
 International Journal of

Geo-Information

Article

BiGeo: A Foundational PaaS Framework for Efficient
Storage, Visualization, Management, Analysis,
Service, and Migration of Geospatial Big Data—A
Case Study of Sichuan Province, China

Xi Liu 1,2 , Lina Hao 1,* and Wunian Yang 1

1 Faculty of Earth Science, Chengdu University of Technology, Chengdu 610059, China;
liuxi.gis@foxmail.com (X.L.); ywn@cdut.edu.cn (W.Y.)

2 Sichuan Basic Geographic Information Center, Ministry of Natural Resources, Chengdu 610093, China
* Correspondence: madingludejin@163.com

Received: 16 August 2019; Accepted: 10 October 2019; Published: 12 October 2019
����������
�������

Abstract: With the rapid development of big data, numerous industries have turned their focus
from information research and construction to big data technologies. Earth science and geographic
information systems industries are highly information-intensive, and thus there is an urgent need to
study and integrate big data technologies to improve their level of information. However, there is a
large gap between existing big data and traditional geographic information technologies. Owing to
certain characteristics, it is difficult to quickly and easily apply big data to geographic information
technologies. Through the research, development, and application practices achieved in recent years,
we have gradually developed a common geospatial big data solution. Based on the formation of a
set of geospatial big data frameworks, a complete geospatial big data platform system called BiGeo
was developed. Through the management and analysis of massive amounts of spatial data from
Sichuan Province, China, the basic framework of this platform can be better utilized to meet our
needs. This paper summarizes the design, implementation, and experimental experience of BiGeo,
which provides a new type of solution to the research and construction of geospatial big data.

Keywords: geospatial big data framework; large-scale distributed spatial database; distributed spatial
data visualization; distributed spatial data management and analysis; distributed spatial information
services; distributed spatial data integration and migration

1. Introduction

Sichuan Province, China has a total area of 486,000 square kilometers with 18 prefecture-level
cities and three autonomous prefectures, including 54 municipal districts, 17 county-level cities,
108 counties, and four autonomous counties. As of the end of 2017, the resident population was
83.02 million. At present, the Sichuan Basic Geographic Information Center has a large amount of
geographic information data on the province. The storage media include optical disks, hard disks,
and disk arrays, whereas the data types include basic mapping data, geographic national data, public
platform data, geological disaster data, and the exchange of shared data. In addition, the data formats
include raster, vector, 3D, and tile formats. At present, approximately 1.7 PB of geospatial data on the
province has been accumulated, and continues to grow at a rate of more than 20%. The maximum
single-layer feature data number more than 10 million. How to effectively manage, analyze, and apply
so much spatial data at low cost and with high efficiency has become a significant problem.

ISPRS Int. J. Geo-Inf. 2019, 8, 449; doi:10.3390/ijgi8100449 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-7733-2076
http://www.mdpi.com/2220-9964/8/10/449?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi8100449
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2019, 8, 449 2 of 28

Big data technologies have been derived from the computer industry [1–3], mainly based on
cloud computing and the Internet for solving the problem of the storage and calculation of massive
amounts of information [4–6]. Such technologies are currently being widely used in network user
behavior analysis [5,7,8], massive log analysis [9,10], advertisement recommendations [11], and other
fields [12–14]. After many years of development, geographic information science has accumulated a
large number of storage organization models [15–17], visualization schemes [18,19], spatial analysis
and statistical algorithms [10,20,21], service publishing technologies [22–24], and data integration and
migration standards [25–27] for spatial data. These technologies all face the problem of a distributed
transformation in a big data environment. Because the complexity of spatial data and the degree of
spatial correlations are much higher than those in general computer information [28,29], distributed
transformation of this geographic information technology has become more difficult, and some models
and algorithms cannot even be distributed, requiring new spatially distributed methods to replace the
original technology. Such a technology convergence evolution is a long-term process.

With a classic four-layer big data structure [30], namely, IaaS, DaaS, PaaS, and SaaS layers, BiGeo
is positioned as a general-purpose PaaS platform. BiGeo can be deployed on a virtualized cloud or
physical device cluster at the IaaS layer, and through the unified management of massive data resources
in the DaaS layer, providing geospatial big data capabilities to end users through platform-service
and other functional interfaces. It is also possible to provide a geospatial big data custom application
system for the SaaS layer through the basic frameworks and components.

2. Related Studies

At present, there are numerous geospatial big data-related software resources, which can mainly
be divided into the following categories:

2.1. GIS Software

ArcGIS: ArcGIS GeoAnalytics Server applies distributed computing based on vector-based feature
data [31,32]. It can be used to analyze big data or increase the speed of traditional ArcGIS desktop
analytic workflows using ArcGIS Pro and Portal for ArcGIS.

SuperMap: SuperMap iObjects for the Spark spatial big data component extends the Spark
spatial data model [33] from the kernel. Existing spatial analysis algorithms are reconstructed based
on distributed computing technology. This significantly improves the efficiency of massive spatial
data analysis. In addition, a series of new spatial analysis algorithms were developed for big data.
SuperMap can be embedded directly into Spark, solving the problem of spatial big data analysis and
various applications.

2.2. Geospatial Database

Oracle Spatial All-in-One machine: Oracle Spatial is used to store, manage, and query spatial
data [34,35]. It provides a set of SQL schemas and functions for storing, retrieving, updating, and
querying a collection of spatial features in a database. Oracle Exadata is an all-in-one hardware
platform consisting of a Database Machine and Exadata Storage Server.

MongoDB, MySQL: MongoDB natively supports geo-indexing and can be used directly for
location distance calculations and queries [36–39]. It also supports more convenient features such
as a range query and distance calculation. MySQL implements a subset of an OGC-recommended
SQL environment using the geometry type. The specifications describe a collection of SQL geometry
types [40,41] and functions used to create and analyze their values.

ISPRS Int. J. Geo-Inf. 2019, 8, 449 3 of 28

2.3. Cloud Solution

AliCloud, Amazon Web Service (AWS): Apsara is an extremely large-scale general-purpose
computing operating system independently developed and serviced by Alibaba Cloud. It currently
provides services to enterprises, governments, and institutions in more than 200 countries and
regions around the world [16,42,43], providing geographic information capabilities through the
PostgreSQL/PostGIS service.

GeoCloud: GeoCloud is a cloud geographic information platform based on open-source projects
such as PostgreSQL, PostGIS, MapServer, GDAL, TileCache, PHP, and Python [44–48]. GeoCloud is a
full-featured geographic information platform that includes the management of spatial geographic
data, mapping, and building applications.

Google Earth Engine: Google Earth Engine is a cloud platform provided by Google for online
visual computing and analysis of a large amount of global-scale geoscience data (particularly satellite
data). The platform has access to data from satellite imagery and other Earth observation databases
and provides sufficient computing power to process such data. The Google Earth Engine contains
more than 200 public datasets and more than 5 million images, and is increasing by approximately
4000 images per day, with a capacity of more than 5 PB [49–51].

2.4. Distributed Computing Framework

SpatialHadoop, HadoopGIS: SpatialHadoop mainly includes a simple spatial high-level language
and a two-level spatial index structure. It contains basic spatial components and range queries,
K-NN queries, and spatial links built on MapReduce. HadoopGIS provides spatial data partitioning
for task parallelization and an index-driven spatial query engine to handle various types of spatial
queries. Its implicit query parallelization generates correct results through MapReduce and boundary
processing [52–58].

Geotrellis, GeoSpark: The GeoTrellis software architecture was designed to create scalable,
high-performance geospatial web services, creating distributed geographic information processing
services. It is used to process massive datasets and complete parallel geographic information processing
operations. GeoSpark has a range of creative spatially flexible distributed datasets. With the help of
these datasets, users can efficiently load, process, and analyze large-scale spatial data [35,59,60].

2.5. Global and Regional Case

Global Earth Observation System of Systems (GEOSS): GEOSS is a set of coordinated, independent
Earth observation, information, and processing systems that interact and provide access to diverse
types of information for a broad range of users in both public and private sectors [61,62].

European Copernicus Data and Information Access Service (DIAS): To foster data dissemination
and address a strong need for simplification, the European Commission and the European Space
Agency (ESA) decided to launch DIAS to offer users the capability to exploit Copernicus data and
information without having to manage the transfer and storage on their own computer systems [63].

To summarize, research into the current geospatial big data framework has remained in the realm
of isolated basic theoretical studies, and existing distributed spatial data related software is unable to
face the rapidly growing spatial data demand in a simple, efficient, and inexpensive manner. Therefore,
the research results achieved remain difficult to use quickly in actual situations. Based on the existing
research results and software technology, we further propose our own solutions.

ISPRS Int. J. Geo-Inf. 2019, 8, 449 4 of 28

3. Design and Architecture

BiGeo is a collection of geospatial big data frameworks that incorporate numerous open-source
projects. It provides a software development foundation for the efficient storage, visualization,
management, analysis, service, and migration of PB-level spatial data in a distributed environment.
Based on this framework, the application and development of various geospatial big data can be
further carried out.

3.1. Users and Main Usage Scenarios

The main users of BiGeo are developers and staff working on geospatial big data applications.
Such developers include the underlying core developers and secondary application system developers.
Those working on applications include spatial data resource managers and spatial analysts.

The main use scenario of BiGeo is a regional organization similar to the Sichuan Basic Geographic
Information Center, which is used to support the management and application of regional spatial data
similar to those of Sichuan Province of China, as well as the construction of other related systems.

3.2. Functional and Nonfunctional Requirements

BiGeo needs to achieve good scalability. The framework should be able to support massive
geospatial big data in a distributed environment. Its efficiency should be better than that of traditional
geographic information system (GIS) software, such as ArcGIS and GeoServer [13,64]. The easy
extension of BiGeo should be reflected in several aspects: First, it should be easy to expand at the data
cluster level. By deploying new hardware devices, the storage and computing power of data resources
can be scaled horizontally. Second, in terms of functional modules, it should also be extensible.
According to the basic interfaces provided by the framework, various new functional requirements can
be easily added. Finally, at the application level, its service capabilities should be scalable. For example,
service interfaces can be clustered to improve the concurrency.

BiGeo should also support secondary development and it should be easy to build a large number
of dedicated applications on it, including a geospatial data exchange and sharing platform, oil pipeline
site management, water rights confirmation management, result directory query system, and service
engine system. By building numerous new application systems based on the framework, BiGeo can
meet the more professional needs and personalized customization of geospatial big data.

Cost-effectiveness is also an important consideration. The construction, operation, and
maintenance costs of geospatial big data are extremely high. For example, the Oracle platform
is used in the Sichuan Basic Geographic Information Center and manages the geographic information
result data of the province; in addition, it’s cost is as high as USD $1,200,000, whereas the cost of the
SuperMap spatial distributed analysis platform, using software built by commercial companies, is USD
$420,000. These do not include numerous artificial technology costs, or hardware, software operation,
or maintenance costs. Therefore, we hope to reduce these base costs by building our own geospatial
big data framework based on open-source software.

3.3. Architectural Choices

As shown in Figure 1, the overall architecture of BiGeo is divided into four layers, namely, the
infrastructure, data cluster, basic framework, and application layers. The infrastructure layer is mainly
composed of various computing, storage, and network resources managed by the operating system,
and is maintained and managed by facility personnel. The data cluster layer and the basic framework
layer are the core components of BiGeo, and are composed of a data cluster, GIS engine, toolkit, desktop
framework, and server framework. This section is mainly focused on the underlying and secondary
developers. The application layer is for end users and consists of various application systems derived
from BiGeo.

ISPRS Int. J. Geo-Inf. 2019, 8, 449 5 of 28
ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 5 of 27

Figure 1. Overall design of BiGeo. BiGeo is a loosely assembled combination of five frames, each with
the same technology stack, which can be combined and split at will. Each part of the framework can
be used independently or in an extended manner. The solid box in the figure shows the core content
of BiGeo, and the dashed box is the relevant support technology or derivative.

BiGeo Geospatial Big Data Platform software system (Figure 1) consists of five parts, as shown
in Table 1.

Table 1. BiGeo software.

Software Name Main Uses

Data Clustering

Basic data cluster software, distributed spatial database based on cheap x86
servers, high-performance distributed storage computing cluster. The

function is similar to that of traditional Oracle Exadata with Spatial, Hadoop,
and Spark, but has significantly improved efficiency and more spatial

characteristics.

GIS Engine

The GIS engine component, namely, the kernel component responsible for
map organization and visualization, is the underlying component of other

parts and the secondary development interface. The function is similar to that
of traditional MapObjects, SharpMap, and Mapnik, but can quickly visualize

distributed spatial data and fit with traditional spatial data.

Desktop

Desktop-based basic software, desktop C/S Framework GIS Software. The
function is similar to that of traditional ArcMap, QGIS, and Udig [65,66],

whereas the distributed spatial data can be managed and analyzed flexibly
through the plug-in mechanism.

Server

Server and front and back-end separation of geographic information service
publishing basic software under B/S framework. The function is similar to

that of traditional ArcServer, GeoServer, MapServer, and Nginx [44], but can
quickly publish services for distributed spatial data, exposing various

analysis capabilities of distributed spatial data clusters to service interfaces.

Toolkit
Toolset, Support ETL software. Data conversion, migration aids, etc. The

function is similar to that of traditional FME, GeoKettle, and ModelBuilder,

Figure 1. Overall design of BiGeo. BiGeo is a loosely assembled combination of five frames, each with
the same technology stack, which can be combined and split at will. Each part of the framework can be
used independently or in an extended manner. The solid box in the figure shows the core content of
BiGeo, and the dashed box is the relevant support technology or derivative.

BiGeo Geospatial Big Data Platform software system (Figure 1) consists of five parts, as shown in
Table 1.

Table 1. BiGeo software.

Software Name Main Uses

Data Clustering

Basic data cluster software, distributed spatial database based on cheap x86
servers, high-performance distributed storage computing cluster. The function is
similar to that of traditional Oracle Exadata with Spatial, Hadoop, and Spark, but

has significantly improved efficiency and more spatial characteristics.

GIS Engine

The GIS engine component, namely, the kernel component responsible for map
organization and visualization, is the underlying component of other parts and
the secondary development interface. The function is similar to that of traditional

MapObjects, SharpMap, and Mapnik, but can quickly visualize distributed
spatial data and fit with traditional spatial data.

Desktop

Desktop-based basic software, desktop C/S Framework GIS Software. The
function is similar to that of traditional ArcMap, QGIS, and Udig [65,66], whereas
the distributed spatial data can be managed and analyzed flexibly through the

plug-in mechanism.

Server

Server and front and back-end separation of geographic information service
publishing basic software under B/S framework. The function is similar to that of

traditional ArcServer, GeoServer, MapServer, and Nginx [44], but can quickly
publish services for distributed spatial data, exposing various analysis

capabilities of distributed spatial data clusters to service interfaces.

Toolkit

Toolset, Support ETL software. Data conversion, migration aids, etc. The function
is similar to that of traditional FME, GeoKettle, and ModelBuilder, and can

quickly integrate and migrate existing spatial data results into a distributed data
cluster environment.

ISPRS Int. J. Geo-Inf. 2019, 8, 449 6 of 28

A large amount of result data accumulated by traditional business platforms such as ArcGIS and
Oracle can be quickly migrated to BiGeo for management and analysis through the toolkit. The new
data generated by BiGeo after editing and analysis can also be reverted to the original platform.
BiGeo can make full use of the advantages of the original platform combined with BiGeo’s applicable
scenarios for hybrid applications.

Various Internet map services such as Google Map, AMap, OpenStreetMap [50,67], and TianDiTu
(IMap) can be directly connected to the BiGeo platform as reference data for a basemap service.
Downloadable entity data, such as OSM data from OpenStreetMap [68–70], can also be opened,
browsed, and queried directly in BiGeo. BiGeo can also publish managed data as a map service that
complies with the OGC interface standard [29,71], and can mix and match these Internet map services.

3.4. Technological Choices

BiGeo can be deployed in an operating system in either a physical server or a virtual machine in a
cloud environment. In a dense operation scenario with large amounts of data, the software is more
suitable for deployment in a physical environment, which can reduce the loss in physical performance
caused by virtualization. For large-scale deployments, system maintainability is more important
than a performance loss and BiGeo should be deployed in a cloud environment. The experimental
environment used in this study is deployed directly on physical devices. The hardware device
environment consists of five blade servers, two high-performance workstations, and a notebook (this
environment can also be scaled out as needed). The hardware environment used in BiGeo is as follows
(Table 2):

Table 2. BiGeo hardware environment.

Data Cluster

Master OS Centos 7.3.1661, CPU 8 core, Memory 8 GB, IP
10.51.60.30

Worker × 4

OS Centos 7.3.1661

CPU E5-2660 Xeon 8 core 16 thread

Memory Samsung DDR3 16G
RECC1600 × 4 = 64 GB

Hard disk Samsung 850 EVO 500 GB × 3

Network mainboard Integrated gigabit
network card

IP 10.51.60.21-24

Server OS Windows Server 2008 R8, CPU Intel i7-7600 8 core,
Memory 16 GB, IP 10.51.60.191

Desktop & Toolkit OS Windows 7 SP1, CPU Intel i5-2400 4 core, Memory 12
GB, IP 10.51.60.30.150

Dev & Debug OS Windows 7 SP1, CPU Intel i7-4500 4 core, Memory 8 GB

BiGeo uses some open-source/independent libraries as a low-level functional support. They are
basically C/C++/.Net libraries. Among them, the C/C++ library uses the .Net interface, leaving the
.Net library as a native library or a migration library from Java or C/C++. In the choice of the basic
support class library, the main consideration is performance and ease of use, while reducing the
complexity brought about by a hybrid multilanguage development. The underlying class library
basically uses the C and C++ class libraries to ensure a high performance. At the same time, the
framework development level uses the C# interface uniformly, and through its perfect object-oriented
features and interoperability with C/C++, a unified development technology stack is formed.

The internal development and operation environment of BiGeo is as follows: The data cluster is
developed on the Linux (Centos 6.5+) platform, whereas other systems use Visual Studio 2010 and the

ISPRS Int. J. Geo-Inf. 2019, 8, 449 7 of 28

.Net 4.0 environment development on Windows (Windows 7 and Windows server 2008) platforms.
Data debugging uses the SQL client Navicat or PgAdmin. In addition, the BiGeo kernel development
model applies the C/C++/C# technology stack entirely. The resulting software is a green, stand-alone
framework that no longer relies on any third-party commercial software environment.

BiGeo can be extended and developed in a variety of ways, from the outer to the inner layer:
(1) For the framework development, an extended development based on the plug-in framework is
provided by a desktop and server. This extended development model is suitable for new application
system customization for meeting new independent business needs; (2) The component development
is based on the GIS engine and relies on open-source libraries for extended development. This type of
development is aimed at satisfying high customizable requirements, starting from the basic components
provided by the BiGeo system, and building the upper application itself; (3) For the data development,
the SQL interface of the data cluster is extended. This development is completely for the underlying
statistical data analysis needs, customization, debugging, and optimization at the data level. These three
development models are not independent of each other and are free to combine these three secondary
development models to meet the diverse customization needs of users.

4. Implementation

4.1. Data Clustering

The geospatial big data distributed cluster solution is built using the open-source projects
Greenplum and PostGIS [47]. Greenplum’s architecture (Figure 2) uses massively parallel processing
(MPP). Based on the x86 architecture and the PostgreSQL database, Greenplum developers use the
MPP architecture to organize PostgreSQL instances in conjunction with the PostgreSQL community
and application ecosystem, and implement storage and queries through the MPP backend [69]. In a
nutshell, Greenplum is a distributed PostgreSQL database with feature compatibility and support for
its geographic information extension, PostGIS.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 7 of 27

development model applies the C/C++/C# technology stack entirely. The resulting software is a green,
stand-alone framework that no longer relies on any third-party commercial software environment.

BiGeo can be extended and developed in a variety of ways, from the outer to the inner layer: 1)
For the framework development, an extended development based on the plug-in framework is
provided by a desktop and server. This extended development model is suitable for new application
system customization for meeting new independent business needs; 2) The component development
is based on the GIS engine and relies on open-source libraries for extended development. This type
of development is aimed at satisfying high customizable requirements, starting from the basic
components provided by the BiGeo system, and building the upper application itself; 3) For the data
development, the SQL interface of the data cluster is extended. This development is completely for
the underlying statistical data analysis needs, customization, debugging, and optimization at the data
level. These three development models are not independent of each other and are free to combine
these three secondary development models to meet the diverse customization needs of users.

4. Implementation

4.1. Data Clustering

The geospatial big data distributed cluster solution is built using the open-source projects
Greenplum and PostGIS [47]. Greenplum’s architecture (Figure 2) uses massively parallel processing
(MPP). Based on the x86 architecture and the PostgreSQL database, Greenplum developers use the
MPP architecture to organize PostgreSQL instances in conjunction with the PostgreSQL community
and application ecosystem, and implement storage and queries through the MPP backend [69]. In a
nutshell, Greenplum is a distributed PostgreSQL database with feature compatibility and support for
its geographic information extension, PostGIS.

Figure 2. High-level Greenplum database architecture. Greenplum was a successful commercial
OLAP product and is now open source; in addition, owing to the PostgreSQL project, it has complete
support for spatial data features.

Greenplum supports the storage and processing of 50 PB of data. In the MPP system, each
symmetric multiprocessor (SMP) node runs its own operating system and database. The CPU in each
node cannot access the memory of another node. The information interaction between nodes is

Figure 2. High-level Greenplum database architecture. Greenplum was a successful commercial OLAP
product and is now open source; in addition, owing to the PostgreSQL project, it has complete support
for spatial data features.

ISPRS Int. J. Geo-Inf. 2019, 8, 449 8 of 28

Greenplum supports the storage and processing of 50 PB of data. In the MPP system, each
symmetric multiprocessor (SMP) node runs its own operating system and database. The CPU in each
node cannot access the memory of another node. The information interaction between nodes is realized
through the node interconnection network. This process is generally referred to as a data redistribution.
Significantly different from the traditional SMP architecture, the MPP system is generally less efficient
than SMP because it needs to transfer information between different processing units. However, this is
not absolute, because the MPP system does not share resources, and thus has more resources than SMP.
When the transaction to be processed reaches a certain scale, MPP becomes better than SMP based on
the proportion of communication time occupied by the calculation time. If the communication time is
relatively small, the MPP system can give full play to the advantages of the resources and achieve
high efficiency.

The database consists of master servers and segment servers interconnected through an
interconnect. The master is responsible for establishing a connection and management with the
client, as well as the SQL parsing and formation of an execution plan. The execution plan distributes
the task to the segment and collects the execution result of the segment. The master does not store
business data, and only stores the data dictionary. The segment is responsible for the storage and
access of business data and executes the SQL of the user.

We deployed 13 working segments in each of the four working server nodes in the cluster, plus
mirror copies. The cluster has a total of (13 + 13) × 4 = 104 working segments. Each working segment
is equivalent to a 1.2 core CPU, and 2.4 GB of memory. In addition to the hard disk storage of the server,
we can also use other storage devices to mount the extended cluster space. After the data cluster is set
up, a method is used to create a new spatial database extension (we can also build multiple spatial
databases on a cluster).

All data clusters have the geospatial capabilities of PostGIS by importing spatial extension
functions. These spatial capabilities are provided as SQL functions in accordance with the OGC
SQL-MM Part 3 specifications [72,73], including geometry/geography/box types, management
functions (AddGeometryColumn, PostGIS_Full_Version, UpdateGeometrySRID, etc.), geometry
constructors (ST_GeometryFromText, ST_GeomFromGML, ST_MakeEnvelope, etc.), geometry
accessors (ST_Envelope, ST_GeometryType, ST_IsSimple, ST_SRID, ST_XMax, etc.), geometry
editors (ST_AddPoint, ST_Force2D, ST_Reverse, ST_Transform, etc.), geometry outputs (ST_AsBinary,
ST_AsText, etc.), operators (&&, @...), spatial relationships and measurements (ST_Contains, ST_Disjoint,
ST_Relate, etc.), SFCGAL functions, geometry processing (ST_Buffer, ST_Difference, ST_Simplify,
etc.), linear referencing, temporal support, long transaction support, miscellaneous functions
(ST_EstimatedExtent, ST_Extent, etc.), and exceptional functions. These functions not only cover
a full range of spatial characteristics, but also achieve horizontal scalability in a distributed cluster
environment, which can be multiplied. The ability to call the geospatial data of a cluster can only be
achieved through a simple spatial SQL statement interface.

In addition to directly using the shell tool to directly manage the monitoring data cluster state under
Linux, we have also developed a WEB management monitoring program (Figure 3). A cluster state is
converted into a rest interface through NodeJS by simply starting and stopping the cluster on the WEB
side and viewing the running status of each node in the current cluster. Refer to https://MasterIP:3000
to access the cluster status. We can also use the GPCC monitoring software that comes with Greenplum.

https://MasterIP:3000

ISPRS Int. J. Geo-Inf. 2019, 8, 449 9 of 28

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 8 of 27

realized through the node interconnection network. This process is generally referred to as a data
redistribution. Significantly different from the traditional SMP architecture, the MPP system is
generally less efficient than SMP because it needs to transfer information between different
processing units. However, this is not absolute, because the MPP system does not share resources,
and thus has more resources than SMP. When the transaction to be processed reaches a certain scale,
MPP becomes better than SMP based on the proportion of communication time occupied by the
calculation time. If the communication time is relatively small, the MPP system can give full play to
the advantages of the resources and achieve high efficiency.

The database consists of master servers and segment servers interconnected through an
interconnect. The master is responsible for establishing a connection and management with the client,
as well as the SQL parsing and formation of an execution plan. The execution plan distributes the
task to the segment and collects the execution result of the segment. The master does not store
business data, and only stores the data dictionary. The segment is responsible for the storage and
access of business data and executes the SQL of the user.

We deployed 13 working segments in each of the four working server nodes in the cluster, plus
mirror copies. The cluster has a total of (13 + 13) × 4 = 104 working segments. Each working segment
is equivalent to a 1.2 core CPU, and 2.4 GB of memory. In addition to the hard disk storage of the
server, we can also use other storage devices to mount the extended cluster space. After the data
cluster is set up, a method is used to create a new spatial database extension (we can also build
multiple spatial databases on a cluster).

All data clusters have the geospatial capabilities of PostGIS by importing spatial extension
functions. These spatial capabilities are provided as SQL functions in accordance with the OGC SQL-
MM Part 3 specifications [72,73], including geometry/geography/box types, management functions
(AddGeometryColumn, PostGIS_Full_Version, UpdateGeometrySRID, etc.), geometry constructors
(ST_GeometryFromText, ST_GeomFromGML, ST_MakeEnvelope, etc.), geometry accessors
(ST_Envelope, ST_GeometryType, ST_IsSimple, ST_SRID, ST_XMax, etc.), geometry editors
(ST_AddPoint, ST_Force2D, ST_Reverse, ST_Transform, etc.), geometry outputs (ST_AsBinary,
ST_AsText, etc.), operators (&&, @...), spatial relationships and measurements (ST_Contains,
ST_Disjoint, ST_Relate, etc.), SFCGAL functions, geometry processing (ST_Buffer, ST_Difference,
ST_Simplify, etc.), linear referencing, temporal support, long transaction support, miscellaneous
functions (ST_EstimatedExtent, ST_Extent, etc.), and exceptional functions. These functions not only
cover a full range of spatial characteristics, but also achieve horizontal scalability in a distributed
cluster environment, which can be multiplied. The ability to call the geospatial data of a cluster can
only be achieved through a simple spatial SQL statement interface.

In addition to directly using the shell tool to directly manage the monitoring data cluster state
under Linux, we have also developed a WEB management monitoring program (Figure 3). A cluster
state is converted into a rest interface through NodeJS by simply starting and stopping the cluster on
the WEB side and viewing the running status of each node in the current cluster. Refer to
https://MasterIP:3000 to access the cluster status. We can also use the GPCC monitoring software that
comes with Greenplum.

Figure 3. Data cluster management. Through the WEB interface, we can remotely start and stop the
data cluster and monitor the status of the data nodes. With shell tools, we can also use the full GP tool
for cluster maintenance.

4.2. GIS Engine

As a basic component, the GIS engine internally supports other software such as desktop and
server software. The GIS engine is generally composed of three parts (Figure 4), namely, Map and
coordinate conversion (transform, unit, pyramid, and MapConfig), layers and data sources (layers and
their subclasses), and symbols (symbols and their subclasses). The GIS engine is responsible for the
organization and visualization of maps in BiGeo and is a .Net component. The desktop and server
access the GIS map capabilities by relying on the GIS engine interface.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 9 of 27

Figure 3. Data cluster management. Through the WEB interface, we can remotely start and stop the
data cluster and monitor the status of the data nodes. With shell tools, we can also use the full GP tool
for cluster maintenance.

4.2. GIS Engine

As a basic component, the GIS engine internally supports other software such as desktop and
server software. The GIS engine is generally composed of three parts (Figure 4), namely, Map and
coordinate conversion (transform, unit, pyramid, and MapConfig), layers and data sources (layers
and their subclasses), and symbols (symbols and their subclasses). The GIS engine is responsible for
the organization and visualization of maps in BiGeo and is a .Net component. The desktop and server
access the GIS map capabilities by relying on the GIS engine interface.

Figure 4. Geographic information system (GIS) engine structure. The name of the GIS engine is
imagetile, which was derived from the research results of an actual project. By continuously
accumulating support for different data sources and correcting the coordinate and symbol systems, a
complete GIS kernel is formed.

As a layer container, Map manages the map data uniformly, and provides interfaces such as
drawing, querying, blinking, zooming, and panning, and provides callback events such as drawing
and a view transformation. A transform is responsible for the conversion of the map and device
coordinates, and for the coordinated conversion of tile fixed grading and vector scales. A Pyramid is
responsible for the conversion of geographic coordinates and tile numbers. Unit is responsible for the
conversion of different unit lengths including the latitude and longitude, meters, inches, and points.
As the base class interface of the layer, Layer mainly agrees on the virtual interface functions such as
drawing, layer range, data source, visibility, and visible scale.

We can use the GIS engine to quickly develop different applications. The following describes a
demo example (Figure 5), where the data comes from the data cluster.

Figure 4. Geographic information system (GIS) engine structure. The name of the GIS engine
is imagetile, which was derived from the research results of an actual project. By continuously
accumulating support for different data sources and correcting the coordinate and symbol systems, a
complete GIS kernel is formed.

As a layer container, Map manages the map data uniformly, and provides interfaces such as
drawing, querying, blinking, zooming, and panning, and provides callback events such as drawing
and a view transformation. A transform is responsible for the conversion of the map and device
coordinates, and for the coordinated conversion of tile fixed grading and vector scales. A Pyramid is
responsible for the conversion of geographic coordinates and tile numbers. Unit is responsible for the

ISPRS Int. J. Geo-Inf. 2019, 8, 449 10 of 28

conversion of different unit lengths including the latitude and longitude, meters, inches, and points.
As the base class interface of the layer, Layer mainly agrees on the virtual interface functions such as
drawing, layer range, data source, visibility, and visible scale.

We can use the GIS engine to quickly develop different applications. The following describes a
demo example (Figure 5), where the data comes from the data cluster.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 10 of 27

Figure 5. GIS engine sample program. This example embeds the GIS engine in a desktop application
to quickly display the province’s water system data in the data cluster, allowing roaming, scaling, and
query operations. We can also overlay other data sources, such as mongodb, shapefile, and map
service.

Layers are composed of subclasses driven by different data sources, including but not limited to
the following (Table 3):

Table 3. Layer type.

Layer Type Layer Use

DynamicLayer Implement this layer through inheritance to achieve dynamic feature
effects

GdbLayer Directly retrieve file-type GDB data sources through the FileGDB API
ImageLayer Image layer, call remote sensing image data sources via Gdal

LabelLayer
Automatically label feature attributes based on automatic avoidance

algorithms and annotation symbols
MbtileLayer Retrieve the SQLite tile dataset that conforms to the mbtiles specification
MongoLayer MongoDB layer, retrieve the vector data source stored in mongdb

NtsLayer Nts layer, pure .net read shp file data source

PgLayer Pg layer, call PostgreSQL/ Greenplum with PostGIS and vector data of
similar data source systems via pg driver

TileLayer Tile file layer, call local tile file data source that conforms to ArcGIS rules
VectorLayer Vector layer, call shp, mdb, osm vector data source via ogr
WmtsLayer Tile service layer, call tile service that conforms to the wmts specification

Symbol, as the base class interface of symbols, mainly defines virtual function interfaces such as
drawing, color, offset, width, line type, and style (Table 4).

Table 4. Symbol type.

Symbol Type Symbolic Use

SimplePointSymbol
Simple dot symbol, implemented in three types of parameter

symbols: block, circle, and image

Figure 5. GIS engine sample program. This example embeds the GIS engine in a desktop application
to quickly display the province’s water system data in the data cluster, allowing roaming, scaling, and
query operations. We can also overlay other data sources, such as mongodb, shapefile, and map service.

Layers are composed of subclasses driven by different data sources, including but not limited to
the following (Table 3):

Table 3. Layer type.

Layer Type Layer Use

DynamicLayer Implement this layer through inheritance to achieve dynamic feature effects

GdbLayer Directly retrieve file-type GDB data sources through the FileGDB API

ImageLayer Image layer, call remote sensing image data sources via Gdal

LabelLayer Automatically label feature attributes based on automatic avoidance
algorithms and annotation symbols

MbtileLayer Retrieve the SQLite tile dataset that conforms to the mbtiles specification

MongoLayer MongoDB layer, retrieve the vector data source stored in mongdb

NtsLayer Nts layer, pure .net read shp file data source

PgLayer Pg layer, call PostgreSQL/ Greenplum with PostGIS and vector data of
similar data source systems via pg driver

TileLayer Tile file layer, call local tile file data source that conforms to ArcGIS rules

VectorLayer Vector layer, call shp, mdb, osm vector data source via ogr

WmtsLayer Tile service layer, call tile service that conforms to the wmts specification

ISPRS Int. J. Geo-Inf. 2019, 8, 449 11 of 28

Symbol, as the base class interface of symbols, mainly defines virtual function interfaces such as
drawing, color, offset, width, line type, and style (Table 4).

Table 4. Symbol type.

Symbol Type Symbolic Use

SimplePointSymbol Simple dot symbol, implemented in three types of parameter
symbols: block, circle, and image

SimpleLineSymbol Simple line symbol, implemented in three types of parameter
symbols: solid, template, and image lines

SimpleFillSymbol Simple area symbol, implemented in three types of parameter
symbols: fill color, template pattern, and image pattern

MultiSymbol Combination symbol, implemented through a combination of
various symbols by layer to form complex symbol drawing

MapConfig can save map styles as JSON documents through saveMap. The map style is restored
from the file through loadMap by using the map style in the JSON format. MapConfig has a clear
structure and is easy to edit and exchange.

When the GIS engine calls the pg data source, it will automatically adopt the most appropriate
rendering strategy according to different database server types. When using a normal single-node
PostgreSQL database, a fast rendering strategy is used without a complex geometry processing.
When Greenplum and BiGeo data clusters are applied, the complex polygons with islands and holes
are graphically displayed, hidden, and covered, and the data in the range are batch-cut to obtain
better graphic display effects and efficiency. The GIS engine also uses the read-only cursor dynamic
read to reduce the memory usage of the massive data of the cluster, and implements a concurrent
multithread dynamic rendering mechanism. This will ensure that the rendering data and the cluster
call asynchronously and can be viewed and interrupted in real time.

4.3. Desktop

Desktop-side applications include data and functions including clusters for unified integration
and expansion (Figure 6). This is suitable for scenarios in which the data are computationally intensive.
The software is designed using a plug-in design pattern [74,75]. The functions of the software are
stripped out of the framework. This reduces the complexity of the framework and makes the framework
and individual modules easier to implement. The function and framework are then combined in a
loosely coupled manner, and both can be independently changed and released while keeping the
interface unchanged.

The software mainly consists of a plug-in framework, a plug-in contract, and a plug-in component:
1) The plugin framework is used to download, load, combine, instantiate, and destroy system plugins,
providing a complete set of operating interfaces to communicate with the back-end framework; 2)
The plugin contract exists in the form of an interface. All plug-ins of the system implement a unified
interface specification for the framework. The framework effectively organizes and manages plug-in
objects; 3) The plugin components are entities that complete the actual function, and implement
the required plugin interface, such as the format conversion plug-in, graphics plug-in, and basic
statistics plug-in.

ISPRS Int. J. Geo-Inf. 2019, 8, 449 12 of 28

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 11 of 27

SimpleLineSymbol Simple line symbol, implemented in three types of parameter
symbols: solid, template, and image lines

SimpleFillSymbol
Simple area symbol, implemented in three types of parameter

symbols: fill color, template pattern, and image pattern

MultiSymbol
Combination symbol, implemented through a combination of

various symbols by layer to form complex symbol drawing

MapConfig can save map styles as JSON documents through saveMap. The map style is restored
from the file through loadMap by using the map style in the JSON format. MapConfig has a clear
structure and is easy to edit and exchange.

When the GIS engine calls the pg data source, it will automatically adopt the most appropriate
rendering strategy according to different database server types. When using a normal single-node
PostgreSQL database, a fast rendering strategy is used without a complex geometry processing.
When Greenplum and BiGeo data clusters are applied, the complex polygons with islands and holes
are graphically displayed, hidden, and covered, and the data in the range are batch-cut to obtain
better graphic display effects and efficiency. The GIS engine also uses the read-only cursor dynamic
read to reduce the memory usage of the massive data of the cluster, and implements a concurrent
multithread dynamic rendering mechanism. This will ensure that the rendering data and the cluster
call asynchronously and can be viewed and interrupted in real time.

4.3. Desktop

Desktop-side applications include data and functions including clusters for unified integration
and expansion (Figure 6). This is suitable for scenarios in which the data are computationally
intensive. The software is designed using a plug-in design pattern [74,75]. The functions of the
software are stripped out of the framework. This reduces the complexity of the framework and makes
the framework and individual modules easier to implement. The function and framework are then
combined in a loosely coupled manner, and both can be independently changed and released while
keeping the interface unchanged.

Figure 6. Desktop main interface. The main interface of Desktop includes menus, toolbars, status bars,
layer windows, file directory windows, and map views. The current map shows an image of the
province’s service superimposed over administrative division vector data, and an administrative
district selected to display and analyze its geometric structure.

The software mainly consists of a plug-in framework, a plug-in contract, and a plug-in
component: 1) The plugin framework is used to download, load, combine, instantiate, and destroy

Figure 6. Desktop main interface. The main interface of Desktop includes menus, toolbars, status
bars, layer windows, file directory windows, and map views. The current map shows an image of
the province’s service superimposed over administrative division vector data, and an administrative
district selected to display and analyze its geometric structure.

The desktop uses plug-ins to extend the secondary development. All menus/tools are separate
plug-in items. The following shows an example of the development of a print menu item after the
cluster data map is visualized:

public void OnCreate(IApplication hook){
if (hook != null) this.hk = hook; }

public void OnClick() {
SaveFileDialog dlg = new SaveFileDialog();
dlg.AddExtension = true; dlg.DefaultExt = “.jpg”;
dlg.Filter = “jpeg files (*.jpg)|*.jpg|All files (*.*)|*.*”;
if (dlg.ShowDialog() == DialogResult.OK) {

string path = dlg.FileName;
Bitmap bmp = new Bitmap(hk.PictureBoxMap.Width, hk.PictureBoxMap.Height);
Graphics g = Graphics.FromImage(bmp);
g.Clear(Color.White); hk.MapControl.Draw(g);
bmp.Save(path); g.Dispose(); bmp.Dispose();
MessageBox.Show(path); } }

As shown in this example, developing a distributed geographic data desktop function under the
desktop framework is extremely simple.

The various spatial SQL interfaces of the distributed spatial database are transformed into an
easy-to-use graphical interface, and the tasks that the data cluster cannot accomplish are supplemented
by integrating various open-source libraries (Figure 7), such as NetTopologySuite and ProjNet (data
editing, selection set interaction, etc.).

ISPRS Int. J. Geo-Inf. 2019, 8, 449 13 of 28

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 12 of 27

system plugins, providing a complete set of operating interfaces to communicate with the back-end
framework; 2) The plugin contract exists in the form of an interface. All plug-ins of the system
implement a unified interface specification for the framework. The framework effectively organizes
and manages plug-in objects; 3) The plugin components are entities that complete the actual function,
and implement the required plugin interface, such as the format conversion plug-in, graphics plug-
in, and basic statistics plug-in.

The desktop uses plug-ins to extend the secondary development. All menus/tools are separate
plug-in items. The following shows an example of the development of a print menu item after the
cluster data map is visualized:

 public void OnCreate(IApplication hook){

 if (hook != null) this.hk = hook; }

 public void OnClick() {

 SaveFileDialog dlg = new SaveFileDialog();

 dlg.AddExtension = true; dlg.DefaultExt = “.jpg”;

 dlg.Filter = “jpeg files (*.jpg)|*.jpg|All files (*.*)|*.*”;

 if (dlg.ShowDialog() == DialogResult.OK) {

 string path = dlg.FileName;

 Bitmap bmp = new Bitmap(hk.PictureBoxMap.Width, hk.PictureBoxMap.Height);

 Graphics g = Graphics.FromImage(bmp);

 g.Clear(Color.White); hk.MapControl.Draw(g);

 bmp.Save(path); g.Dispose(); bmp.Dispose();

 MessageBox.Show(path); } }

As shown in this example, developing a distributed geographic data desktop function under the

desktop framework is extremely simple.
The various spatial SQL interfaces of the distributed spatial database are transformed into an

easy-to-use graphical interface, and the tasks that the data cluster cannot accomplish are
supplemented by integrating various open-source libraries (Figure 7), such as NetTopologySuite and
ProjNet (data editing, selection set interaction, etc.).

Figure 7. Selection of set interaction and node editing of cluster data. By integrating various GIS
open-source libraries, we can further complete more GIS functions on the desktop side in the storage
and computing capabilities of spatial data clusters.

4.4. Server

The server can conduct rapid publishing services, exposing back-end distributed spatial data
and analysis capabilities, including clusters, to service interfaces. Service processing only needs to
implement this minimum interface to access the service framework. This interface mainly allows
the service framework to understand two aspects, namely, what tasks are assigned to this processor
for processing (uri function), and how this processor handles such processing (process function).
This interface also exposes various logic functions (Figure 8) such as conversion, aggregation, publishing,
and testing to the client through a consistent interface (such as GET, POST, and WEBSOCKET [76]).

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 13 of 27

Figure 7. Selection of set interaction and node editing of cluster data. By integrating various GIS open-
source libraries, we can further complete more GIS functions on the desktop side in the storage and
computing capabilities of spatial data clusters.

4.4. Server

The server can conduct rapid publishing services, exposing back-end distributed spatial data
and analysis capabilities, including clusters, to service interfaces. Service processing only needs to
implement this minimum interface to access the service framework. This interface mainly allows the
service framework to understand two aspects, namely, what tasks are assigned to this processor for
processing (uri function), and how this processor handles such processing (process function). This
interface also exposes various logic functions (Figure 8) such as conversion, aggregation, publishing,
and testing to the client through a consistent interface (such as GET, POST, and WEBSOCKET [76]).

Figure 8. Server console. This is the server host. We can set the IP address, port, and resource root
directory of the service; start, stop, browse, and test the service; and monitor the registered handler
and its processing exception information. The actual service processing host is completed by another
node program, which is an entry shell program.

The server side relies on .net 4.0 and starts the service host with SCGIS.Server.App.exe. The
wwwroot folder is placed in the static publishing resource/script library/front end program.

The service host of the server handles different services through the processor handler extension,
namely, implementing the interface of the IHandler, starting the server host, and automatically
registering the service. This processor logic is automatically called when a corresponding service
request comes in.

The map document is placed in the map folder for distributed on-the-fly dynamic map service
publishing. The local file-type tile library can also be published as the same OGC WMTS service as
the service conversion interface through the service processor “/map/tile/.” The dynamic map service
uses the same WMTS interface as the tile service. Its data are not pregenerated, but are based on the
data type, request rules, and rendering methods, which are dynamically generated by the server on
demand. Support is given to the rapid publishing of numerous data services in the network. The
calling interface is as follows:

http://ServerIP:Port/map/tile/?layer=&tilematrix=&tilerow=&tilecol=&...
Vector data are published as a query service for various applications. The service processor is

“/map/feature/”, and the interface call format is as follows:

http://ServerIP: Port /map/feature/?layer= &xmin= &xmax= &ymin= &ymax= &onlycount=
The server provides some general geometric algorithm services to the client (Table 5), which are

published by the “/map/geometry/” service processor for general geometry operations on the client
side:

Figure 8. Server console. This is the server host. We can set the IP address, port, and resource root
directory of the service; start, stop, browse, and test the service; and monitor the registered handler and
its processing exception information. The actual service processing host is completed by another node
program, which is an entry shell program.

ISPRS Int. J. Geo-Inf. 2019, 8, 449 14 of 28

The server side relies on .net 4.0 and starts the service host with SCGIS.Server.App.exe.
The wwwroot folder is placed in the static publishing resource/script library/front end program.

The service host of the server handles different services through the processor handler extension,
namely, implementing the interface of the IHandler, starting the server host, and automatically
registering the service. This processor logic is automatically called when a corresponding service
request comes in.

The map document is placed in the map folder for distributed on-the-fly dynamic map service
publishing. The local file-type tile library can also be published as the same OGC WMTS service as the
service conversion interface through the service processor “/map/tile/.” The dynamic map service uses
the same WMTS interface as the tile service. Its data are not pregenerated, but are based on the data
type, request rules, and rendering methods, which are dynamically generated by the server on demand.
Support is given to the rapid publishing of numerous data services in the network. The calling
interface is as follows:

http://ServerIP:Port/map/tile/?layer=&tilematrix=&tilerow=&tilecol=&...
Vector data are published as a query service for various applications. The service processor is

“/map/feature/”, and the interface call format is as follows:
http://ServerIP:Port/map/feature/?layer=&xmin=&xmax=&ymin=&ymax=&onlycount=

The server provides some general geometric algorithm services to the client (Table 5), which
are published by the “/map/geometry/” service processor for general geometry operations on the
client side:

http://ServerIP:Port/map/geometry/?type=&geom=&geom2=&sr=&sr2=&tolerance=

The access interfaces all interact in the Well-Known Text (WKT) form. The table below shows the
different geometry service types supported as well as the required parameters.

Remarks: geom, first geometry; geom2, second geometry; sr, first geometry’s spatial reference
srid; sr2, second geometry’s spatial reference srid; tolerance, geometry for computing floating tolerance
or double value;

√
, required parameter; #, optional parameter; \, no parameters.

A small amount of geometric computing services are provided by GeoAPI, OGR, and GEOS [45,77],
and a massive data analysis uses data clusters for distributed computing. This means that we can port
all features of the desktop to the server.

The following shows an example of a service processor that obtains access to the data cluster for
the user token:

public class User2Token : IHandler{
public void process(object ctx, Dictionary<string, object> param, string strUri,IServer server){

string nm = param[“name”] as string; string psw = param[“password”] as string;
string ip = NetUtil.clientIP(ctx); string token = Token.user2token(nm, psw, ip);
Dictionary<string, object> dic = new Dictionary<string, object>();
dic.Add(“token”, token); ResponseUtil.writeJson(ctx, dic); }

public string uri() { return “/basic/user2token/”; } }
In the same way, we can quickly build a variety of distributed geographic information capabilities

into a service interface through this framework. At present, the server implements more than 60+

core-based handler processors. These service interfaces support WEBSOCKET in addition to HTTP.
The call interface in WEBSOCKET mode is particularly suitable for a long-term spatial analysis.

Servers can now be started in a cluster, deployed in parallel on multiple servers, or in multinode
on a single server, similar to the Nginx mechanism [78]. We use JMeter for the concurrent testing.
The surface performance can basically reach the same level as Web servers such as IIS and Nginx.
The main impact of the server performance is the processor’s business processing logic and the
back-end data cluster analysis and computing capabilities. The server can also serve as a gateway
and service bus to support various microservice deployment modes, and the resource consumption is
extremely small. As the most important aspect, its geospatial service expansion capability is excellent.

ISPRS Int. J. Geo-Inf. 2019, 8, 449 15 of 28

Table 5. Supported geometric spatial analysis types.

Type Parameters Output
Geom geom2 sr sr2 Tolerance

Area
√

\ # \ \ Double

Boundary
√

\ # \ \ WKT string

Envelope
√

\ # \ \ Doubles

Buffer
√

\ # \
√

WKT string

Centroid
√

\ # \ \ WKT string

Contains
√ √

\ Bool

ConvexHull
√

\ # \ \ WKT string

Crosses
√ √

\ Bool

Difference
√ √

\ Bool

Disjoint
√ √

\ Bool

Distance
√ √

\ Double

Equal
√ √

\ Bool

GML
√

\ # \ \ GML string

JSON
√

\ # \ \ JSON string

KML
√

\ # \ \ KML string

Wkb
√

\ # \ \ Byte

Intersect
√ √

\ Bool

Intersection
√ √

\ WKT string

Length
√

\ # \ \ Double

Overlaps
√ √

\ Bool

PointOnSurface
√ √

\ WKT string

Simplify
√

\ # \
√

WKT string

SymDifference
√ √

\ WKT string

Touches
√ √

\ Bool

TransformTo
√

#
√ √

\ WKT string

Union
√ √

\ WKT string

Within
√ √

\ Bool

4.5. Toolkit

The toolkit mainly conducts data sorting, cleaning, and migration, among other applications, and
it can quickly convert and import a large amount of result data into a data cluster (Figure 9). The toolkit
is implemented in a two-tier structure, which is the tool execution function and the tool parameter
interface. The tool execution function is a separate minimum data processing unit that can be easily
debugged and run through the command line mode. The tool parameter interface integrates the tool
execution functions, visualizing the tool parameters and execution status.

The current toolkit implements the following tools: (1) an import tool, (2) an export tool, (3) a
mapping conversion tool, (4) a full-text index tool, (5) a compressed tiles tool, (6) a data parallel cache
tool, (7) a data automatic edge tool, (8) a data reference classification tool, (9) a data coordinate batch
translation tool, (10) a nonspatial data automatic matching tool, (11) a track text conversion tool, (12) a
POI data service download tool, (13) a grid statistical calculation tool, (14) a data directory editing
tool, (15) a result data volume statistics tool, (16) a data incremental update tool, (17) a Word and Excel

ISPRS Int. J. Geo-Inf. 2019, 8, 449 16 of 28

information automatic extraction tool, (18) a symbol conversion tool, and (19) an automatic modeling
tool, among others. We can continue to add new tools to the toolkit as needed.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 15 of 27

 dic.Add(“token”, token); ResponseUtil.writeJson(ctx, dic); }

 public string uri() { return “/basic/user2token/”; } }
In the same way, we can quickly build a variety of distributed geographic information

capabilities into a service interface through this framework. At present, the server implements more
than 60+ core-based handler processors. These service interfaces support WEBSOCKET in addition
to HTTP. The call interface in WEBSOCKET mode is particularly suitable for a long-term spatial
analysis.

Servers can now be started in a cluster, deployed in parallel on multiple servers, or in multinode
on a single server, similar to the Nginx mechanism [78]. We use JMeter for the concurrent testing.
The surface performance can basically reach the same level as Web servers such as IIS and Nginx.
The main impact of the server performance is the processor’s business processing logic and the back-
end data cluster analysis and computing capabilities. The server can also serve as a gateway and
service bus to support various microservice deployment modes, and the resource consumption is
extremely small. As the most important aspect, its geospatial service expansion capability is excellent.

4.5. Toolkit

The toolkit mainly conducts data sorting, cleaning, and migration, among other applications,
and it can quickly convert and import a large amount of result data into a data cluster (Figure 9). The
toolkit is implemented in a two-tier structure, which is the tool execution function and the tool
parameter interface. The tool execution function is a separate minimum data processing unit that can
be easily debugged and run through the command line mode. The tool parameter interface integrates
the tool execution functions, visualizing the tool parameters and execution status.

Figure 9. Bulk migration of data into a data cluster. Through this migration method, the historical
data in ArcGIS and Oracle can be conveniently imported into BiGeo for analysis, and the analysis
results are exported back to the original software for continued application.

The current toolkit implements the following tools: 1) an import tool, 2) an export tool, 3) a
mapping conversion tool, 4) a full-text index tool, 5) a compressed tiles tool, 6) a data parallel cache
tool, 7) a data automatic edge tool, 8) a data reference classification tool, 9) a data coordinate batch
translation tool, 10) a nonspatial data automatic matching tool, 11) a track text conversion tool, 12) a
POI data service download tool, 13) a grid statistical calculation tool, 14) a data directory editing tool,
15) a result data volume statistics tool, 16) a data incremental update tool, 17) a Word and Excel
information automatic extraction tool, 18) a symbol conversion tool, and 19) an automatic modeling
tool, among others. We can continue to add new tools to the toolkit as needed.

5. Case Studies

Because BiGeo mainly provides the basic framework for geospatial big data management
applications for regional organizations, we correspond with the main components of BiGeo to verify
the storage, visualization, management, analysis, service, and migration effects, as well as efficiency,
of geospatial big data. The largest and most complex set of datasets were selected for experimentation
in the existing data from the Sichuan Basic Geographic Information Center.

Figure 9. Bulk migration of data into a data cluster. Through this migration method, the historical data
in ArcGIS and Oracle can be conveniently imported into BiGeo for analysis, and the analysis results are
exported back to the original software for continued application.

5. Case Studies

Because BiGeo mainly provides the basic framework for geospatial big data management
applications for regional organizations, we correspond with the main components of BiGeo to verify
the storage, visualization, management, analysis, service, and migration effects, as well as efficiency, of
geospatial big data. The largest and most complex set of datasets were selected for experimentation in
the existing data from the Sichuan Basic Geographic Information Center.

The experimental data are from the Sichuan Province National Geographical Surface Coverage
Dataset. The dataset has a total of 21,409,520 rows, and 60 GB of raw data are imported into data
clusters of 200 GB. The data are distributed as indicated below (Figure 10).

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 16 of 27

The experimental data are from the Sichuan Province National Geographical Surface Coverage
Dataset. The dataset has a total of 21,409,520 rows, and 60 GB of raw data are imported into data
clusters of 200 GB. The data are distributed as indicated below (Figure 10).

Figure 10. Overview of surface cover data in Sichuan province. The data are full coverage data. The
vector data interpreted from the image data include all types of surface features in the province. The
geometric complexity of the features exceeds the contour and vegetation features.

5.1. Case Study 1: Conducting Complex Spatial SQL Operations on Data Clusters

Different SQL queries are applied through the DB admin tools. The experiment results of various
spatial analyses and statistics based on experiment data are listed below (Table 6).

Table 6. Use clustering for SQL spatial analysis.

Analysis Type Time (s) Return Records Description
count 0.709 21,409,520

count by region 1.375 181
count the total number of results for each

region by region code
within 0.834 518,137 only returned CC and id

cutting 29.285 521,316
use a polygon to cut and return the

geometry

separate areas of all data 47.115 21,409,520
real-time dynamic projection in areas,

returning a single area

sum of all data areas 44.054 1
including dynamic projection, statistical

area; the result only returns the total

count attribute field 0.784 1
the shape_Leng value of the original data
during data entry; the result returns only

one total

total area after cutting 5.861 1
including cutting, dynamic projection,

statistical area; the result returns the total
area

count the area with the
largest number of features 1.354 1 the number of records is 373,230

Figure 10. Overview of surface cover data in Sichuan province. The data are full coverage data.
The vector data interpreted from the image data include all types of surface features in the province.
The geometric complexity of the features exceeds the contour and vegetation features.

5.1. Case Study 1: Conducting Complex Spatial SQL Operations on Data Clusters

Different SQL queries are applied through the DB admin tools. The experiment results of various
spatial analyses and statistics based on experiment data are listed below (Table 6).

ISPRS Int. J. Geo-Inf. 2019, 8, 449 17 of 28

We prepared five sets of environments for spatial analysis and comparison experiments (Figure 11).
The five experiment environments are as follows: (1) ArcGIS software used for spatial analysis
operations; (2) a stand-alone environment in which the data are placed into a singly deployed
PostgreSQL database; (3) a stand-alone environment in which the data are placed into a PostgreSQL
database deployed in-parallel with eight tasks; (4) BiGeo with spatial data without a spatial index;
and (5) BiGeo with spatial data with an index. The five environments were used for buffer analysis
(Figure 11a), feature clipping (Figure 11b), and area statistics (Figure 11c) to obtain comparison results
of the efficiency.

As shown during the experiment, through the spatial SQL interface of the distributed data cluster,
various underlying spatial queries, calculations, and analyses can be quickly conducted. Its ease of use
and flexibility are far stronger than those of the current spatial data storage computing model based
on Hadoop and Spark. Its computational efficiency is more than ten times that of traditional ArcGIS
platforms. It can complete tasks that previously took minutes or even hours to complete on the second
level, and even complete some geospatial calculations that could not be completed because of the huge
amount of data involved.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 17 of 27

search for a point in which
polygon 0.012 1 enter a point coordinate to determine

which polygon the point falls in

We prepared five sets of environments for spatial analysis and comparison experiments (Figure

11). The five experiment environments are as follows: 1) ArcGIS software used for spatial analysis
operations; 2) a stand-alone environment in which the data are placed into a singly deployed
PostgreSQL database; a 3) stand-alone environment in which the data are placed into a PostgreSQL
database deployed in-parallel with eight tasks; 4) BiGeo with spatial data without a spatial index;
and 5) BiGeo with spatial data with an index. The five environments were used for buffer analysis
(Figure 11a), feature clipping (Figure 11b), and area statistics (Figure 11c) to obtain comparison results
of the efficiency.

(a)

(b)

Figure 11. Cont.

ISPRS Int. J. Geo-Inf. 2019, 8, 449 18 of 28
ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 18 of 27

(c)

Figure 11. Comparison of different software spatial analysis efficiencies. The amount of data is 2.3
million, with 2,292,765 rows of water systems data for a 3100 km long and 20 km wide buffer area. (a)
Buffer analysis (s). The stand-alone (single-threaded) CPU usage of ArcGIS is approximately 35%, the
single-machine (eight parallel tasks) CPU usage is 100%. (b) Buffer clipping (s). ArcGIS uses the
toolbox clip tool, and a single machine does not optimize within 636.7 s, single machine with eight
parallel tasks does not optimize within 637.5 s (in this way, despite the eight parallel settings, single-
threaded tasks are actually still conducted), and stand-alone ArcGIS (single thread CPU usage is
approximately 35%, and the single-machine (with eight parallel tasks) CPU usage is 100%. (c)
Statistical area with real-time calculation. The stand-alone machine (eight parallel tasks) is in fact
single-threaded, with no parallelism. The precalculated area is calculated by first calculating the area
as an attribute for each feature. The statistical area accumulates the area properties of each feature.

As shown during the experiment, through the spatial SQL interface of the distributed data
cluster, various underlying spatial queries, calculations, and analyses can be quickly conducted. Its
ease of use and flexibility are far stronger than those of the current spatial data storage computing
model based on Hadoop and Spark. Its computational efficiency is more than ten times that of
traditional ArcGIS platforms. It can complete tasks that previously took minutes or even hours to
complete on the second level, and even complete some geospatial calculations that could not be
completed because of the huge amount of data involved.

5.2. Case Study 2: Spatial Analysis and Statistics of Geographic Information Data on the Desktop

The desktop is used for feature clipping and statistical analysis of the cluster (Figure 12a).
Similarly, we can use the image map directory in the data cluster to call the massive image raster data
in the file directory server (Figure 12b).

Figure 11. Comparison of different software spatial analysis efficiencies. The amount of data is 2.3
million, with 2,292,765 rows of water systems data for a 3100 km long and 20 km wide buffer area. (a)
Buffer analysis (s). The stand-alone (single-threaded) CPU usage of ArcGIS is approximately 35%, the
single-machine (eight parallel tasks) CPU usage is 100%. (b) Buffer clipping (s). ArcGIS uses the toolbox
clip tool, and a single machine does not optimize within 636.7 s, single machine with eight parallel
tasks does not optimize within 637.5 s (in this way, despite the eight parallel settings, single-threaded
tasks are actually still conducted), and stand-alone ArcGIS (single thread CPU usage is approximately
35%, and the single-machine (with eight parallel tasks) CPU usage is 100%. (c) Statistical area with
real-time calculation. The stand-alone machine (eight parallel tasks) is in fact single-threaded, with no
parallelism. The precalculated area is calculated by first calculating the area as an attribute for each
feature. The statistical area accumulates the area properties of each feature.

Table 6. Use clustering for SQL spatial analysis.

Analysis Type Time (s) Return Records Description

count 0.709 21,409,520

count by region 1.375 181 count the total number of results for each
region by region code

within 0.834 518,137 only returned CC and id

cutting 29.285 521,316 use a polygon to cut and return the geometry

separate areas of all data 47.115 21,409,520 real-time dynamic projection in areas, returning
a single area

sum of all data areas 44.054 1 including dynamic projection, statistical area;
the result only returns the total

count attribute field 0.784 1
the shape_Leng value of the original data

during data entry; the result returns only one
total

total area after cutting 5.861 1 including cutting, dynamic projection,
statistical area; the result returns the total area

count the area with the largest
number of features 1.354 1 the number of records is 373,230

search for a point in which
polygon 0.012 1 enter a point coordinate to determine which

polygon the point falls in

5.2. Case Study 2: Spatial Analysis and Statistics of Geographic Information Data on the Desktop

The desktop is used for feature clipping and statistical analysis of the cluster (Figure 12a). Similarly,
we can use the image map directory in the data cluster to call the massive image raster data in the file
directory server (Figure 12b).

ISPRS Int. J. Geo-Inf. 2019, 8, 449 19 of 28

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 19 of 27

(a)

(b)

Figure 12. Desktop used for clips, statistics, and query data on the data cluster. (a) Spatial analysis
and statistics of distributed massive vector data. There are many spatial analysis and statistical
functions that can be used. These operations can also interact with each other for a more sophisticated
analysis. (b) Query and management of distributed massive image data. Through the data cluster and
file server, the images can be managed and queried in an integrated manner; in addition, the image
entity files are not put into the database, and the original image directory does not need to be
modified, and can be used directly.

Figure 12. Desktop used for clips, statistics, and query data on the data cluster. (a) Spatial analysis and
statistics of distributed massive vector data. There are many spatial analysis and statistical functions
that can be used. These operations can also interact with each other for a more sophisticated analysis.
(b) Query and management of distributed massive image data. Through the data cluster and file server,
the images can be managed and queried in an integrated manner; in addition, the image entity files are
not put into the database, and the original image directory does not need to be modified, and can be
used directly.

ISPRS Int. J. Geo-Inf. 2019, 8, 449 20 of 28

Commonly used desktop GIS functions are basically covered (Figure 13), and the usage mode and
traditional mode are consistent in a distributed environment.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 20 of 27

Commonly used desktop GIS functions are basically covered (Figure 13), and the usage mode
and traditional mode are consistent in a distributed environment.

Figure 13. The distribution of various functions of the desktop. At present, the distribution of various
functions is relatively balanced, covering almost all aspects of desktop GIS applications. All features
are tailored to data clusters and enable a rapid integration of geospatial data in a distributed
environment.

The desktop is a basic framework for common management and analysis tasks for spatial data
in a distributed environment. It is also a highly customizable development platform that can be used
to extend the desktop functionality at any time.

5.3. Case Study 3: Publish a Dynamic Map Service Using the Server

Map services can be quickly published using the above vector and physical image data. As
shown in Figure 14, the on-the-fly dynamic rendering of map services can reach the second level (<3
s, with extremely complex features; <500 ms, at 10 GB per large single image file). This speed is a
greater improvement over ArcServer and GeoServer. In traditional geographic information service
software, this dynamic publishing service technology is basically impractical. With the help of
distributed technologies such as data clustering, however, it is feasible to directly implement service
publishing technology for physical data through the server. The direct use of physical data in a data
cluster can meet the needs of geographical information service applications.

(a)

Figure 13. The distribution of various functions of the desktop. At present, the distribution of various
functions is relatively balanced, covering almost all aspects of desktop GIS applications. All features are
tailored to data clusters and enable a rapid integration of geospatial data in a distributed environment.

The desktop is a basic framework for common management and analysis tasks for spatial data in
a distributed environment. It is also a highly customizable development platform that can be used to
extend the desktop functionality at any time.

5.3. Case Study 3: Publish a Dynamic Map Service Using the Server

Map services can be quickly published using the above vector and physical image data. As shown
in Figure 14, the on-the-fly dynamic rendering of map services can reach the second level (<3 s, with
extremely complex features; <500 ms, at 10 GB per large single image file). This speed is a greater
improvement over ArcServer and GeoServer. In traditional geographic information service software,
this dynamic publishing service technology is basically impractical. With the help of distributed
technologies such as data clustering, however, it is feasible to directly implement service publishing
technology for physical data through the server. The direct use of physical data in a data cluster can
meet the needs of geographical information service applications.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 20 of 27

Commonly used desktop GIS functions are basically covered (Figure 13), and the usage mode
and traditional mode are consistent in a distributed environment.

Figure 13. The distribution of various functions of the desktop. At present, the distribution of various
functions is relatively balanced, covering almost all aspects of desktop GIS applications. All features
are tailored to data clusters and enable a rapid integration of geospatial data in a distributed
environment.

The desktop is a basic framework for common management and analysis tasks for spatial data
in a distributed environment. It is also a highly customizable development platform that can be used
to extend the desktop functionality at any time.

5.3. Case Study 3: Publish a Dynamic Map Service Using the Server

Map services can be quickly published using the above vector and physical image data. As
shown in Figure 14, the on-the-fly dynamic rendering of map services can reach the second level (<3
s, with extremely complex features; <500 ms, at 10 GB per large single image file). This speed is a
greater improvement over ArcServer and GeoServer. In traditional geographic information service
software, this dynamic publishing service technology is basically impractical. With the help of
distributed technologies such as data clustering, however, it is feasible to directly implement service
publishing technology for physical data through the server. The direct use of physical data in a data
cluster can meet the needs of geographical information service applications.

(a)

Figure 14. Cont.

ISPRS Int. J. Geo-Inf. 2019, 8, 449 21 of 28
ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 21 of 27

(b)

Figure 14. The server can be used to quickly publish vector and image data on the data cluster (on-
the-fly). (a) Viewing vector data in a data cluster published on the server side in real time at a small
scale. The viewed data can be automatically cached, and thus the more browsing visits that occur, the
more efficient the service response is. The initial server needs to request the data entity in the data
cluster. (b) Visiting a global entity image of Dazhou City, Sichuan Province, released by the server.
Unlike vector dynamic rendering, the efficiency of accessing physical images depends mainly on the
IO speed of the network and the hard disk.

To further optimize the efficiency of this physical data dynamic service technology, we used the
BiGeo framework to conduct a comparative experiment of different service delivery methods (Figure
15). The five service publish technologies applied are as follows: (1) dynamic vector rendering for
directly and dynamically publishing vector data in a data cluster; (2) a vector cache tile for adding a
server-side caching mechanism for dynamically published vector data services; (3) dynamic image
rendering for directly and dynamically publishing image entity data services; (4) an image cache tile
for adding a server-side caching mechanism to the dynamically published entity image service; (5)
compressed tiles for further compressing the vector and image services added using the server-side
caching mechanism; and (6) a front-end cache tile, in which the front-end cache response is further
increased for services that have previously added a server-side caching mechanism. The service
efficiency can be further improved through the mixed use of various combined service optimization
technologies.

Figure 14. The server can be used to quickly publish vector and image data on the data cluster
(on-the-fly). (a) Viewing vector data in a data cluster published on the server side in real time at a small
scale. The viewed data can be automatically cached, and thus the more browsing visits that occur, the
more efficient the service response is. The initial server needs to request the data entity in the data
cluster. (b) Visiting a global entity image of Dazhou City, Sichuan Province, released by the server.
Unlike vector dynamic rendering, the efficiency of accessing physical images depends mainly on the IO
speed of the network and the hard disk.

To further optimize the efficiency of this physical data dynamic service technology, we used the
BiGeo framework to conduct a comparative experiment of different service delivery methods (Figure 15).
The five service publish technologies applied are as follows: (1) dynamic vector rendering for directly
and dynamically publishing vector data in a data cluster; (2) a vector cache tile for adding a server-side
caching mechanism for dynamically published vector data services; (3) dynamic image rendering for
directly and dynamically publishing image entity data services; (4) an image cache tile for adding a
server-side caching mechanism to the dynamically published entity image service; (5) compressed tiles
for further compressing the vector and image services added using the server-side caching mechanism;
and (6) a front-end cache tile, in which the front-end cache response is further increased for services
that have previously added a server-side caching mechanism. The service efficiency can be further
improved through the mixed use of various combined service optimization technologies.

Based on the distributed capabilities of the data clusters and high-performance computing, the
server can achieve a more in-depth display and analysis of the geospatial information.

ISPRS Int. J. Geo-Inf. 2019, 8, 449 22 of 28

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 21 of 27

(b)

Figure 14. The server can be used to quickly publish vector and image data on the data cluster (on-
the-fly). (a) Viewing vector data in a data cluster published on the server side in real time at a small
scale. The viewed data can be automatically cached, and thus the more browsing visits that occur, the
more efficient the service response is. The initial server needs to request the data entity in the data
cluster. (b) Visiting a global entity image of Dazhou City, Sichuan Province, released by the server.
Unlike vector dynamic rendering, the efficiency of accessing physical images depends mainly on the
IO speed of the network and the hard disk.

To further optimize the efficiency of this physical data dynamic service technology, we used the
BiGeo framework to conduct a comparative experiment of different service delivery methods (Figure
15). The five service publish technologies applied are as follows: (1) dynamic vector rendering for
directly and dynamically publishing vector data in a data cluster; (2) a vector cache tile for adding a
server-side caching mechanism for dynamically published vector data services; (3) dynamic image
rendering for directly and dynamically publishing image entity data services; (4) an image cache tile
for adding a server-side caching mechanism to the dynamically published entity image service; (5)
compressed tiles for further compressing the vector and image services added using the server-side
caching mechanism; and (6) a front-end cache tile, in which the front-end cache response is further
increased for services that have previously added a server-side caching mechanism. The service
efficiency can be further improved through the mixed use of various combined service optimization
technologies.

Figure 15. Comparison of response speeds of different map service types. As shown, vector dynamic
rendering requires more CPU and memory, which takes the longest amount of time; in addition, image
dynamic rendering mainly depends on the disk IO speed, the cached data service efficiency after access
can be greatly improved, files can be cached through the client HTTP mechanism and greatly alleviate
the server pressure, and the compressed data has better comprehensive space occupation, access speed,
and cost performance.

5.4. Case Study 4: Quickly Migrating and Converting Large Amounts of Data Using the Toolkit

It takes about 3.5 h to use this tool to migrate the surface coverage data. The exporting of cluster
data is twice as fast as the importing. Different types of data conversion and migration speed analyses
are as follows (Table 7 and Figure 16):

Table 7. Import speed analysis.

Complexity Feature Type Average Speed Bulk Packet Size

very complex features surface coverage,
contour lines, vegetation 80,000/min packet 30 MB/1000

complex features roads, water systems,
administrative districts 150,000/min packet 15 MB/1000

general features house, ancillary facilities 300,000/min packet 5 MB/1000

simple features points of interest, joint
maps, grids, metadata 600,000/min packet 1 MB/1000

The packet size can also be automatically adjusted based on the data type. For example, each
fixed transmission has a size of 2 MB, but with a different number of features. This can control the
memory usage during data migration and maintain the stability of the network transmission.

Owing to the accumulation of historical data, the cleaning, integration, and migration of spatial
data is a complicated and long process, and more practical tools need to be developed for specific
problems. These tools are a prerequisite for ensuring that BiGeo is properly used. However, an
application system based on the BiGeo framework has been completely established.

ISPRS Int. J. Geo-Inf. 2019, 8, 449 23 of 28

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 22 of 27

Figure 15. Comparison of response speeds of different map service types. As shown, vector dynamic
rendering requires more CPU and memory, which takes the longest amount of time; in addition,
image dynamic rendering mainly depends on the disk IO speed, the cached data service efficiency
after access can be greatly improved, files can be cached through the client HTTP mechanism and
greatly alleviate the server pressure, and the compressed data has better comprehensive space
occupation, access speed, and cost performance.

Based on the distributed capabilities of the data clusters and high-performance computing, the
server can achieve a more in-depth display and analysis of the geospatial information.

5.4. Case Study 4: Quickly Migrating and Converting Large Amounts of Data Using the Toolkit

It takes about 3.5 h to use this tool to migrate the surface coverage data. The exporting of cluster
data is twice as fast as the importing. Different types of data conversion and migration speed analyses
are as follows (Table 7 and Figure 16):

Table 7. Import speed analysis

Complexity Feature Type Average speed Bulk Packet Size
very complex

features
surface coverage, contour

lines, vegetation
80,000/min packet 30 MB/1000

complex features roads, water systems,
administrative districts

150,000/min packet 15 MB/1000

general features house, ancillary facilities 300,000/min packet 5 MB/1000

simple features
points of interest, joint maps,

grids, metadata 600,000/min packet 1 MB/1000

Figure 16. Trend interpolation line. As the size of the packet increases and the complexity of the
features increases, the import speed will decrease significantly, and a slow decay rate will be
maintained at an inflection point.

The packet size can also be automatically adjusted based on the data type. For example, each
fixed transmission has a size of 2 MB, but with a different number of features. This can control the
memory usage during data migration and maintain the stability of the network transmission.

Owing to the accumulation of historical data, the cleaning, integration, and migration of spatial
data is a complicated and long process, and more practical tools need to be developed for specific

Figure 16. Trend interpolation line. As the size of the packet increases and the complexity of the
features increases, the import speed will decrease significantly, and a slow decay rate will be maintained
at an inflection point.

6. Conclusions and Future Work

Based on BiGeo’s background and existing related technologies, this paper described the design
of the overall architecture and framework of BiGeo according to the requirements and user scenarios.
Through a concrete implementation and experimental cases, the effectiveness and efficiency of BiGeo
were verified. Because BiGeo is a huge framework, after many years of iterative development and
practical application, there remain numerous details that are difficult to fully discuss, and owing to
limited space, are summarized as follows.

BiGeo has the following advantages: (1) It has a strong expandability. For a data cluster, adding
nodes in the architecture can linearly increase the storage capacity and processing power of the system.
At the same time, the operation is simple when a node is extended, and the data redistribution can
be completed within a short time. Using the loosely coupled design of the GIS engine component,
the desktop framework, and the server framework, there is plenty of room for an expansion of
the functionality and performance; (2) BiGeo is easier to use, and provides a complete, rich call
interface. Users only need to have traditional software development capabilities, and experience in
distributed architecture development is not needed. Owing to the large number of simple development
frameworks and components provided to developers, the complexity of the underlying distributed
system development has been shielded to a certain extent. It is possible to quickly develop a large-scale
GIS system based on a distributed architecture for massive spatial information processing, management,
query, and service publishing; (3) It achieves highly cost-effective performance. Although the hardware
equipment deployed by BiGeo in the experiment environment described herein cost only approximately
USD $110,000 using ordinary x86 servers, the performance under a huge amount of data achieved the
expected results. In addition to a reduction in hardware investment, there is no need to charge a license
for the database, basic GIS platform, or other software. Through this research, we have developed a
BiGeo-based geospatial big data technology system, which will also be helpful for us to further reduce
the related costs of technology management, hardware upgrades, and security.

BiGeo is not a substitute for traditional commercial software such as ArcGIS or Oracle but works
closely with them to provide full access to their respective advantages. They can collectively form an
application circulation of geospatial big data. BiGeo is also not a substitute for all types of open-source
geospatial software. On the contrary, BiGeo absorbs a large amount of geospatial information and
other computer open-source software projects. Through a unified and coordinated technology stack,

ISPRS Int. J. Geo-Inf. 2019, 8, 449 24 of 28

a complete geospatial big data PaaS layer solution can be formed. Therefore, BiGeo and existing
technologies, applications, and platforms can be seamlessly connected. In addition, BiGeo is an
open platform. In the future, with the development of additional big data technologies, it can be
synchronized and rapidly expanded.

Thanks to the open-source community and academic circles, which have provided us with
numerous research results, resources, and technologies, we have been able to further improve the
use of BiGeo. At present, this technology has better applicability, practicability, and operability for
geospatial big data when compared with other methods. However, there are still technical difficulties
that need to be resolved.

The next step is to improve the following features: (1) The scale of the existing BiGeo experiment
environment is still quite limited. We need to further observe the stability and efficiency of BiGeo
after it has been scaled up, allowing it to be verified under more scenarios; (2) BiGeo currently focuses
more on the technology implementation used in data management. The next step is to organize the
logical organization of the data such that the data organization model can fully utilize the underlying
capabilities of the BiGeo framework; (3) The back-end capabilities of BiGeo services lack a front-end
performance and need to be further integrated with various front-end technologies [79] to enhance
its overall application; (4) The tool side should allow new tools to be added according to the ETL
data requirements [80,81]. Finally, (5) the frameworks and components of the call interface should be
further optimized based on feedback from application system developers.

Author Contributions: Conceptualization, Methodology, Software and Writing-Original Draft Preparation, Xi
Liu; Formal Analysis, Investigation, Resources and Editing, Lina Hao; Supervision and Project Administration,
Wunian Yang.

Funding: This research was funded by National Natural Science Foundation of China, grant number 41702358,
41771444 and China Postdoctoral Science Foundation, grant number 2017M622982, Remote Sensing Science and
Technology Research Innovation Team of Chengdu University of Technology, grant number KYTD201501.

Acknowledgments: Thanks to Chunlei Ren for his technical assistance and support in this study. Thanks to
anonymous reviewers and editors for their contributions to improving this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Siddiqa, A.; Karim, A.; Gani, A. Big data storage technologies: A survey. Front. Inf. Technol. Electron. Eng.
2017, 18, 1040–1070. [CrossRef]

2. Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in
agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [CrossRef]

3. Leidig, M.; Teeuw, R. Free software: A review, in the context of disaster management. Int. J. Appl. Earth Obs.
Geoinf. 2015, 42, 49–56. [CrossRef]

4. Jakimavičius, M.; Palevičius, V.; Antuchevičiene, J.; Karpavičius, T. Internet GIS-Based Multimodal Public
Transport Trip Planning Information System for Travelers in Lithuania. ISPRS Int. J. Geo-Inf. 2019, 8, 319.
[CrossRef]

5. Huang, Q.; Cervone, G.; Zhang, G. A cloud-enabled automatic disaster analysis system of multi-sourced
data streams: An example synthesizing social media, remote sensing and Wikipedia data. Comput. Environ.
Urban Syst. 2017, 66, 23–37. [CrossRef]

6. Sapountzi, A.; Psannis, K.E. Social networking data analysis tools & challenges. Future Gener. Comput. Syst.
2018, 86, 893–913.

7. Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; See, L.; Schepaschenko, D.; van der Velde, M.; Kraxner, F.;
Obersteiner, M. Geo-Wiki: An online platform for improving global land cover. Environ. Model. Softw. 2012,
31, 110–123. [CrossRef]

8. Pourebrahim, N.; Sultana, S.; Niakanlahiji, A.; Thill, J.-C. Trip distribution modeling with Twitter data.
Comput. Environ. Urban Syst. 2019, 77, 101354. [CrossRef]

http://dx.doi.org/10.1631/FITEE.1500441
http://dx.doi.org/10.1016/j.compag.2017.09.037
http://dx.doi.org/10.1016/j.jag.2015.05.012
http://dx.doi.org/10.3390/ijgi8080319
http://dx.doi.org/10.1016/j.compenvurbsys.2017.06.004
http://dx.doi.org/10.1016/j.envsoft.2011.11.015
http://dx.doi.org/10.1016/j.compenvurbsys.2019.101354

ISPRS Int. J. Geo-Inf. 2019, 8, 449 25 of 28

9. Dos Santos, R.F.; Boedihardjo, A.; Shah, S.; Chen, F.; Lu, C.T.; Ramakrishnan, N. The big data of violent events:
Algorithms for association analysis using spatio-temporal storytelling. GeoInformatica 2016, 20, 879–921.
[CrossRef]

10. Jiang, B. Geospatial analysis requires a different way of thinking: The problem of spatial heterogeneity.
GeoJournal 2015, 80, 1–13. [CrossRef]

11. Chmielewski, S.; Samulowska, M.; Lupa, M.; Lee, D.; Zagajewski, B. Citizen science and WebGIS for outdoor
advertisement visual pollution assessment. Comput. Environ. Urban Syst. 2018, 67, 97–109. [CrossRef]

12. Repetto, M.P.; Burlando, M.; Solari, G.; De Gaetano, P.; Pizzo, M.; Tizzi, M. A web-based GIS platform for the
safe management and risk assessment of complex structural and infrastructural systems exposed to wind.
Adv. Eng. Softw. 2018, 117, 29–45. [CrossRef]

13. Rafoss, T.; Sælid, K.; Sletten, A.; Gyland, L.F.; Engravslia, L. Open geospatial technology standards and their
potential in plant pest risk management-GPS-enabled mobile phones utilising open geospatial technology
standards Web Feature Service Transactions support the fighting of fire blight in Norway. Comput. Electron.
Agric. 2010, 74, 336–340. [CrossRef]

14. Machwitz, M.; Hass, E.; Junk, J.; Udelhoven, T.; Schlerf, M. CropGIS—A web application for the spatial and
temporal visualization of past, present and future crop biomass development. Comput. Electron. Agric. 2019,
161, 185–193. [CrossRef]

15. Kingdon, A.; Nayembil, M.L.; Richardson, A.E.; Smith, A.G. A geodata warehouse: Using denormalisation
techniques as a tool for delivering spatially enabled integrated geological information to geologists. Comput.
Geosci. 2016, 96, 87–97. [CrossRef]

16. Seo, B.C.; Keem, M.; Hammond, R.; Demir, I.; Krajewski, W.F. A pilot infrastructure for searching rainfall
metadata and generating rainfall product using the big data of NEXRAD. Environ. Model. Softw. 2019, 117,
69–75. [CrossRef]

17. Ben Brahim, M.; Drira, W.; Filali, F.; Hamdi, N. Spatial data extension for Cassandra NoSQL database. J. Big
Data 2016, 3, 11. [CrossRef]

18. Kwakkel, J.H.; Carley, S.; Chase, J.; Cunningham, S.W. Visualizing geo-spatial data in science, technology
and innovation. Technol. Forecast. Soc. Chang. 2014, 81, 67–81. [CrossRef]

19. Zhang, X.; Yue, P.; Chen, Y.; Hu, L. An efficient dynamic volume rendering for large-scale meteorological
data in a virtual globe. Comput. Geosci. 2019, 126, 1–8. [CrossRef]

20. Hardebol, N.J.; Bertotti, G. DigiFract: A software and data model implementation for flexible acquisition
and processing of fracture data from outcrops. Comput. Geosci. 2013, 54, 326–336. [CrossRef]

21. Liao, C.; Brown, D.; Fei, D.; Long, X.; Chen, D.; Che, S. Big data-enabled social sensing in spatial analysis:
Potentials and pitfalls. Trans. GIS 2018, 22, 1351–1371. [CrossRef]

22. Yu, J.J.; Qin, X.S.; Larsen, L.C.; Larsen, O.; Jayasooriya, A.; Shen, X.L. A GIS-based management and
publication framework for data handling of numerical model results. Adv. Eng. Softw. 2012, 45, 360–369.
[CrossRef]

23. Smith, D.A. Online interactive thematic mapping: Applications and techniques for socio-economic research.
Comput. Environ. Urban Syst. 2016, 57, 106–117. [CrossRef]

24. Giuliani, G.; Nativi, S.; Lehmann, A.; Ray, N. WPS mediation: An approach to process geospatial data on
different computing backends. Comput. Geosci. 2012, 47, 20–33. [CrossRef]

25. Moncrieff, S.; Turdukulov, U.; Gulland, E.K. Integrating geo web services for a user driven exploratory
analysis. ISPRS J. Photogramm. Remote Sens. 2016, 114, 294–305. [CrossRef]

26. Zhao, L.; Liu, Z.; Mbachu, J. Highway alignment optimization: An integrated BIM and GIS approach. ISPRS
Int. J. Geo-Inf. 2019, 8, 172. [CrossRef]

27. Huang, W.; Raza, S.A.; Mirzov, O.; Harrie, L. Assessment and Benchmarking of Spatially Enabled RDF Stores
for the Next Generation of Spatial Data Infrastructure. ISPRS Int. J. Geo-Inf. 2019, 8, 310. [CrossRef]

28. Chen, P.; Shi, W. Measuring the spatial relationship information of multi-Layered vector data. ISPRS Int. J.
Geo-Inf. 2018, 7, 88. [CrossRef]

29. Baumann, P. The OGC web coverage processing service (WCPS) standard. Geoinformatica 2010, 14, 447–479.
[CrossRef]

30. Ludwig, B.; Coetzee, S. Implications of security mechanisms and Service Level Agreements (SLAs) of
Platform as a Service (PaaS) clouds for geoprocessing services. Appl. Geomat. 2013, 5, 25–32. [CrossRef]

http://dx.doi.org/10.1007/s10707-016-0247-0
http://dx.doi.org/10.1007/s10708-014-9537-y
http://dx.doi.org/10.1016/j.compenvurbsys.2017.09.001
http://dx.doi.org/10.1016/j.advengsoft.2017.03.002
http://dx.doi.org/10.1016/j.compag.2010.08.006
http://dx.doi.org/10.1016/j.compag.2018.04.026
http://dx.doi.org/10.1016/j.cageo.2016.07.016
http://dx.doi.org/10.1016/j.envsoft.2019.03.008
http://dx.doi.org/10.1186/s40537-016-0045-4
http://dx.doi.org/10.1016/j.techfore.2012.09.007
http://dx.doi.org/10.1016/j.cageo.2019.01.018
http://dx.doi.org/10.1016/j.cageo.2012.10.021
http://dx.doi.org/10.1111/tgis.12483
http://dx.doi.org/10.1016/j.advengsoft.2011.10.010
http://dx.doi.org/10.1016/j.compenvurbsys.2016.01.002
http://dx.doi.org/10.1016/j.cageo.2011.10.009
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.015
http://dx.doi.org/10.3390/ijgi8040172
http://dx.doi.org/10.3390/ijgi8070310
http://dx.doi.org/10.3390/ijgi7030088
http://dx.doi.org/10.1007/s10707-009-0087-2
http://dx.doi.org/10.1007/s12518-012-0083-3

ISPRS Int. J. Geo-Inf. 2019, 8, 449 26 of 28

31. Tang, J.; Matyas, C.J. Arc4nix: A cross-platform geospatial analytical library for cluster and cloud computing.
Comput. Geosci. 2018, 111, 159–166. [CrossRef]

32. Qin, R. Development of a GIS-based integrated framework for coastal seiches monitoring and forecasting: A
North Jiangsu shoal case study. Comput. Geosci. 2017, 103, 70–79. [CrossRef]

33. Li, F.; Gui, Z.; Wu, H.; Gong, J.; Wang, Y.; Tian, S.; Zhang, J. Big enterprise registration data imputation:
Supporting spatiotemporal analysis of industries in China. Comput. Environ. Urban Syst. 2018, 70, 9–23.
[CrossRef]

34. Bellini, P.; Nesi, P. Performance assessment of RDF graph databases for smart city services. J. Vis. Lang.
Comput. 2018, 45, 24–38. [CrossRef]

35. Huang, Z.; Chen, Y.; Wan, L.; Peng, X. GeoSpark SQL: An effective framework enabling spatial queries on
spark. ISPRS Int. J. Geo-Inf. 2017, 6, 285. [CrossRef]

36. Qian, C.; Yi, C.; Cheng, C.; Pu, G.; Wei, X.; Zhang, H. Geosot-based spatiotemporal index of massive trajectory
data. ISPRS Int. J. Geo-Inf. 2019, 8, 284. [CrossRef]

37. Jun, S.; Lee, S. Prototype system for geospatial data building-sharing developed by utilizing open source
web technology. Spat. Inf. Res. 2017, 25, 725–733. [CrossRef]

38. Hu, F.; Xu, M.; Yang, J.; Liang, Y.; Cui, K.; Little, M.M.; Lynnes, C.S.; Duffy, D.Q.; Yang, C. Evaluating the
Open Source Data Containers for Handling Big Geospatial Raster Data. ISPRS Int. J. Geo-Inf. 2018, 7, 144.
[CrossRef]

39. Višnjevac, N.; Mihajlović, R.; Šoškić, M.; Cvijetinović, Ž.; Bajat, B. Prototype of the 3D cadastral system based
on a NoSQL database and a Javascript visualization application. ISPRS Int. J. Geo-Inf. 2019, 8, 227. [CrossRef]

40. Lyu, L.; Xu, Q.; Lan, C.; Shi, Q.; Lu, W.; Zhou, Y.; Zhao, Y. Sino-inspace: A digital simulation platform for
virtual space environments. ISPRS Int. J. Geo-Inf. 2018, 7, 373. [CrossRef]

41. Zaragozí, B.; Belda, A.; Linares, J.; Martínez-Pérez, J.E.; Navarro, J.T.; Esparza, J. A free and open source
programming library for landscape metrics calculations. Environ. Model. Softw. 2012, 31, 131–140. [CrossRef]

42. Saif, S.; Wazir, S. Performance Analysis of Big Data and Cloud Computing Techniques: A Survey. Procedia
Comput. Sci. 2018, 132, 118–127. [CrossRef]

43. Morsy, M.M.; Goodall, J.L.; O’Neil, G.L.; Sadler, J.M.; Voce, D.; Hassan, G.; Huxley, C. A cloud-based flood
warning system for forecasting impacts to transportation infrastructure systems. Environ. Model. Softw. 2018,
107, 231–244. [CrossRef]

44. Blauth, D.A.; Ducati, J.R. A Web-based system for vineyards management, relating inventory data, vectors
and images. Comput. Electron. Agric. 2010, 71, 182–188. [CrossRef]

45. Bunting, P.; Clewley, D.; Lucas, R.M.; Gillingham, S. The Remote Sensing and GIS Software Library (RSGISLib).
Comput. Geosci. 2014, 62, 216–226. [CrossRef]

46. Appel, M.; Lahn, F.; Buytaert, W.; Pebesma, E. Open and scalable analytics of large Earth observation datasets:
From scenes to multidimensional arrays using SciDB and GDAL. ISPRS J. Photogramm. Remote Sens. 2018,
138, 47–56. [CrossRef]

47. Haynes, D.; Manson, S.; Shook, E. Terra Populus’ architecture for integrated big geospatial services. Trans.
GIS 2017, 21, 546–559. [CrossRef]

48. Meyer, D.; Riechert, M. Open source QGIS toolkit for the Advanced Research WRF modelling system.
Environ. Model. Softw. 2019, 112, 166–178. [CrossRef]

49. Singh, S.K. Evaluating two freely available geocoding tools for geographical inconsistencies and geocoding
errors. Open Geospat. Data Softw. Stand. 2017, 2, 11. [CrossRef]

50. Ballagh, L.M.; Raup, B.H.; Duerr, R.E.; Khalsa, S.J.S.; Helm, C.; Fowler, D.; Gupte, A. Representing scientific
data sets in KML: Methods and challenges. Comput. Geosci. 2011, 37, 57–64. [CrossRef]

51. Saah, D.; Johnson, G.; Ashmall, B.; Tondapu, G.; Tenneson, K.; Patterson, M.; Poortinga, A.; Markert, K.;
Quyen, N.H.; San Aung, K.; et al. Collect Earth: An online tool for systematic reference data collection in
land cover and use applications. Environ. Model. Softw. 2019, 118, 166–171. [CrossRef]

52. Li, W.; Wu, S.; Song, M.; Zhou, X. A scalable cyberinfrastructure solution to support big data management
and multivariate visualization of time-series sensor observation data. Earth Sci. Inform. 2016, 9, 449–464.
[CrossRef]

53. Jo, J.; Lee, K.W. High-performance geospatial big data processing system based on MapReduce. ISPRS Int. J.
Geo-Inf. 2018, 7, 399. [CrossRef]

http://dx.doi.org/10.1016/j.cageo.2017.11.011
http://dx.doi.org/10.1016/j.cageo.2017.03.010
http://dx.doi.org/10.1016/j.compenvurbsys.2018.01.010
http://dx.doi.org/10.1016/j.jvlc.2018.03.002
http://dx.doi.org/10.3390/ijgi6090285
http://dx.doi.org/10.3390/ijgi8060284
http://dx.doi.org/10.1007/s41324-017-0138-y
http://dx.doi.org/10.3390/ijgi7040144
http://dx.doi.org/10.3390/ijgi8050227
http://dx.doi.org/10.3390/ijgi7090373
http://dx.doi.org/10.1016/j.envsoft.2011.10.009
http://dx.doi.org/10.1016/j.procs.2018.05.172
http://dx.doi.org/10.1016/j.envsoft.2018.05.007
http://dx.doi.org/10.1016/j.compag.2010.01.007
http://dx.doi.org/10.1016/j.cageo.2013.08.007
http://dx.doi.org/10.1016/j.isprsjprs.2018.01.014
http://dx.doi.org/10.1111/tgis.12286
http://dx.doi.org/10.1016/j.envsoft.2018.10.018
http://dx.doi.org/10.1186/s40965-017-0026-3
http://dx.doi.org/10.1016/j.cageo.2010.05.004
http://dx.doi.org/10.1016/j.envsoft.2019.05.004
http://dx.doi.org/10.1007/s12145-016-0267-1
http://dx.doi.org/10.3390/ijgi7100399

ISPRS Int. J. Geo-Inf. 2019, 8, 449 27 of 28

54. Patterson, M.T.; Anderson, N.; Bennett, C.; Bruggemann, J.; Grossman, R.L.; Handy, M.; Ly, V.; Mandl, D.J.;
Pederson, S.; Pivarski, J.; et al. The Matsu Wheel: A reanalysis framework for Earth satellite imagery in data
commons. Int. J. Data Sci. Anal. 2017, 4, 251–264. [CrossRef]

55. Yu, J.; Zhang, Z.; Sarwat, M. Spatial data management in apache spark: The GeoSpark perspective and
beyond. Geoinformatica 2019, 23, 37–78. [CrossRef]

56. García-García, F.; Corral, A.; Iribarne, L.; Vassilakopoulos, M.; Manolopoulos, Y. Efficient large-scale
distance-based join queries in spatialhadoop. Geoinformatica 2018, 22, 171–209. [CrossRef]

57. Aji, A.; Wang, F.; Vo, H.; Lee, R.; Liu, Q.; Zhang, X.; Saltz, J. Hadoop-GIS: A High Performance Spatial Data
Warehousing System over MapReduce. Proc. VLDB Endow. 2013, 6, 1009–1020. [CrossRef]

58. Alarabi, L.; Mokbel, M.F.; Musleh, M. ST-Hadoop: A MapReduce framework for spatio-temporal data.
GeoInformatica 2018, 22, 785–813. [CrossRef]

59. Huang, W.; Zhang, W.; Zhang, D.; Meng, L. Elastic Spatial Query Processing in OpenStack Cloud Computing
Environment for Time-Constraint Data Analysis. ISPRS Int. J. Geo-Inf. 2017, 6, 84. [CrossRef]

60. Nikitopoulos, P.; Vouros, G.A.; Vlachou, A.; Doulkeridis, C. Parallel and scalable processing of spatio-temporal
RDF queries using Spark. GeoInformatica 2019, 1–31. [CrossRef]

61. Xia, J.; Yang, C.; Li, Q. Building a spatiotemporal index for Earth Observation Big Data. Int. J. Appl. Earth
Obs. Geoinf. 2018, 73, 245–252. [CrossRef]

62. Mazzetti, P.; Roncella, R.; Mihon, D.; Bacu, V.; Lacroix, P.; Guigoz, Y.; Ray, N.; Giuliani, G.; Gorgan, D.;
Nativi, S. Integration of data and computing infrastructures for earth science: An image mosaicking use-case.
Earth Sci. Inform. 2016, 9, 325–342. [CrossRef]

63. Teruzzi, A.; Di Cerbo, P.; Cossarini, G.; Pascolo, E.; Salon, S. Parallel implementation of a data assimilation
scheme for operational oceanography: The case of the MedBFM model system. Comput. Geosci. 2019, 124,
103–114. [CrossRef]

64. Zavala-Romero, O.; Ahmed, A.; Chassignet, E.P.; Zavala-Hidalgo, J.; Fernández Eguiarte, A.; Meyer-Baese, A.
An open source Java web application to build self-contained web GIS sites. Environ. Model. Softw. 2014, 62,
210–220. [CrossRef]

65. Criollo, R.; Velasco, V.; Nardi, A.; Manuel de Vries, L.; Riera, C.; Scheiber, L.; Jurado, A.; Brouyère, S.;
Pujades, E.; Rossetto, R.; et al. AkvaGIS: An open source tool for water quantity and quality management.
Comput. Geosci. 2019, 127, 123–132. [CrossRef]

66. Rossetto, R.; De Filippis, G.; Borsi, I.; Foglia, L.; Cannata, M.; Criollo, R.; Vázquez-Suñé, E. Integrating free
and open source tools and distributed modelling codes in GIS environment for data-based groundwater
management. Environ. Model. Softw. 2018, 107, 210–230. [CrossRef]

67. Lin, W. Geoforum Volunteered Geographic Information constructions in a contested terrain: A case of
OpenStreetMap in China. Geoforum 2018, 89, 73–82. [CrossRef]

68. Xie, Z.; Ye, X.; Zheng, Z.; Li, D.; Sun, L.; Li, R.; Benya, S. Modeling polycentric urbanization using multisource
big geospatial data. Remote Sens. 2019, 11, 310. [CrossRef]

69. Galić, Z.; Mešković, E.; Osmanović, D. Distributed processing of big mobility data as spatio-temporal data
streams. Geoinformatica 2017, 21, 263–291. [CrossRef]

70. Kulawiak, M.; Dawidowicz, A.; Pacholczyk, M.E. Analysis of server-side and client-side Web-GIS data
processing methods on the example of JTS and JSTS using open data from OSM and geoportal. Comput.
Geosci. 2019, 129, 26–37. [CrossRef]

71. Amirian, P.; Alesheikh, A.A.; Bassiri, A. Standards-based, interoperable services for accessing urban services
data for the city of Tehran. Comput. Environ. Urban Syst. 2010, 34, 309–321. [CrossRef]

72. Ma, X. Linked Geoscience Data in practice: Where W3C standards meet domain knowledge, data visualization
and OGC standards. Earth Sci. Inform. 2017, 10, 429–441. [CrossRef]

73. Song, J.; Di, L. Near-real-time OGC catalogue service for geoscience big data. ISPRS Int. J. Geo-Inf. 2017, 6,
337. [CrossRef]

74. Horsburgh, J.S.; Reeder, S.L. Data visualization and analysis within a Hydrologic Information System:
Integrating with the R statistical computing environment. Environ. Model. Softw. 2014, 52, 51–61. [CrossRef]

75. Ames, D.P.; Horsburgh, J.S.; Cao, Y.; Kadlec, J.; Whiteaker, T.; Valentine, D. HydroDesktop: Web services-based
software for hydrologic data discovery, download, visualization, and analysis. Environ. Model. Softw. 2012,
37, 146–156. [CrossRef]

http://dx.doi.org/10.1007/s41060-017-0052-3
http://dx.doi.org/10.1007/s10707-018-0330-9
http://dx.doi.org/10.1007/s10707-017-0309-y
http://dx.doi.org/10.14778/2536222.2536227
http://dx.doi.org/10.1007/s10707-018-0325-6
http://dx.doi.org/10.3390/ijgi6030084
http://dx.doi.org/10.1007/s10707-019-00371-0
http://dx.doi.org/10.1016/j.jag.2018.04.012
http://dx.doi.org/10.1007/s12145-016-0255-5
http://dx.doi.org/10.1016/j.cageo.2019.01.003
http://dx.doi.org/10.1016/j.envsoft.2014.08.029
http://dx.doi.org/10.1016/j.cageo.2018.10.012
http://dx.doi.org/10.1016/j.envsoft.2018.06.007
http://dx.doi.org/10.1016/j.geoforum.2018.01.005
http://dx.doi.org/10.3390/rs11030310
http://dx.doi.org/10.1007/s10707-016-0264-z
http://dx.doi.org/10.1016/j.cageo.2019.04.011
http://dx.doi.org/10.1016/j.compenvurbsys.2010.02.002
http://dx.doi.org/10.1007/s12145-017-0304-8
http://dx.doi.org/10.3390/ijgi6110337
http://dx.doi.org/10.1016/j.envsoft.2013.10.016
http://dx.doi.org/10.1016/j.envsoft.2012.03.013

ISPRS Int. J. Geo-Inf. 2019, 8, 449 28 of 28

76. Gao, F.; Yue, P.; Zhang, C.; Wang, M. Coupling components and services for integrated environmental
modelling. Environ. Model. Softw. 2019, 118, 14–22. [CrossRef]

77. Lucas, G.; Lénárt, C.; Solymosi, J. Development and testing of geo-processing models for the automatic
generation of remediation plan and navigation data to use in industrial disaster remediation. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2015, 40, 195–201. [CrossRef]

78. Li, R.; Dong, G.; Jiang, J.; Wu, H.; Yang, N.; Chen, W. Self-adaptive load-balancing strategy based on a time
series pattern for concurrent user access on Web map service. Comput. Geosci. 2019, 131, 60–69. [CrossRef]

79. Eirinaki, M.; Dhar, S.; Mathur, S.; Kaley, A.; Patel, A.; Joshi, A.; Shah, D. A building permit system for smart
cities: A cloud-based framework. Comput. Environ. Urban Syst. 2018, 70, 175–188. [CrossRef]

80. Boulekrouche, B.; Jabeur, N.; Alimazighi, Z. Toward integrating grid and cloud-based concepts for an
enhanced deployment of spatial data warehouses in cyber-physical system applications. J. Ambient Intell.
Humaniz. Comput. 2016, 7, 475–487. [CrossRef]

81. Bimonte, S.; Boucelma, O.; Machabert, O.; Sellami, S. A new Spatial OLAP approach for the analysis of
Volunteered Geographic Information. Comput. Environ. Urban Syst. 2014, 48, 111–123. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.envsoft.2019.04.003
http://dx.doi.org/10.5194/isprsarchives-XL-3-W3-195-2015
http://dx.doi.org/10.1016/j.cageo.2019.06.015
http://dx.doi.org/10.1016/j.compenvurbsys.2018.03.006
http://dx.doi.org/10.1007/s12652-016-0376-1
http://dx.doi.org/10.1016/j.compenvurbsys.2014.07.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Studies
	GIS Software
	Geospatial Database
	Cloud Solution
	Distributed Computing Framework
	Global and Regional Case

	Design and Architecture
	Users and Main Usage Scenarios
	Functional and Nonfunctional Requirements
	Architectural Choices
	Technological Choices

	Implementation
	Data Clustering
	GIS Engine
	Desktop
	Server
	Toolkit

	Case Studies
	Case Study 1: Conducting Complex Spatial SQL Operations on Data Clusters
	Case Study 2: Spatial Analysis and Statistics of Geographic Information Data on the Desktop
	Case Study 3: Publish a Dynamic Map Service Using the Server
	Case Study 4: Quickly Migrating and Converting Large Amounts of Data Using the Toolkit

	Conclusions and Future Work
	References

