
 International Journal of

Geo-Information

Article

A Multilevel Mapping Strategy to Calculate the
Information Content of Remotely Sensed Imagery

Shimin Fang 1,* , Xiaoguang Zhou 1 and Jing Zhang 2

1 Department of Geo-Informatics, Central South University, Changsha 410083, China; zxg@csu.edu.cn
2 Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China;

2012102140019@whu.edu.cn
* Correspondence: fangsm1986@csu.edu.cn

Received: 11 September 2019; Accepted: 20 October 2019; Published: 22 October 2019
����������
�������

Abstract: Considering the multiscale characteristics of the human visual system and any natural scene,
the spatial autocorrelation of remotely sensed imagery, and the multilevel spatial structure of ground
targets in remote sensing images, an information-measurement approach based on a single-level
geometrical mapping model can only reflect partial feature information at a single level (e.g., global
statistical information and local spatial distribution information). The single mapping model cannot
validly characterize the information of the multilevel and multiscale features of the spatial structures
inherent in remotely sensed images. Additionally, the validity, practicability, and application range of
the results of single-level mapping models are greatly limited in practical applications. In this paper,
we present the multilevel geometrical mapping entropy (MGME) model to evaluate the information
content of related attribute characteristics contained in remotely sensed images. Subsequently,
experimental images with different types of objects, including reservoir area, farmland, water area
(i.e., water and trees), and mountain area, were used to validate the performance of the proposed
method. Experimental results show that the proposed method can not only reflect the difference
in the information of images in terms of spectrum features, spatial structural features, and visual
perception but also eliminates the inadequacy of a single-level mapping model. That is, the multilevel
mapping strategy is feasible and valid. Additionally, the vector set of the MGME method and its
standard deviation (Std) value can be used to further explore and study the spatial dependence of
ground scenes and the difference in the spatial structural characteristics of different objects.

Keywords: remotely sensed imagery; entropy; spatial dependence; spatial structure; multilevel
geometrical mapping entropy (MGME); standard deviation (Std)

1. Introduction

With the remarkable development of earth observation systems and technology over the past
decades, the acquisition technology of remote sensing imagery shows some new development trends
including multiplatform, multisensor, and multiangle approaches [1–3]. Meanwhile, the remote sensing
images obtained also possess a number of key features such as very large volumes, diverse varieties,
and fine-grained resolution [4,5]. High-resolution images become a more important data source in
image processing and applications, e.g., classification, change detection, and image segmentation,
especially as the resolution of images becomes increasingly higher [6–9].

In the meantime, compared with the low- and middle-resolution remote sensing images,
high-resolution images can provide more detailed feature information of ground objects, such as
texture size, geometric structure, and spatial layout [10]. Therefore, spatial structural features have
become one of the most remarkable features of high-resolution images. Additionally, the structural
characteristics of high-resolution images are more stable in comparison with spectrum features and are
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also able to reflect the spatial relationship between the internal organization characteristics of the object
and its external environment [11,12]. Moreover, different types of objects contained in high-resolution
images exhibit different degrees of structural characteristics. This is the reason why the spatial structure
of high-resolution images has multiscale and multilevel characteristics [13].

Therefore, during image processing, the question of how to reasonably and effectively describe
and evaluate the amount of information from attribute features (e.g., spectral features, spatial structural
features, etc.) in remote sensing images (especially for high-resolution images) has become one
of the key issues in improving the utilization ratio of remotely sensed data [14–16]. Meanwhile,
the measurement results from imagery can be applied to subsequent image processing, such as image
interpretation and information extraction. Additionally, they can be used as criteria for data screening
to reduce the blindness of data selection and lower the cost of data [17–19].

Although in information theory information entropy is commonly regarded as a valid indicator for
estimating the information uncertainty of images [20–22], the traditional Shannon entropy of images
considers only related information from global probability statistics in images but neglects local feature
information (e.g., spatial distribution, organization structure) and other useful information such as
visual perception [23]. That is, the classic image entropy merely describes partial planar information
contained in images from a quantitative perspective and cannot reflect more important and critical
feature information contained in images at a deeper level [24]. Furthermore, in the case of different
imaging patterns or different imaging conditions, the gray properties of different source images of the
same ground scene have considerable differences at various times. This phenomenon could imply that
the measurement result of a single source image cannot accurately and validly reflect related attribute
feature information contained in a ground scene.

Notably, some of the traditional image entropy models based on information theory and the
corresponding improved methods mainly explore and study the influence of related factors on the
amount of information contained in images, such as the grayscale quantitative level, noise, spatial
resolution, and correlation within or between bands [25–27]; for example, various models focus on
the relationship between information content and the signal-to- noise ratio (SNR) [28], the effect of
resolution (e.g., spatial resolution, radiometric resolution) on the information-content characterization
of images [29–33], and a number of the Markov model-based information measurement methods
for describing spatial correlation. Moreover, some scholars construct the measurement model used
in characterizing spatial structures from a new perspective, such as Gao et al., who proposed
configurational entropy (also called Boltzmann entropy) to represent related information on spatial
structure in geoscientific data [34–36]. In addition to all of these methods, our previous work illustrates
that the single-level-geometrical-mapping-model-based information measurement approach as a
unified metric model can accurately characterize the information from images of global statistical
features, local spatial features, and visual perception and is able to distinguish the effects of the different
imaging conditions (e.g., light condition, clouds) on the quality and information content of images.

It should be noted that despite the improved performance of these previously mentioned
approaches in comparison with traditional image entropy models, some issues still exist, such as
parameter settings being difficult to determine, model construction being relatively complicated,
and the operational performance of models needing to be further improved [37,38]. Additionally, these
measurement models basically do not directly or validly reflect the information of the multilevel and
multiscale features of spatial structure inherent in remotely sensed images, which greatly limits the
accuracy, practicability, and application range of these methods in practical applications [10].

To better evaluate the information content of related attribute features contained in remote-sensing
images, the multiscale and multilevel characteristics of spatial structures are considered [13,39]. In this
study, a multilevel-mapping-model-based measurement method is proposed by incorporating a
multilevel mapping strategy and the corresponding standard deviation into the modeling process used
in information measurement. The present study is a further extension for our previous work.



ISPRS Int. J. Geo-Inf. 2019, 8, 464 3 of 15

The remainder of this work is structured in four sections. Section 2 reviews the spatial
structure and spatial dependence of images and traditional image entropy. Section 3 presents
the multilevel-mapping-model-based computation strategy for evaluating the information content of
images. In Section 4, we validate the feasibility and effectiveness of the proposed method through
different object types in experimental images and provide a discussion and analysis of the work.
Section 5 provides conclusions and has a further outlook for future work.

2. Related Basic Theory

This section will briefly outline spatial dependence and spatial structural features in images and
the traditional image entropy model. The detailed descriptions are as follows.

2.1. Spatial Dependence of Images

According to the First Law of Geography, everything is related to everything else, but near things
are more related than distant things [40], i.e., there is connectivity and correlation between spatial units.
Likewise, the attribute information of a single pixel in images has a certain degree of similarity with the
attribute information of its neighboring pixels, i.e., the pixels in images are not isolated. That is, remotely
sensed images also have a high degree of spatial dependence (i.e., spatial autocorrelation) [41,42].
Additionally, the similarity and correlation of different pixels and corresponding neighboring pixels are
usually also different, which directly leads to the regional randomness and internal spatial structural
characteristics in images [12]. The description of pixel neighborhood is shown in Figure 1.
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Figure 1. Neighborhood window of the target pixel.

Furthermore, compared with the larger difference between the description information of the
medium- to low-resolution images in a large-scale ground scene and the small-scale layout structure
needing special consideration in the natural scene, high-resolution images contain more feature
information, such as texture size, geometric structure, and spatial layout, in which the layout structure
of small-scale objects can better depict spatial dependence. With an incremental increase in the resolution
of images, the difference in the natural scene and the remotely sensed scene is gradually narrowed [13].
It also indicates, from another perspective, that the introduction of theoretical methods in the field of
machine vision into image processing and applications has a certain degree of feasibility [43,44].

2.2. Spatial Structural Characteristics of Images

Remote sensing images are the comprehensive descriptions of object features of a ground scene,
which contain not only spectral feature information but also rich spatial information such as texture
size, geometrical structure, and spatial layout relationships [45]. In particular, different object types in
high-resolution images distinctly exhibit different degrees of structural characteristics, i.e., multilevel
characteristics of spatial structures [13]. Thus, high-resolution images can provide additional useful
information through spatial structural features for some operations in image processing (e.g., image
interpretation and information extraction) [11,46].

The related unified definition or description of spatial structural features of images is proposed
in [12]. It is defined as follows.
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Definition 1. The spatial structural feature of images indicates spatial distribution patterns formed in terms of
different distributions, different permutations, or layouts of the elements in digital images.

The element here is the basic unit of structural analysis. That is, the pixels of images within
different neighborhoods form the regional objects of images with different levels of structure by using
different arrangements or distributions. Meanwhile, the multiscale characteristics of pixels lead to the
multiscale characteristics of the image structure, which is also closely related to the cognitive scale of
the human visual system and the spatial resolution of images [12,13]. In addition, spatial structural
features can also compensate to a certain extent for the inadequacy existing between spectral features,
i.e., it can reflect more detailed local feature information of ground objects. Essentially, spatial structural
features can be described by the distribution of neighborhood pixels or dependencies between pixels
in images (see Figure 2) [45].
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2.3. Image Entropy

Generally, for a discrete random variable A with limited elements, the corresponding probabilities
of different elements a in A are, respectively, p1, p2, . . . pa . . . , and pn. The Shannon entropy of A can be
computed as follows [47–49].

H(A) = −
n∑

a=1

pa log pa (1)

where n is the number of elements a in the random variable A. Statistically speaking, H(A) can reflect
how much uncertain information the random variable has on average, e.g., if the values of A are certain,
i.e., pa = 1, then H(A) = 0; when the elements a of random variable A have equal probability, the value
of H(A) is maximized. Additionally, the value of H(A) varies with the number of elements a in the
random variable A, and its range of values is [0, log n].

In the field of remote sensing, traditional image entropy is also regarded as one valid quantitative
indicator used to evaluate the information content of images. Similarly, a digital remote sensing
image is comprised of a finite number of discrete pixels, in which each pixel corresponds to certain
grayscale level i (i ∈ [0, 1, . . . , 255]). Commonly, the pixels of different grayscale levels are randomly
filled into different spatial regions. This distribution usually causes different images to exhibit different
information [20,33,50]. The formulas for image entropy are as follows.

pi =
ni
N

, (N =
255∑
i=0

ni) (2)
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H(I) = −
255∑
i=0

pi log pi (3)

where ni is the number of pixels with a certain grayscale level i, N is the total number of all pixels in the
image, and pi is the probability of different gray levels i. In general, the range of grayscale levels in a
grayscale image is (0.255), i.e., the range of values in image entropy is (0.8). The image entropy value,
so to speak, is directly related to the degree of change in grayscale levels, i.e., fewer grayscale levels
and a more concentrated the grayscale distribution are associated with less uncertain information in
images; conversely, more grayscale levels are related to more uncertain information in images. That is,
image entropy can reflect the degree of dispersion and uniformity of brightness values of images.

To characterize much more attribute feature information contained in the image, on the basis
of introducing the neighborhood information, a multilevel-mapping-strategy-based information
measurement scheme is developed by incorporating the mapping idea of the multilevel pixel
neighborhood into the modeling process. This method can not only reflect the difference in the
information of images on spectrum features, spatial structural features, and visual perception but also
eliminates the inadequacy of a single-level mapping model.

3. A Multilevel Mapping Strategy-Based Information Measurement Scheme

3.1. Multilevel Pixel Neighborhood Model

It is noticeable that a spatial structural feature can be reflected by attribute information of the pixel
neighborhood or dependencies/correlation between pixels. That is, in essence, the spatial structural
pattern of a pixel neighborhood can be used to characterize the spatial structural feature of a single
pixel [13]. Furthermore, different ground object types mapped by high-resolution images usually
exhibit different degrees of structural characteristics, which leads to the multiscale and multilevel
characteristics of spatial structures. Consequently, we attempt here to utilize different levels of
pixel neighborhood information to characterize the spatial structural features contained in images
(see Figure 3) [45,51–55].
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3.2. A Multilevel Geometrical Mapping Entropy (MGME) Model

3.2.1. A Multilevel-Mapping-Strategy-Based Measurement Scheme

Furthermore, remotely sensed data are the objective descriptions of the object features of a ground
scene. These data contain not only substantial spectral feature information but also abundant spatial
structural information. To more effectively, reasonably, and accurately characterize and evaluate the
information of attribute features contained in images [34,45,56–59], we present a multilevel mapping
strategy to calculate the information content of remotely sensed images, i.e., a multilevel geometrical
mapping entropy (MGME) model. The general framework of this approach is described in Figure 4.
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3.2.2. Description of the MGME Model

The detailed steps of the MGME model are described in the following text.
First, let us construct a two-dimensional grayscale array (i, j) using each grayscale value i of each

pixel and its grayscale mean value j within a certain effective neighborhood to validly characterize the
information of local spatial structural features near the target pixels in images. The formula is shown
in Equation (4).

(i, j)


i, (i ∈ [0, 255])

j = 1
Ns

r

Ns
r∑

s=1
isr, j ∈ [0, 255], Ns

r ∈ (0, (2r + 1)2), r = 1, 2, · · ·
(4)

where isr is the grayscale value of the s-th neighborhood pixel of the target pixel with grayscale value i.
When the neighborhood radius of the target pixel is equal to r, Ns

r is the true number of pixels in the
effective neighborhood of the target pixel, and the average value j is calculated by the ratio of the sum
of the practical neighboring pixels of the target pixel to Ns

r. Additionally, the grayscale array (i, j) is
mapped into the planar mapping matrix by the two-dimensional scatterplot model, and n(i, j) is the
statistical value of (i, j) in the planar mapping matrix.

Second, the three-dimensional array (i, j, n(i, j)) is comprised of the grayscale value i of the pixel,
the average grayscale value j of its neighboring pixels, and the statistical value n(i, j) of the grayscale
array (i, j). The (i, j, n(i, j)) can be mapped into the geometrical mapping space by the three-dimensional
scatterplot model, and n(i, j,n

(i, j) )
is the statistical value of the three-dimensional array (i, j, n(i, j)) in the

geometrical mapping space. Thus, the single-level geometrical mapping entropy (GME) is developed
by incorporating the mapping ideas of the scatterplot matrices and the statistical values n(i, j,n

(i, j) )
of

(i, j, n(i, j)) into the modeling processing. The probability p(i, j,n(i, j)) of n(i, j,n
(i, j) )

in geometrical mapping

space can be calculated by:

p(i, j,n
(i, j) )

=
n(i, j,n

(i, j) )

N
, (N =

max(n
(i, j) )∑

n
(i, j)=0

255∑
i=0, j=0

n(i, j,n
(i, j) )

) (5)
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where n(i, j,n
(i, j) )

is the statistical value of (i, j, n(i, j)), and N is the total number of n(i, j,n
(i, j) )

with

different values.

Definition 2. The geometrical mapping entropy (GME) of the image with the mapping probability p(i, j,n
(i, j) )

is

defined as:

HGME = −

max(n
(i, j) )∑

n
(i, j)=0

255∑
i=0, j=0

p(i, j,n
(i, j) )

log p(i, j,n
(i, j) )

(6)

Third, we further construct multilevel geometrical mapping entropy through combination with a
different-level mapping model. The related formulas can be expressed as:

Htotal
MGME

=

nr∑
r=1

Hr
GME

(r = 1, 2, . . . , nr) (7)

Have
MGME

=
1
nr

nr∑
r=1

Hr
GME

(8)

wHr
GME

= Hr
GME

/Htotal
GME

(9)

Hwave
MGME

=

nr∑
r=1

Hr
GME
∗wHr

GME
(10)

where r and nr are the radius of a different neighborhood window and the maximum neighborhood
window, respectively; V(H1

GME
, H2

GME
, . . . , Hr

GME
, . . . , Hnr

GME) is the vector set consisting of multilevel GME
values; Htotal

MGME
and Have

MGME
are, separately, the sum and the average of measurement results of the

multilevel-strategy-based measure model; wHr
GME

is the weight of the different GME values in the
vector set; and Hwave

MGME
is the corresponding weighted average of the multilevel GME.

Last, we validate the feasibility and effectiveness of the MGME model through the experimental
results below. Furthermore, we attempt to discuss and analyze the spatial structural features of images
using V(H1

GME
, H2

GME
, . . . , Hr

GME
, . . . , Hnr

GME) and its standard deviation (Std(HMGME)).

4. Experiments and Analysis

In this section, a set of experimental data used to validate the feasibility and effectiveness of the
MGME model includes the following experimental images.

1. A 0.5 m resolution image of a reservoir area located in the Zhengzhou region, obtained from the
DigitalGlobe platform in 2018;

2. An image of farmland obtained from the UC Merced Land Use Dataset with USGS National Map
Urban Area Imagery in 2010 with 0.3 m resolution [60];

3. A UAV image of a local area in the district of the lower and middle reaches of the Yellow River
in 2015;

4. Landsat TM image of a mountainous region provided by NASA.

4.1. Experiment 1

In this experiment, we used this group of experimental data to verify the performance of the
MGME model (Figure 5a–d) and further deeply analyze and discuss the qualitative and quantitative
results. The max radius of the multilevel mapping model we adopted is mainly in reference to empirical
values employed in these projects [61,62].



ISPRS Int. J. Geo-Inf. 2019, 8, 464 8 of 15

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 8 of 15 

 

4.1. Experiment 1 

In this experiment, we used this group of experimental data to verify the performance of the 
MGME model (Figure 5a–d) and further deeply analyze and discuss the qualitative and 
quantitative results. The max radius of the multilevel mapping model we adopted is mainly in 
reference to empirical values employed in these projects [61,62]. 

 

 
(a1) (b1) 

  
(c1) (d1) 

  
(a2) (b2) 

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 9 of 15 

(c2) (d2) 

Figure 5. The scatter-mapping-strategy-based results with different levels, (a)–(d) experimental 
images; (a1)–(d1) planar mapping model; (a2)–(d2) geometrical mapping model. 

As shown in Figure 5, Figure 5a1–d1 and Figure 5a2–d2 represent the results of the planar
mapping model and the geometric mapping model at different mapping levels, respectively. We 
find that as the radius (from 1 to 6) of different levels of mapping is gradually increased, the degree 
of dispersion and uniformity of the mapping models of experimental images gradually increases 
and tends to be stable after the mapping radius is equal to or larger than a certain radius, which we
here observed is approximately 5. This finding also confirms the existing issues in the single 
geometrical mapping model, i.e., the single-level-mapping-model-based GME model reflects 
attribute information from a certain level contained in images and might neglect some important 
information, such as the information of multilevel and multiscale characteristics of spatial 
structures, so that measurement results are too one-sided to be reliable. 

In Table 1, the related measurement results of Figure 5a–d obtained by the MGME and 
traditional image entropy methods are listed, and Figure 6 describes the distribution curve of the
corresponding results using different mapping radii in the proposed method. Through comparative 
analysis, we find that compared with results from other experimental images (i.e., Figure 5a–c), the 
measurement results (from 0.832 to 0.917) of the different mapping radii in Figure 5d are all 
maximized. This finding is because of all the sample images, its spatial structure is the most
complicated, and the degree of dispersion and uniformity of brightness values of the ground scene 
within it are also the largest. As a result, the corresponding uncertain information is the greatest of 
all the images, i.e., the amount of information is also the largest.

Table 1. Results of traditional image entropy and the MGME model.

Experimental 

Images MGME
rH

 r=1    r=2      r=3     r=4     r=5      r=6 

(a) Reservoir Area 7.193 0.514 0.626 0.681 0.713 0.732 0.745 0.669 0.678 4.011 0.079 

(b) Farmland 6.432 0.436 0.450 0.456 0.450 0.445 0.440 0.446 0.460 2.667 0.007 

(c) Water Area 4.425 0.195 0.218 0.231 0.239 0.245 0.253 0.230 0.232 1.381 0.019 

(d) Mountain Area 7.827 0.832 0.882 0.899 0.911 0.915 0.917 0.893 0.894 5.356 0.030 

Another meaningful finding we observed from Table 1 is that the image (Figure 5a) of a 
reservoir area in comparison with the other three experimental images (Figure 5b–d) is mainly 
composed of three types of ground objects (i.e., water area, town area, and farmland) but contains 

( )MGMEStd H( )H I MGME
aveH MGME

waveH MGME
totalH

Traditional  

Method 
Multilevel Geometrical 

Mapping Entropy 

Figure 5. The scatter-mapping-strategy-based results with different levels, (a–d) experimental images;
(a1–d1) planar mapping model; (a2–d2) geometrical mapping model.
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As shown in Figure 5, Figure 5a1–d1 and Figure 5a2–d2 represent the results of the planar
mapping model and the geometric mapping model at different mapping levels, respectively. We find
that as the radius (from 1 to 6) of different levels of mapping is gradually increased, the degree of
dispersion and uniformity of the mapping models of experimental images gradually increases and
tends to be stable after the mapping radius is equal to or larger than a certain radius, which we here
observed is approximately 5. This finding also confirms the existing issues in the single geometrical
mapping model, i.e., the single-level-mapping-model-based GME model reflects attribute information
from a certain level contained in images and might neglect some important information, such as the
information of multilevel and multiscale characteristics of spatial structures, so that measurement
results are too one-sided to be reliable.

In Table 1, the related measurement results of Figure 5a–d obtained by the MGME and traditional
image entropy methods are listed, and Figure 6 describes the distribution curve of the corresponding
results using different mapping radii in the proposed method. Through comparative analysis, we find
that compared with results from other experimental images (i.e., Figure 5a–c), the measurement results
(from 0.832 to 0.917) of the different mapping radii in Figure 5d are all maximized. This finding is
because of all the sample images, its spatial structure is the most complicated, and the degree of
dispersion and uniformity of brightness values of the ground scene within it are also the largest. As a
result, the corresponding uncertain information is the greatest of all the images, i.e., the amount of
information is also the largest.

Table 1. Results of traditional image entropy and the MGME model.

Experimental
Images

Traditional
Method

Multilevel Geometrical
Mapping Entropy

H(I)
Hr

MGME Have
MGME Hwave

MGME Htotal
MGME Std(HMGME)

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

(a) Reservoir Area 7.193 0.514 0.626 0.681 0.713 0.732 0.745 0.669 0.678 4.011 0.079
(b) Farmland 6.432 0.436 0.450 0.456 0.450 0.445 0.440 0.446 0.460 2.667 0.007
(c) Water Area 4.425 0.195 0.218 0.231 0.239 0.245 0.253 0.230 0.232 1.381 0.019
(d) Mountain Area 7.827 0.832 0.882 0.899 0.911 0.915 0.917 0.893 0.894 5.356 0.030
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Another meaningful finding we observed from Table 1 is that the image (Figure 5a) of a reservoir
area in comparison with the other three experimental images (Figure 5b–d) is mainly composed of
three types of ground objects (i.e., water area, town area, and farmland) but contains other types of land
cover (e.g., trees, roads, and grass) within some small areas. Since the difference in the abovementioned
ground objects is considerably large, this makes the multilevel and multiscale characteristics of spatial
structures in Figure 5a even more obvious. An identical conclusion was obtained using the standard
deviation (Std) values of the MGME vector set of experimental images, where the Std(HMGME) (0.079)
of Figure 5a in comparison with other images is the largest, and the Std(HMGME) (0.030) of Figure 5d is
the second largest. Furthermore, we can see that the distribution of farmland (Figure 5b) is regular, the
multilevel characteristics of spatial structures of Figure 5c in comparison with Figure 5b are relatively
distinct, i.e., the Std(HMGME) (0.019) of Figure 5c is larger than the Std(HMGME) (0.007) of Figure 5b.

By comparing and analyzing experimental results from different types of images, it can be found
that as the mapping radius of different levels is gradually increased, the measurement results Hr

MGME

of these images also become gradually larger and then tend to stabilize. These results show that the
MGME model in comparison with the single-level GME model can reflect much more attribute feature
information contained in the images. Especially for images that contain many different object types,
the Std(HMGME) of the vector set from the multilevel GME can reflect, to some degree, the difference in
the local spatial structural features of images. In other words, more categories of ground objects lead
to a larger difference between different ground objects or a more disordered spatial distribution and
greater Std(HMGME) (also called volatility) of the MGEM vector set. On the basis of our findings, it can
be concluded that the multilevel mapping strategy proposed in this paper is feasible and valid.

4.2. Experiment 2

This section is used to further validate the necessity of adopting a multilevel mapping strategy
to evaluate the feature information of images. Furthermore, we discuss and analyze the application
prospects of this strategy. Experimental images were mainly obtained from UAV images of different
local areas in the districts of the lower and middle reaches of the Yellow River in 2015, in Kaifeng.
The images primarily contain water areas, trees, and other land covers, such as grass, footpaths, and
pavilions, as shown in Figure 7.
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Notably, we can see from Figure 7a–d that the object types contained in experimental images
are approximately changed from a single object (water area) to mixed objects (water area and trees).
Meanwhile, as the proportion of trees increases within an area of equal size, the amount of uncertain
information in images is gradually increased as a whole, and the degree of complexity of the spatial
distribution and organizational structure of the images increases as well.

Subsequently, we used the results of traditional image entropy and the MGME model to contrast
and analyze the experimental data in this section from a quantitative perspective. The results are
shown in Table 2.

As can be seen from Table 2, in the images from Figure 7c,d, the H(I) and Hr=1
MGME of Figure 7d

are all lower than the corresponding calculated results of Figure 7c. Nevertheless, as the radius of
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the mapping model gradually increases (i.e., r > 1), the Hr>1
MGME (e.g., Htotal

MGME, Have
MGME, and Hwave

MGME) of
Figure 7d become larger than the results of Figure 7c, as shown in Figure 8. This result is consistent with
subjective judgment of human visual perception. This result also indicates that the MGME method
in comparison with traditional image entropy and a single-level GME model can, to a certain extent,
better evaluate the information content and reflect the multilevel characteristics of spatial structure
in images.

Table 2. Results of traditional image entropy and the MGME model.

Experimental
Images

Traditional
Method

Multilevel Geometrical
Mapping Entropy

H(I)
Hr

MGME Have
MGME Hwave

MGME Htotal
MGME Std(HMGME)

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

(a) Local Area 1 3.097 0.030 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.190 0.001
(b) Local Area 2 4.425 0.195 0.218 0.231 0.239 0.245 0.253 0.230 0.232 1.381 0.019
(c) Local Area 3 5.595 0.354 0.403 0.421 0.427 0.430 0.429 0.411 0.412 2.464 0.027
(a) Local Area 1 5.550 0.342 0.442 0.458 0.480 0.490 0.496 0.448 0.454 2.688 0.053
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By and large, the Std(HMGME) values of experimental images gradually become larger.
The Std(HMGME) values of Figure 7c,d are equal to 0.027 and 0.053, respectively. These values
confirm that the spatial structure and organization distribution of Figure 7d (including water area,
trees, grass, and pathway) in comparison with Figure 7c is more complex. The Std(HMGME) value of
Figure 7a equals 0.001, which is approximately zero. This finding is consistent with the fact that this
image contains a single type of ground object (i.e., water area).

The inconsistent relationship between sizes and measurement results in Figure 7c,d at different
mapping levels (e.g., r = 1,2) fully shows that it is quite necessary to use a multilevel mapping strategy
to evaluate the feature information. A multilevel mapping strategy can validly eliminate the influence
of the one-sidedness of a single mapping model on the results of feature information. Furthermore, the
MGME model proposed in this paper can validly reflect, to some degree, the information on the spatial
structural features in images. We further attempt to use this method to explore and study local spatial
correlations and multiscale characteristics of spatial structures in images.
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5. Conclusions

In this study, we presented a multilevel-mapping-strategy-based approach for evaluating the
information content of images. Based on the neighborhood two-dimensional grayscale array,
the multilevel geometrical mapping entropy (MGME) model is developed by incorporating the
ideas of scatterplot matrices and multilevel mapping into the modeling process. Here, we use
different types of objects from experimental images to validate the performance of the proposed
method, i.e., reservoir area, farmland, water area, and mountainous area. The experimental results in
experiment 1 and experiment 2 indicate that the multilevel mapping strategy in comparison with a
single level mapping model can validly characterize much more attribute feature information while
overcoming the adverse influence of the single-level GME model on the accurate evaluation of feature
information in images. Moreover, we also find that the Std of the MGME vector can effectively reflect,
to some extent, the multilevel characteristics of spatial structures contained in images. That is, this
approach can provide a new pathway for research on the spatial structural features of images, such as
spatial autocorrelation.

In the future, we will also further develop the method proposed so as to enhance its reliability and
accuracy. The maximum radius setting/selection of the MGME model for images with different spatial
structure deserves focused research. The proposed calculated approach can be extended to different
types of remote sensing images (e.g., multispectral, infrared images). Furthermore, we can explore and
investigate the performance of this method when it is applied to practical image processing and other
applications, such as data screening and data mining.
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