timeLimit is equal to 2 h and 30 min; (f) Parameter timeLimit is equal to 3 h.
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Finally, we use all the OD flows in DS3 for clustering, and the clustering parameters are set as
follows: timeLimit = 3 h, CSST = 0.7, and disLimit has a limit of no more than 5/k km. The experimental
results are illustrated in Figure 12. The temporal information of the flow cluster is represented by color.
The quantity information of the cluster is represented by the thickness of the center flow. Among the
clusters shown in Figure 12, some have an almost identical origin and destination but in different
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periods, which means that this kind of spatial connection of two areas exists is multitemporal. There are
more inflows and outflows in the city center than in any other area. It is clear that the trips to the city
center are concentrated in the morning. In the afternoon, there is a much higher probability for trips to
leave from the city center than to go to the city center, which is in line with the common job-house
rules. However, the DIDI taxis are only a part of the whole commuting system; for example, area 2 is
the nearest subway station to area 1, so the DIDI taxi functions as a transfer system between area 1
and area 2, which is a phenomenon caused by the inadequacy of the existing public transportation
system. In addition, not all the destinations for the afternoon trips or the night trips are residences;
for example, area 3 is a famous nighttime attraction (the Temple of Marquis), which has many inflows
at night. As seen from the simple analysis presented above, TOCOFC is an effective tool to discover
spatiotemporal movement patterns.ISPRS Int. J. Geo-Inf. 2019, 8, 477 15 of 19 
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4.3. Comparison and Discussion

The DS4 data are taken from the literature [19], so the experiment in this section mostly focuses
on comparison with previous high-level research. The DS4 dataset consists of the New York City taxi
trips data on a typical workday (21 January 2015), which contains the pickup and drop-off timestamps
and locations of each taxi trip. We only use data from the comparison area, so DS4 does not cover all
the trip data on that day. In total, there are 211,867 taxi trips.

In this experiment, we set CSST to 1. The clustering results are shown in Figures 13 and 14.
Figure 13 shows the spatial extents and centers of the top five flow clusters. Figure 14 shows the centers
of the flow clusters in a hierarchical manner. Figure 15 shows the centers and spatial extents of the top
five clusters with a maximum radius of 2.5 km, which is consistent with the experimental results of
Gao [19]. Comparing Figure 13 with Figure 15, the most intuitive difference is that the results of the
two methods are not exactly the same. Among the five clusters in Figure 15, the 1st, 2nd, 3rd, and
5th have an overlap between the O extents and the D extents, and the flows in the same cluster are
probably moving in opposite directions. Close examination of the 5th cluster shows that the D extents
of this cluster can be divided into two parts because the origin and destination positions of the cluster
are close enough. Gao concentrated only on the influence of the maximum cluster radius and failed
to grasp the relationship between flow similarity and the length of flow, which inevitably leads to
clustering results that cannot accurately depict the movement pattern. TOCOFC, by contrast, has a



ISPRS Int. J. Geo-Inf. 2019, 8, 477 16 of 20

much better performance, which is reflected in the flow within the same cluster satisfying the basic
similarity relationship; for example, the direction of the different flows and the length of the flows
is approximately the same. The similarity measurement method we proposed makes our clustering
results superior to those of Gao. In addition, Gao’s method mainly aims at detecting the most significant
movement pattern and neglecting the minor ones which are still important to fully understanding the
travel modes of people, animals, etc. Instead, TOCOFC can discover both large volumes of flow clusters
and minor flow clusters. Figure 14, which clearly shows that there are flow clusters with different
volumes, demonstrates the superiority of TOCOFC. In Figure 14, the significant flow clusters show the
most important patterns between origin hotspots and destination hotspots. As an effective supplement,
the flow clusters with a relatively low volume show minor patterns between hotspots and nonhotspots
or between nonhotspots. It is crucial for minor flow clusters to reveal the movement characteristics of
nonhotspots, even if those minor flow clusters seem unimportant from a macroperspective.
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Moreover, compared with previous works [12,16,19–21,23], TOCOFC adopts the optimum-cut
strategy to maintain a balance between adjacent clusters; in other words, it makes the similarity between
clusters small enough, and the intrasimilarity of each cluster large enough, rather than maximizing the
volume of the clusters.
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The abovementioned case studies show that our method successfully achieves the spatiotemporal
clustering of flow data, which cannot be accomplished by most of the previous methods. Yao [21]
proposed a spatiotemporal clustering algorithm for discovering mobility trends; however, this method
adopts a stepwise strategy that separates the time information and location information during the
clustering process, which inevitably damages the rationality of the clustering results. Yao’s algorithm
requires there to be overlapping travel time between the flows within each flow cluster, which makes it
difficult to analyze the mobility mode from multiple time scales. The TOCOFC method, by contrast,
has great advantages in terms of flexibility and practicality.

In the above analysis, there is an important problem in our algorithm: the setting of parameters.
This problem is mainly three-fold and includes the setting of the CSST parameter, the setting of the
timeLimit parameter, and the limitation of disLimit. Regarding the CSST parameter, our suggested
value varies from 0.5 to 1. If the CSST is set to 1, the internal similarity of the flow clusters is the
strongest, which is reflected in all the flows remaining similar in each cluster; however, the similarity
between adjacent clusters is also strong. If the CSST is set to 0.5, then the opposite situation will occur.
Thus, users can choose the appropriate value of CSST according to their needs. The choice of the
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parameter timeLimit is also based on the user’s needs. For example, a relatively small timeLimit value
can make the research on the movement pattern more precise, and a relatively large timeLimit value
can drive people to grasp the time-related pattern differences from a broader time span with a more
macro perspective. The limitation of disLimit also depends on the user’s needs. If the clustering results
of long flow data cannot depict the movement trends accurately enough, there is a need to exert a
limitation on the disLimit parameter.

The execution time of TOCOFC depends on the capacity of the dataset. Experiments on artificial
datasets take no more than 10 seconds. However, TOCOFC’s computational efficiency on large-capacity
datasets is lower than that in previous works. In our testing environment (i7-6700, 3.40 GHz CPU,
Java), an experiment on the outflows of the Huamanting community takes nearly 3 min, an experiment
on DS3 takes more than two days and an experiment on DS4 takes nearly three days. In addition,
after many tests, we found that experiments on the dataset whose number of flows is greater than
250,000 will result in a memory outflow error. Low computational efficiency is the largest shortcoming
of TOCOFC.

5. Conclusions and Future Work

In this paper, a novel OD flow clustering approach (referred to as TOCOFC) is presented to
obtain flow clusters from raw, messy OD flows. TOCOFC develops an OD flow similarity measure to
quantify the similarity relationship between OD flows. According to the selected similarity measure
method, TOCOFC can be divided into the spatial version of TOCOFC and the spatiotemporal version
of TOCOFC. We provide an innovative OD flow data model that regards the OD flow as the vertex of a
tree (maximum spanning tree) or graph. With the target of acquiring reasonable clustering results,
a recursive optimum cut-based method is used for partitioning the graph (or child graph), and a new
clustering criterion, CSSC, is proposed to decide whether the tree or graph needs to be partitioned.
Additionally, TOCOFC is a flexible approach from which users can acquire their customized results by
setting the parameters CSST and timeLimit. Furthermore, it is easy for TOCOFC to detect noise flows
that may damage the clustering accuracy.

The experiments on artificial spatial datasets confirm that the spatial version of TOCOFC can
effectively identify the spatial flow clusters. A comparison of clustering results under different values
of CSST indicates that TOCOFC can obtain clustering results with different precisions.

The experiments on real-world spatiotemporal datasets demonstrate that the spatiotemporal
version of TOCOFC effectively extracts spatiotemporal clusters from massive real-world datasets.
The parameter timeLimit can be set to different values, which is helpful for analyzing the movement
patterns at different time scales.

A reasonable concern is how to evaluate the accuracy of TOCOFC. Our current evaluation
method for this algorithm is mainly based on discovering the differences between the clustering results
under different parameters and comparing our algorithm with others. Therefore, one of our future
research directions is to develop a reasonable indicator to measure the quality of the clustering results.
Another direction worth further study is the visualization of the time information of the flow clusters
because the time span of the clusters obtained by spatiotemporal clustering is different.

Overall, we believe that TOCOFC can be an effective tool for the analysis of movement patterns
because of its flexibility and excellent performance. In addition, TOCOFC is suitable not only for OD
flows but also for interaction data that have paired location and temporal information.

Author Contributions: Qiuliang Xiang and Qunyong Wu conceived and designed the experiments; Qiuliang
Xiang performed the experiments and wrote the paper. Qunyong Wu contributed by revising the manuscript.

Funding: National Natural Science Foundation of China (grant No. 41471333).

Acknowledgments: The authors would like to thank the anonymous reviewers for their helpful and constructive
comments that greatly contributed to improving the final version of the paper.

Conflicts of Interest: The authors declare no conflict of interest.



ISPRS Int. J. Geo-Inf. 2019, 8, 477 19 of 20

References

1. Duane, M.; Gou, Z.; Lin, L. Recent Advances in the Exploratory Analysis of Interregional Flows in Space and
Time. In Innovations in GIS; CRC Press: Boca Raton, FL, USA, 1997.

2. Waldo, R.T. Experiments in migration mapping by computer. Cartogr. Geogr. Inf. Sci. 1987, 14, 155–163.
3. Buchin, K.; Speckmann, B.; Verbeek, K. Flow Map Layout via Spiral Trees. IEEE Trans. Vis. Comput. Graph.

2011, 17, 2536–2544. [CrossRef] [PubMed]
4. Selassie, D.; Heller, B.; Heer, J. Divided Edge Bundling for Directional Network Data. IEEE Trans. Vis.

Comput. Graph. 2011, 17, 2354–2363. [CrossRef] [PubMed]
5. Guo, D. Flow mapping and multivariate visualization of large spatial interaction data. IEEE Trans. Vis.

Comput. Graph. 2009, 15, 1041–1048.
6. Boyandin, I.; Bertini, E.; Bak, P. Flowstrates: An Approach for Visual Exploration of Temporal

Origin-Destination Data. Comput. Graph. Forum 2011, 30, 971–980. [CrossRef]
7. Henry, N.; Fekete, J.D. MatrixExplorer: A dual-representation system to explore social networks. IEEE Trans.

Vis. Comput. Graph. 2006, 12, 677–684. [CrossRef]
8. Andrienko, G.; Andrienko, N. Spatio-temporal aggregation for visual analysis of movements. In Proceedings

of the IEEE Symposium on Visual Analytics Science and Technology, Columbus, OH, USA, 19–24 October
2008; Ebert, D., Ertl, T., Eds.; IEEE: Washington, DC, USA, 2008; pp. 51–58.

9. Wood, J.; Dykes, J.; Slingsby, A. Visualisation of Origins, Destinations and Flows with OD Maps. Cartogr. J.
2010, 47, 117–129. [CrossRef]

10. Andrienko, G.; Andrienko, N. Spatial Generalization and Aggregation of Massive Movement Data. IEEE
Trans. Vis. Comput. Graph. 2011, 17, 205–219. [CrossRef]

11. Wood, J.; Slingsby, A.; Dykes, J. Visualizing the dynamics of London’s bicycle hire scheme. Cartographica
2011, 46, 239–261. [CrossRef]

12. He, B.; Yan, Z.; Yu, C. A Simple Line Clustering Method for Spatial Analysis with Origin-Destination Data
and Its Application to Bike-Sharing Movement Data. ISPRS Int. Geo Inf. 2018, 7, 203. [CrossRef]

13. Zhong, C.; Miao, D.; Pasi, F. Minimum spanning tree based split-and-merge: A hierarchical clustering
method. Inf. Sci. 2011, 181, 3397–3410. [CrossRef]

14. Jothi, R.; Mohanty, S.K.; Ojha, A. Fast approximate minimum spanning tree based clustering algorithm.
Neurocomputing 2018, 272, 542–557. [CrossRef]

15. Li, X.; Zheng, T. Optimum cut-based clustering. Signal Process. 2007, 87, 2491–2502. [CrossRef]
16. Guo, D.; Zhu, X. Origin-Destination Flow Data Smoothing and Mapping. IEEE Trans. Vis. Comput. Graph.

2014, 20, 2043–2052. [CrossRef] [PubMed]
17. Zhu, X.; Guo, D. Mapping Large Spatial Flow Data with Hierarchical Clustering. Trans. GIS 2014, 18, 421–435. [CrossRef]
18. Zhu, D.; Huang, Z.; Shi, L.; Wu, L.; Liu, Y. Inferring spatial interaction patterns from sequential snapshots of

spatial distributions. Int. J. Geogr. Inf. Sci. 2018, 32, 783–805. [CrossRef]
19. Gao, Y.; Li, T.; Wang, S.; Myeong-Hun, J.; Kiumars, S. A multidimensional spatial scan statistics approach to

movement pattern comparsion. Int. J. Geogr. Inf. Sci. 2018, 32, 1304–1325. [CrossRef]
20. Ci, S.; Tao, P.; Ting, M.; Yunyan, D. Detecting arbitrarily shaped clusters in origin-destination flows using ant

colony optimization. Int. J. Geogr. Inf. Sci. 2019, 33, 134–154.
21. Yao, X.; Zhu, D.; Gao, Y. A Stepwise Spatio-Temporal Flow Clustering Method for Discovering Mobility

Trends. IEEE Access 2018, 6, 44666–44675. [CrossRef]
22. Mishra, G.; Mohanty, S.K. A fast hybrid clustering technique based on local nearest neighbor using minimum

spanning tree. Expert Syst. Appl. 2019, 132, 28–43. [CrossRef]
23. Shi, J.; Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. 2000, 22, 888–905.
24. Hagen, L.; Kahng, A.B. New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput.

Aided Des. 1992, 11, 1074–1085. [CrossRef]

http://dx.doi.org/10.1109/TVCG.2011.202
http://www.ncbi.nlm.nih.gov/pubmed/22034375
http://dx.doi.org/10.1109/TVCG.2011.190
http://www.ncbi.nlm.nih.gov/pubmed/22034356
http://dx.doi.org/10.1111/j.1467-8659.2011.01946.x
http://dx.doi.org/10.1109/TVCG.2006.160
http://dx.doi.org/10.1179/000870410X12658023467367
http://dx.doi.org/10.1109/TVCG.2010.44
http://dx.doi.org/10.3138/carto.46.4.239
http://dx.doi.org/10.3390/ijgi7060203
http://dx.doi.org/10.1016/j.ins.2011.04.013
http://dx.doi.org/10.1016/j.neucom.2017.07.038
http://dx.doi.org/10.1016/j.sigpro.2007.03.017
http://dx.doi.org/10.1109/TVCG.2014.2346271
http://www.ncbi.nlm.nih.gov/pubmed/26356918
http://dx.doi.org/10.1111/tgis.12100
http://dx.doi.org/10.1080/13658816.2017.1413192
http://dx.doi.org/10.1080/13658816.2018.1426859
http://dx.doi.org/10.1109/ACCESS.2018.2864662
http://dx.doi.org/10.1016/j.eswa.2019.04.048
http://dx.doi.org/10.1109/43.159993


ISPRS Int. J. Geo-Inf. 2019, 8, 477 20 of 20

25. Lingaya, S.R.; Gerardo, B.D.; Medina, R.P. Modified Graph-theoretic Clustering Algorithm for Mining
International Linkages of Philippine Higher Education Institutions. IJACSA 2019, 10, 90–95. [CrossRef]

26. Thomas, H.; Charles, E.; Ronald, L.; Clifford, S. Graph Algorithms. Introduction to Algorithms, 3rd ed.; The MIT
Press: Cambridge, MA, USA, 2009; Volume 1, p. 624.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14569/IJACSA.2019.0100613
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Tree-Based and Optimum Cut-Based Origin-Destination Flow Clustering 
	Similarity Measurement Method of the OD Flow 
	Construct the Maximum Spanning Tree and Its Child Tree 
	Child Tree/Child Graph Self-Similarity Criterion 
	Cut-Based Graph Clustering Method 
	Algorithm and Performance Analysis 

	Experiments and Results 
	Experiments on Artificial Spatial Datasets 
	Experiments on Real Datasets—A Case Study 
	Comparison and Discussion 

	Conclusions and Future Work 
	References

