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Abstract: Extracting features from crowd flow analysis has become an important research challenge
due to its social cost and the impact of inadequate planning of high-quality services and security
monitoring on the lives of citizens. This paper descriptively reviews and compares existing crowd
analysis approaches based on different data sources. This survey provides the fundamentals of crowd
analysis and considers three main approaches: crowd video analysis, crowd spatio-temporal analysis,
and crowd social media analysis. The key research contributions in each approach are presented,
and the most significant techniques and algorithms used to improve the precision of results that could
be integrated into solutions to enhance the quality of services in a smart city are analyzed.

Keywords: urban crowd flow analysis; feature extraction; spatio-temporal data; big data; social media

1. Introduction

We are living in the era of big cities, where the physical world is connected to the virtual world,
and, thus concepts such as the crowd become more relevant. A group of people coinciding in the same
location together is a crowd. Crowds are divided into two categories: structured and unstructured.
In the former category, there is no great difference in the motion direction between members of a crowd,
which is mostly in the same direction. Thus, a group contains only one main crowd behavior over
time [1]. It is generally assumed that all individuals of the crowd are moving in one direction to
track multiple people based on floor fields in a structured crowded scene. In unstructured crowds,
participants travel in diverse directions in different spatio-temporal aspects [2]. For instance, crowds
at fairs or exhibitions, stadiums, and airports are unstructured crowded scenes. Some models [3]
have been proposed to employ a correlated topic model to predict the tracking of individuals in
an unstructured crowded scene. Crowd behavior has become a significant concern that has motivated
scholars to do research in the field of crowd behavior analysis, to exploit useful patterns that affect
everyday life in a city. For instance, in September 2015, thousands of pilgrims were crushed to death in
the town of Mina, Mecca, Saudi Arabia, as they were performing their prayers [4]. The celebration
of the 2014 New Year’s Eve in Shanghai, China, ended in tragedy on the Bund, a waterfront area
that is one of the biggest tourist attractions in the city, when massive crowds of people took part in
the celebrations, a planned New Year’s light show. The event was ultimately cancelled, so the crowd
movement of the people was out of the police’s control [5]. A similar event happened at the Love
Parade music festival in Germany in 2010. On July 24th, a crowd disaster, after a panic, left at least
18 revelers dead and about 500 injured seriously when thousands of people had to push through others
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to pass through a weedy path and were crushed. The organizer of the festival reported that no further
Love Parades would be held [6].

As a result, crowd analysis is of high importance, particularly for such fields as urban planning,
smart city management, public safety, risk assessment, virtual environments, marketing, etc. In addition,
urban crowd flow prediction is considered important for both traffic management and public safety,
and has become a fundamental urban computing problem. One of the main devices in this area is
video surveillance, which collects information from monitored activities. On the other hand, crowd
flow prediction as a part of urban computing can help both policy-makers and companies like Uber
and Didi create successful business synergy marketing strategies. They can take advantage of these
data to balance driver supply and passenger demand, which is useful for traffic congestion and gas
consumption, as well as air pollution in cities. Furthermore, if researchers can find better solutions to
develop a better way to forecast crowds of people or vehicles in a city, the results will be beneficial
for citizens in various aspects of their daily lives (e.g., launching emergency mechanisms, conducting
traffic controls, and helping the evolution of security strategies). Undoubtedly, crowd analysis is one
of the main tools for crowd flow prediction. This is a very interesting and challenging research field
that has been examined via two main approaches: crowd video analysis and crowd analysis based on
historical big data. The goals are to extract the abnormal behaviors that occurred in the scene, to define
different kinds of events, to obtain the trajectories of motion, and to determine the features of the crowd
(i.e., density and location of patterns in crowd, the movement speed of crowd, etc.). The majority of
analyses have focused on computer vision applications. Regarding the application of computer vision
and graphics on crowd analysis, the review shows that the computer-vision-based algorithms for the
estimation of crowd density are divided into three classes: pixel-based analysis, texture analysis, and
object-level analysis. Summarily, pixel-based approaches and the methods employing texture analysis
explore lower-level properties in an image and do not aim at the identification of individuals in a scene.
Thus, they are less precise for counting individuals. Object-level analysis is known to be a suitable
way to count individuals and localization in a scene because it is mainly oriented towards person
identification. Typically, this kind of analysis suits relatively denser crowds because occlusions become
significant in packed crowds [7].

In this paper, three main crowd analysis approaches are considered. Section 2 considers crowd
video analysis. Section 3 presents crowd analysis based on spatio-temporal data; crowd analysis based
on big social media data is tackled in Section 4. For each approach, the main research contributions
existing in the literature are used to underline the most significant trends in the field. A discussion
comparing the existing approaches is presented in Section 5.

2. Crowd Video Analysis

In the past decade, one of the most important applications to attract significant research attention
in automated crowd analysis has been video surveillance. Video surveillance plays an important role
in managing and planning a city to increase the security of citizens. Managing a crowd has become
a hot topic in this area to develop an effective system to control the abrupt events in public society.
This requires a good understanding and application of crowd behavior analysis and crowd action
recognition algorithms. The authors in [8] used the CROSS framework, which focuses more exclusively
on a specific kind of behavior in crowded areas using simulation as a social scientific tool for abnormal
crowd behavior prediction.

2.1. Crowd Video Behavior Analysis

A variety of algorithms have been proposed to produce reliable (valid) trajectories that can be
categorized into two broad groups:
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• Microscopic Modeling

This model is presented in order to analyze the behavior of each pedestrian in a crowded scene
based on collective information via a holistic approach. This approach can be complemented with
macroscopic modeling that simulates more realistic patterns, such as movement orientation, the location
of an individual, and the interactions of people with each other.

• Macroscopic Modeling

In this model, the analysis is based on the behavior or movement of a crowd of people without
considering the movement of any individual to model a typical (representative, generic) motion pattern.
Macroscopic modeling has been applied to track and analyze the behaviors of people in both sparse
and dense crowds using such specific properties as velocity, density, and flow.

In addition, the authors in [9] suggested a framework for video surveillance which generally
classifies the model into different phases, as shown in Figure 1.

Figure 1. Weiming’s proposed framework for video surveillance [9].

Their proposed model can be applied to data collected from different cameras. Each process and
task is presented in detail in Table 1.

Table 1. Weiming’s proposed model, including processes and tasks [9].

Process Task

Environmental modeling Constructing and updating background images from
a dynamic sequence.

Motion segmentation Detecting region corresponding moving objects.

Object classification Classifying moving regions corresponding to different
moving target scenes.

Object tracking Tracking moving objects from one scene to another in the
image sequence.

Behavior understanding and description Treating a special behavior understanding problem.

Fusion of information from multiple cameras Viewing information that can overcome occlusion.

Later, Antonakki [10] proposed a bottom up approach for motion detection, object classification,
tracking, motion analysis, behavior understanding, and behavior description to classify normal and
abnormal behavior using different criteria. Table 2 describes the components for the video surveillance
in this model.
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Table 2. Video surveillance aspects in Antonakki’s model [10].

Term Description

Motion detection
Focused on static or adaptive background subtraction or temporal differencing

algorithms to separate the foreground pixels that participate in any kind of
motion observed in a given scene.

Object classification Classifying detected objects into different classes, such as humans or vehicles,
that appear in a given scene.

Object detection Locating the time and extracting the trajectories.

Motion analysis
Using motion information from a low level to identify the types of moving objects.

Classifying the activities and calculating the features of motion itself.
Classifying into primitive actions.

Behavior understanding Performing the recognition of behaviors based on these feature values.

Behavior description Recognizing behavior through nearest neighbor classification.

In real-world crowd scenes, precise segmentation is necessary, and it is a challenge to achieve
this aim, especially in the field of violence recognition in video surveillance. Recently, substantial
research has been conducted to achieve this aim. The authors in [11] presented Improved Fisher Vectors
(IFVs) employing local features and spatio-temporal positions. This method calculates the details of
features regardless of spatio-temporal locations. The authors focused on normalizing the center of
each trajectory in order to stabilize the size of the feature position vector. Then, the authors input those
normalized features into their model. Although the base of the IFV is in the temporal sliding window,
the authors sped up the detection of violence for a range of frames by using a summed area table.
Thus, their method often does not calculate the temporal segments. These results demonstrate more
accurate and faster IFV performance compared to similar approaches. Although many algorithms
have been proposed to better determine crowd dynamics in the field of computer vision, progress still
faces different challenges including monitoring an immeasurable number of people and their activities,
automated camera switching, data fusion, and complex tracking algorithms, which make a significant
difference between theory and the monitoring of crowds in real life.

2.2. Crowd Video Action Recognition

Recently, crowd video analysis has been used in various applications, such as video surveillance,
single or group activity and action recognition, tracking people or objects, sports video analysis,
and human–computer interfaces. The process focuses first on detecting objects or individuals and then
tracking them over time, to recognize crowd video action.

• Single Person Action Recognition

Many researchers have studied single person action recognition. Wang et al. [12] proposed
a Latent Hierarchical Model (LHM), which is a tree-structure model with different sub-activities.
Each video segment has a certain temporal scale, with start and end points that work with the temporal
duration of each video segment. In order to speed up classification, they used a latent kernelized
Support Vector Machine (SVM) framework. Their method has been used to recognize complex actions.
In order to achieve the aim of recognizing complex actions, the authors implemented their method in
two different datasets: the Hollywood2 action dataset, including a variety of actions such as driving,
eating, greeting, moving, etc.; and the Olympic Sports dataset, including numerous sport actions of
volleyball, basketball, bowling, etc. Laptev et al. [13] used movie scripts for the automatic annotation
of human action recognition in movies. The authors used the retrieved action samples for visual
learning and classified the videos. The model was built by a bag-of-features technique and features
were classified using a non-linear SVM. To overcome the limitation of previous works on video datasets,
they produced their own dataset of videos with scripts from movies and clustered them by using the
k-means algorithm. Islam Shujah et al. [14] detected junction points by subtracting the background.
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Key frames were extracted according to distinct poses and a distance-based classifier to distinguish
the geometric patterns (GPs) into 8-directional classes in order to obtain the geometric pattern classes.
They employed the Lucas–Kanade optical flow algorithm [15] to obtain optical flow between the video
frames and achieved satisfactory average performance by evaluating their model based on famous
single actions such as running, clapping, sitting down, etc., using the Weizmann dataset. Chen et al. [16]
estimated optical flows with the Lucas–Kanade (LK) algorithm [17] to obtain a set of reliable points in
the current frame (ft) and in the next frame (ft+1).

In order to produce a better prediction, Chen et al. [16] compared the set of the feature points in the
current and next frames to remove the set located in the same coordinates. By measuring the weighting
factors for each individual and the distance between the feature points, they obtained different clusters.
These clusters include similar individual patterns based on factors such as positions and orientations.
Then, in the next step, the authors used the individual features to make clusters for the further analysis
of their method. They proposed to use an adjacency matrix-based clustering (AMC) algorithm to get
a larger cluster because it helps to better detect the abnormal behavior of crowds. Finally, the authors
applied a prediction on the force field model to detect abnormal behavior based on four different
dominant directions of the people that they clustered. Following the obtained clusters, if a human
crowd orientation suddenly changes, it is considered as abnormal behavior (limitation: in order to
improve the detection rate it is better to work more on local events). Figure 2 shows the main steps of
the approach of Chen et al. [16].
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Figure 2. The proposed model of two-stage clustering presented in [16]: (a) the detected feature points;
(b) the feature points shown without the background; (c) clusters obtained after applying first-stage
clustering; (d) clusters obtained using the adjacency matrix-based clustering (AMC) algorithm.

New innovative methods of simulating individual/pedestrian movement can help to achieve
better performance in a broad range of applications, but model evaluation strongly depends on a proper
data source. The results of an individual simulation can be useful not only for city planners to manage
better services for citizens, but also for developing commercial software such as Legion, Steps, and
SimWalk. Regarding pedestrian simulation, Vizzari et al. [18] classified three main approaches to
evaluate the behavior of pedestrians in the environment: 1) pedestrians as particles subject to forces;
2) pedestrians as particular states of cells; and 3) pedestrians as autonomous agents.

• Group Activity Recognition

Recently, group activity recognition has been used in a variety of fields (e.g., robotics and human
interaction). Shu et al. [19] extended a two-level model toward improving the brittleness of the direct
cascading in previous work with an additional energy layer (EL). By end-to-end training of the EL
on top of all long short-term memory (LSTM), they captured the dependencies between all LSTM
predictions. Existing datasets are too small to train LSTMs, because the feeding-forward of predictions
is too brittle. In order to overcome this challenge, Shu et al. [19] took two steps to minimize the energy
of all their predictions and maximize their reliability, as shown in Figure 3. Hence, their proposed
model is called a confidence-energy recurrent network (CERN).
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Figure 3. Two-level model by Shu et al. [19]. CERN: confidence-energy recurrent network.

Extracting motion and pose from a video in action recognition is connected with the spatio-temporal
relations among people. Ibrahim et al. [20] proposed a hierarchical deep-learning-based model to
determine what a group of people are doing based on a video scene. In this two-stage approach,
they used three cues to recognize the activities performed by the group of people. In the first step,
they recognized a single person’s action, and then they used long short-term memory to present the
temporal dynamics behind how a person’s actions change over time. Finally, combining all of those
individual representations, the authors discovered group activities in the second step. The authors
implemented their model using Caffe. In order to extract the complex features from the bounding box
around the person, they used the convolutional neural network (CNN) and the LSTM approaches,
in addition to person trajectories. This model was evaluated not only with 1525 frames from 15 videos
that were handpicked from YouTube, but also with the Collective Activity Dataset. By implementing
this method on the datasets, they determined pedestrian movements such as waiting, queuing, and
talking, and more complicated group activities based on volleyball videos (i.e., right/left set, spike, etc.).
The results showed almost perfect performance in the dynamic properties of group activities, but due to
a lack of consideration of the spatial relations between people in the group, the model became confused
and boosted performance in some activities, such as crossing, waiting, and walking. However, person
pooling is not able to model a group-to-group context. To solve this problem, M. Wang et al. [21]
proposed a hierarchical group-to-group interaction framework implemented in the same dataset.
First, the authors generated a sequence of tracked human bounding boxes. In order to partition
all human tracklets into spatio-temporal groups, the authors applied clustering and segmentation
methods. Next, the authors trained the model to learn inter-group interaction and intra-group human
interactions. In previous works, the methods attempted to encode the high-order relationships among
people in the scene by inferring the latent graphical structures. However, in this work, the authors
deployed a contextual binary encoder. Previous methods were based on pairwise features to model
the interactions that are difficult to generalize. Based on the two sub-actions of “move” and “pose”
for each person, the authors encoded the person level features and order by the x or y coordinate
of the center of the person in the image and output them in another LSTM network. Motion CNN
and a pooling-SVM structure were implemented to identify actions in the scene. Based on cellular
automata (CA) approaches, Bandini et al. [22] introduced the group-aware pedestrian (GA-Ped) model
to simulate pedestrian crowd behavior. This simulation was implemented in an environment containing
a lattice of cells. Each cell contained at most one individual who could perform a single action between
that cell and the neighboring one. In order to navigate the person’s point of interest, each cell was
provided with specific floor fields. The authors analyzed the features related to each single person and
grouped the similar movements of the people in order to build a crowd movement. They analyzed the
different performances of the people as single persons or as groups of different numbers of people.
They reduced the congestion of the pilgrims by simulating their model in a real-world case study of
Makkah. In a video scene, the background usually changes quickly, and it is difficult to determine
the temporal dynamics of the foreground. The main challenge in detecting multiple activities or
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individuals is that a specific representation for one task might not be efficient for any others. In order
to solve this problem, Bagautdinov et al. [23] introduced multi-scale features by concatenating multiple
intermediate activation maps. Since temporal information is very important in action recognition,
by using TensorFlow, the authors implemented recurrent neural networks (RNNs) to merge with the
information in the temporal domain. They used the standard gated recurrent units (GRUs) for each
person in the sequence, with minor modifications. Recurrent neural networks and convolutional
neural networks (CNNs) are used frequently to recognize group activities, but Azar et al. [24] used
multi-stream convolutional networks to capture different aspects of individual regions, as well as
group activities. Spatial and temporal inputs work on different types of frames to classify the actions in
RGB format in addition to a pose-map, to determine the location of the body parts of each individual.
The authors implemented a linear SVM with TensorFlow for the fusion method and chose a combination
of person- and scene-level predictions in RGB, optical flow, and warped optical flow, combined with
the person-level predictions of the pose-map to achieve the highest performance. They compared their
proposed model with previous works like CERN, and their results showed that they achieved better
accuracy in the well-known Volleyball dataset [25].

3. Crowd Spatio-Temporal Analysis

Another significant source of data for crowd analysis is generated by transport, such as public
buses or shared bikes that are monitored with GPS. These data allow one to analyze crowd flow in
two dimensions: space and time. Big data analytics apply large amounts of data to obtain useful
knowledge from hidden patterns. With current technology, we create data continuously in our daily
lives. The amount of available digital information has grown rapidly since we started engaging in
online shopping, communicating with friends through social networks, and using GPS or Wi-Fi on our
smartphones. In this survey, we focused on data with spatio-temporal (ST) intervals based on data
aspects, including spatial observations (e.g., shape, direction, or distance). Parking violation data are
a typical example of ST data whose locations continuously change [26]. In this case, the traditional
locations of data can be defined as objects that are collected during time intervals. A variety of domains,
such as climate science, transportation, and Earth sciences deal simultaneously with the two attributes
of data—space and time.

Since the dynamic ST properties constantly change, managing such properties is a challenge
for aspects like clustering, predictive learning, change detection, frequent pattern mining, anomaly
detection, and relationship mining. Accordingly, spatio-temporal-interval data are defined as a tuple
ST = (x; y; ts; te; d), where x and y are the spatial information such as longitude and latitude, ts is the
start time of the event, te is the end time, and d is the data vector. For each pair of points {p;q}, a distance
Dist{p,q} is defined. All the points are in Euclidean space. Therefore, the direct path between two
points is the shortest [27]. Spatio-temporal data have been used in various application fields, such as
climate science, in which spatial dependencies with similar climatic phenomenon are defined as
instances in a specific group over time. In the temporal dimension, we face different uneven time
segmentations, while measuring the distance between them is an important challenge. For each piece
of spatio-temporal-interval-based data, the temporal domain has a time window {ts; te} that shows the
duration of an event, and there are n time windows for each point p:{

[λ1
p.ts,1

p.te][λ
p

2.ts, ξ2
p.te

p], . . . [λp
n.ts, .te]

}
(1)

where ts and te are the start and end times of an event, respectively. As can be seen, the spatial and
temporal domains comprise the two main dimensions in different spaces. A wide range of approaches
have been studied, such as trajectory crowd prediction mining [27], spatio-temporal clustering [28],
time series prediction [29], remote sensing, and social media analysis based on big data [30,31].
The analysis of a typical spatio-temporal database such as one related to a public transportation system
like the subway can produce several benefits for citizens in different aspects of their safety and travel
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route choice [32,33]. In order to provide better transportation services, especially in subway systems,
different methods have been proposed to predict crowd flow [34]. Most of these strategies are based
on regression strategies, like auto-regressive integrated moving averages (ARIMAs) [35] or Gaussian
processes [36]. Some other methods have been applied, such as neural networks [37], probability
trees [38], and wavelet-SVM [39] (e.g., for predicting the population movement in a city, the increasing
likelihood of finding new passengers, or predicting traffic congestion for city designers; policy makers
can also establish adequate new policies for a clean/green and invulnerable city).

Fan et al. [40] argued that the prediction of human movements is very difficult, particularly
when rare behaviors that deviate from normal daily routines are taken into account. Humans’ daily
routines can be modeled by monitoring behavior over a long period of time. Moreover, a robust human
mobility predictor must accurately handle both regular and rare crowd behaviors. As can be seen in
Figure 4, there are no major differences between regular days. Accordingly, such behaviors can be
readily predicted, as can be seen in Figure 5.

Figure 4. Regular crowd behavior: (a) 01 August 2011, 7–9 AM; (b) 02 August 2011, 7–9 AM [40].

Figure 5. Prediction of regular crowd behavior.

In contrast, rare crowd behaviors show that human mobility during such events is different from
that on regular days (Figure 6).
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Figure 6. Rare crowd behaviors: (a) 2 August 2011, 7–9 AM; (b) 12 August 2011, 7–9 AM [40].

However, having access to a sufficient data source at the citywide level helps to better
predict behavior. The researchers in [40] proposed a novel model called CityMomentum, which is
a clustering-based framework. They applied Markov chain to predict the movement of each subject in
each cluster using the GPS dataset. A sample of the predictions based on the most recent trajectory
clustering can be seen in Figure 7.

Figure 7. (a,c) Partitioning subjects’ movement into clusters; (b,d) Prediction of future movements
based on the best-matching cluster [40].

In another study, Zhang et al. [41] proposed the Deep Neural Network (DNN-based) prediction
model for spatial-temporal data (DeepST). DeepST consists of two sections: spatio-temporal and
global. The former takes advantage of a convolutional neural networks to model spatial and
temporal dependencies. The latter is applied to capture global factors, such as the day of the
week. The architecture of DeepST is illustrated in Figure 8.
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Figure 8. Architecture of DNN-based prediction model for spatial-temporal data (DeepST) [41].

Abadi et al. [42] took advantage of available historical data collected from sensors to adjust the
origin-to-destination matrices. Then, they predicted the traffic flow up to 30 min in advance by using
real-time traffic data. Their simulations revealed the accuracy of their proposed approach in their
case studies on the city of San Francisco. The traffic flow prediction errors were in the range of 2%
(5-min forecasting) to 12% (for 30-min forecasting), even with unpredictable events. On the other hand,
Alahi et al. [43] quantitatively investigated pedestrians’ destinations in train stations. In this proposal,
a new descriptor called social affinity maps (SAMs) was employed to link the unobserved trajectories
of individuals in the crowd. Their experimental findings revealed an improvement in performance
upon employment of SAM features and origin–destination (OD) prior.

Silva et al. [44] proposed a new approach to analyze massive transportation systems and traffic
information about individual travelers (Figure 9).

Figure 9. Fivefold cross-validation averages for 1-min-ahead (red) and 30-min-ahead (blue) forecasts.

Li et al. [45] offered a hierarchical prediction model to forecast the quantity of bikes that will be
rented from/returned to each station cluster. They initially proposed a bipartite clustering algorithm
to cluster the bike stations into groups and count the number of bikes rented from/returned to each
group via a gradient boosting regression tree (GBRT). Another proposal for crowd flow prediction
in a real-time framework was presented by Toto et al. [46], called PULSE (Prediction Framework for
Usage Load on Subway SystEms). The authors extracted the profile features of subway stations, such
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as the time-variant and historical traffic of peak hours. Based on the extracted features, the model
was designed to select the optimal route for the passengers’ target station. In a comparative study on
two pedestrian monitoring techniques to predict crowd flow, Martani et al. [47] compared an array of
infrared depth sensors and a visible light (RGB) camera. Their findings revealed that the developed
RGB-based system performed reliably across a wide range of conditions, while the former approach
was demonstrated to be a useful supplement in conditions without significant ambient sunlight, such
as underground passageways. Zhengfeng et al. [48] considered multi-modal data for traffic status
prediction via taxicab operating data using stacked autoencoders (SAEs). With 91% test accuracy
compared to other models, such as the linear regression model and back propagation (BP) neural
network, these data depicted superior performance. Some works on crowd flow prediction have mainly
focused on entrance and exit passengers rather than on entire city networks, because of the complexity,
unpredictability, and difficulty in dealing with real-time data. Non-negative matrix factorization (NMF)
is a popular solution for network-wide issues, and online NMF showed better performance in capturing
temporal changes [49]. Gong et al. [50] proposed a model taking advantage of the NMF model to
capture the dynamic mobility in Sydney train stations. Although their ONMF-OA model could predict
the stable flow of people, it could not capture sudden changes in flow. Thus, the authors introduced
another model called ONMF-MR to develop a way to predict drastic changes in the flows. Taking
advantage of strengths of both models, the authors proposed a hybrid model called ONMF-H for
use in real-world applications. They proposed to measure the algorithms using the mean absolute
error (MAE) and mean relative error (MRE) [51] in a real-world Opal Card dataset. They used the
following expressions:

MAE =

∑m
i=1|vi − v̂i|

m
, MRE =

∑m
i=1|vi − v̂i|∑m

i=1 vi
(2)

where v̂i is a prediction, vi is the ground truth, and m is the number of prediction flows.
In order to predict the future crowd flow in a target city via the transmission of the crow flow

dynamic patterns learned through a source city at the regional level, Wang et al. [31] proposed a deep
transfer learning framework called RegionTrans. Their main idea was to find inter-city region pairs
sharing similar crowd-flow dynamic patterns and then use these region pairs as proxies to efficiently
transfer knowledge from the source city to the target city. For this purpose, they tackled two challenges:
1. Since few crowd flow data existed in the target city, it was impossible to directly compute a reliable
crowd flow similarity between a region in the source city and a region in the target city. Then, how is it
possible to find strongly similar inter-city region pairs? 2. Since the available deep-learning methods are
often entirely designed to predict citywide crowd flow, it is difficult to take advantage of region-level
knowledge. Then, how is it possible to incorporate inter-city regional similarity information for
effective deep transfer learning? The mentioned framework, RegionTrans, is believed to be novel for
three reasons:

• It employs auxiliary data to obtain the inter-city region similarities associated with crowd
flow dynamics.

• It represents the design of a deep spatio-temporal model with a hidden layer especially for storing
region latent representations.

• It suggests a learning algorithm to transmit knowledge from a source city to a target city according
to the latent representations of the inter-city similar-region pairs.

Given their evaluation results, when the recorded history of the target city was shorter,
the improvement of RegionTrans was more considerable, indicating that the introduced intercity
similar-region pairs are valuable for transfer learning, especially when the target data are extremely
scarce. Compared to the fine-tuned DeepST and ST-Resnet (which, in the source city, provides a good
starting point for optimizing network parameters), RegionTrans outperformed the mentioned baselines
by further considering inter-city regional similarity information in transfer learning.
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To forecast the crowd flows in a city using big data, Hoang et al. [52] proposed a scalable prediction
framework that exploits multiple complex factors that are effective on crowds. Due to their limitations,
a macro-level view of the crowd was investigated. This investigation was done via the prediction of
two types of new-flows and end-flows in every region. In doing so, they had three major challenges:
(1) the multiple complex factors that are effective on crowd flows (e.g., the effects of weather on daily
routines); (2) the flow dependencies between different types of flows in intra/inter-region dependencies;
(3) city-scale prediction—a prediction needs to be prepared instantly. In this way, city-scale forecasting is
computationally intensive. As a result, an efficient predictive model was proposed to obtain forecasting
citywide crowd flow (FCCF), as follows:

1. In order to tackle data scarcity and provide a practical citywide solution, a city was initially
divided into small regions, and those specific regions with similar crowd flows were divided into
different clusters.

2. Relying on intrinsic Gaussian Markov random field (IGMRF), a seasonal model to predict the
periodic flow was proposed.

3. Using the region neighbor and weather information, the authors suggested a spatio-temporal
model to predict the deviations.

Finally, as the main contribution, investigations into three real-world datasets (taxis and bikes)
revealed that FCCF performed better in terms of accuracy compared to the baseline.

4. Crowd Social Media Analysis

In recent years, a variety of mobile apps have come to market. These apps allow users to share
their location and temporal data (called check-in data). Location-based social networks (LBSNs) and
geo-tagged social microblogs such as Twitter, LinkedIn, and Sina Weibo have become popular among
people within the past few years. Although ST data have been used widely for different purposes in
urban planning, social media data have the advantage of containing the user’s interests and purposes,
such as where/when/why they are going to a specific location. This massive source of data has yielded
new prospective applications in crowd analysis for researchers in different areas, such as marketing and
trend detections. Social media data allow researchers to investigate new insights at a higher level of
analysis, for example computing individual tracks, the purpose of travel, or connection dependencies
in a crowd [53]. On the other hand, analyzing the social connection between users is important to
find the impact of a message to create a crowd. A large description and analysis of the literature
available on how social media data is used is presented by Stieglitz et al. [54]. This process of analysis
is classified into four different steps: data discovery, collection, preparation, and analysis. The same
steps are necessary for crowd mobility analysis, and existing research results show that, similar to other
applications, the main challenge lies in the discovery of meaningful patterns. Authors have argued
that in order to overcome the challenges in analyzing social media data, the use of computer science
techniques is essential. In crowd analysis, this is confirmed by the possibly random behavior of the
crowd due to very complex social factors.

Liu et al. [55] proposed a model that extracts the inter-urban mobility of check-in data to explore
the hidden features of a citizen’s footprint when and where the check-in happened. They used a gravity
model to discover the spatial interactions, formulated as

Ii j =
KPi P j

f (i j)
(3)

where Iij and fij denote the interaction from i to j and the distance between two places, and Pi and
Pj are the repulsion of place i and the attraction of place j, respectively; particle swarm optimization
(PSO) method was used to find the best fit. The authors studied their trips to China and built a spatial
network where the edge weights represent the interaction strengths.
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Li et al. [56] presented a paradigm to utilize check-in data with some adopted weighted standard
deviational ellipse (WSDE) methods to disclose some features of the movement from the suburbs
to central urban areas in different periods of time. Based on one-year social media data, the authors
investigated the extraction of population features in three main railway stations in Wuhan, China.
They analyzed the density of people in different time buckets (P1: 00:00–02:00, P2: 02:00–04:00).
In Figure 10, the colors represent the population level; for example, red parts have a density of over
5000 and green parts have a density of less than 5000 people.

Figure 10. Distribution of the population in Wuhan [56].

Wu et al. [57] built a mechanism of an agent-based model that represents the transition of trip
demands. The model integrates human activities as well as movement approaches in two different
categories. The authors divided human activities into locationally mandatory activities (LMAs) and
locationally stochastic activities (LSAs) to determine the exact date that people travel or move between
locations. With the help of demand tags, the authors identified the aim of the trips—for example,
dining, entertainment, or the temporal aspects of other groups. Since analyzing crowd mobility from
social media is entirely dependent on data, the analysis and patterns cannot be used for other urban
areas, which means that the specific patterns of a city are not suitable to fit into another city in order to
extract features unless there will be similar patterns in the source and target data of the two different
cities. Osorio et al. [58] claimed that Twitter data provide useful insights, because it is easy to use online
applications. Origin–destination (OD) analysis is an efficient tool for obtaining useful information
from social media. Since traditional ways of obtaining data from surveys are static, time-consuming,
and expensive, a new generation of applications using data from online sources was introduced to
access larger sources of data free of charge and analyze the spatio-temporal aspects of those data [59].
Compared to previous works [60,61], Osorio et al. [58] employed extra sources of data to both the
origin and destination of the travel metrics in order to obtain better precision. Land Registry (cadaster)
maps and population residential data from official sources (i.e., a census) from the city of Madrid were
used to evaluate the origin travel metrics. On the other hand, information about workplaces was
taken from the National Institute of Social Security records. After storing the data, they eliminated and
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filtered the data based on different aspects, including: 1) bot tweets; 2) a selection of the weekend’s
tweets, filtering data from Fridays after 2 pm to the end of the holidays; 3) a selection of tweets from
very similar locations; and 4) the selection of users with fewer temporal changes and a number of
tweets less than five. In addition, to identify the home and workplace, they differentiated between day
and night, so tweets sent during the night were considered as being sent from home. Compared to
other works, an effort was made to detect the median point and calculate the closest location of a user
aggregating tweet locations with the Land Registry data. The same method was employed to find
workplaces based on time of day, with a time interval of 15 min. Finally, a relationship matrix was
found between the home and the workplace, with the number of tweets and the number of residents
by each district.

In another work, Mariano et al. [59] predicted human mobility using a hybrid dataset with
a gravity model and machine learning methods. They combined Flickr data with the Airline origin
and Destination Survey made by the US Bureau of Transport Statistics. In order to get two different
types of mobility—flight travels and daily commutes—a collection of human movements was obtained.
A pair connection was proposed between point i, which is the time when the user took the photo
containing the geo-tagged information, and the subsequent photo taken at point j. The total number
of users who travelled between point i and point j indicates the weight. The authors made a dataset
of pictures, and each user was calculated by the total number of users who travelled between i and j.
They made a dataset of pictures from Flickr to build a flow matrix by country borders defined by the
Survey using the gravity model with linear regression. The radiation model proposed to obtain the
total number of travelers between nodes i and j is as follows:

Zi j = Ti
min j(

mi + si j
) (

mi + n j + si j
) (4)

where mi and nj represent the populations of the nodes, and Sij is the total population.
There are a number of parameters that influence the intra-urban mobility of people, including

transportation networks, economic status, different types of urban environments, and transportation.
Thus, it has been revealed that each type of case study requires independent exploration to find
valuable patterns for future decision-making purposes. By combining the check-in data with other
sources of demographic data, more insights could be achieved.

Using a similar approach, Rashisi et al. [62] underline that obtaining data from social media is
simple, but analyzing huge amounts of data to extract meaningful crowd mobility patterns remains
a challenging task. To improve the quality of the results, new data-mining and semantic techniques
must be applied. However, the real potential of extracting features that could be used for predicting
crowd mobility behavior is yet to be explored. Some of the pros and cons of social media data sources
have been underlined, such as availability, cost, preparation, land use, socio-demographics, and
planning. In particular, the kind of analysis that can be applied and the knowledge that can be obtained
from each data source is developed. LinkedIn is considered to be a business-oriented social networking
platform and a good data source to extract useful patterns about the social and economic statuses of its
users. However, social media platforms like Instagram and Foursquare provide geo-tagged data that
can be used to analyze travelling behavior. In addition, by applying text mining techniques on tweets
and text, more knowledge can be extracted and used for transport analysis.

An interesting approach that combines video analysis, spatio-temporal data, and social network
analysis is presented by Chaker et al. [63], who produced several spatio-temporal cuboids by partitioning
video scenes and detected crowd behavior using a local social network (LSN). Since each cuboid evolved
with time and was updated by an LSN, detecting abnormal behavior became possible. Social media
data can be also used to incorporate crowdsourcing and guide the crowd to move to safe locations in
emergency situations. The research project described by Rogstadious et al. [64] integrates real-time
crowdsourcing to identify the appropriate tasks and strategies in the case of a disaster. Another
interesting topic in the analysis of social media data is to determine the impact of social connections on
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people’s mobility. For instance, Cho et al. [65] investigated the relationship between human mobility
and social relationships using location-based check-in data. They found that social relationships can
explain up to 30% of all human movements, while periodic behavior explains 50%–70% of movements.
Social media data can be used for trend detection, marketing purposes, and route determination.
With this goal in mind, Seranatne et al. [66] analyzed 26,000 tweets, specifically to determine the route
to Lady Gaga’s concert. Since this artist has 41.2 million followers, it is pertinent to analyze the route
taken by the crowds of people going to the concert. The authors applied a Kernel Density Estimation
(KDE) algorithm to the data in order to determine the hot spot of clusters and then used sentiment
and drift analysis to characterize the trajectories. In another study, Hu et al. [67] focused on detecting
commercial areas for business development. After cleaning the noise from the data, the authors applied
exploratory spatial data analysis (ESDA) testing to determine the hot spots and used the standard
deviational ellipses to determine their scope. In order to achieve more accurate results, they used
building boundaries. One of the limitations of LBSN data is its position uncertainty, which requires
data cleaning in a pre-processing step before further feature extraction. User authorization is a critical
issue when obtaining data from an LBSN with crawler tools from various sources. Although social
media data facilitate new kinds of crowd analyses, they provide reliable results if they are merged with
other types of data.

5. Discussion

In this paper, we categorized existing research results of crowd flow analyses based on three
types of datasets: video, spatio-temporal data, and social media data. We did not focus on traditional
survey records based on questions and answers because this source of data is static, requires human
resources/significant time to obtain, and was used in past decades before the emergence of new
technologies. In all the analyzed works, the main challenge was the availability and quality of the
dataset. Figure 11 shows a general overview of crowd analysis.
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A significant source for visual analysis is taken from video surveillance cameras to analyze
crowds in a city, thereby helping policy makers make better decisions to provide better safety and
security services, greater quality in transportation systems, etc. Since these data are frequently
confidential, it is a challenge for researchers to gain access to reliable datasets. In many cases, studies
are accomplished to predict crowd behavior based on other kinds of datasets (due to the limitations in
getting access to a dataset of video surveillance, their high cost, their confidentiality, and the small
size of the dataset). This expensive traditional type of data is used to study human social behavior
and interactions as single or group activities. Concerning the methodologies and techniques used for
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crowd flow video analysis, different methods have been presented, including graphical models and
pooling methods, to predict people’s behaviors or actions at two levels: single individuals and groups
of people. Energy-based models have also been used to minimize the energy in activity recognition.
Recently, some researchers have applied convolutional neural networks and recurrent neural networks
to accomplish a better temporal analysis. The most recent method for modeling temporal information
is the multi-stream convolutional network, which takes advantage of both the CNN and RNN models
to achieve better accuracy. The most common application in this field is video surveillance to detect
abnormal behavior or actions, in order to provide a safer environment in stadiums, concerts, festivals,
exhibitions, etc.

In the second type of source data (spatio-temporal), authors aim to study the trajectory patterns
using GPS or Wi-Fi data to trace the different movements of people, thus producing a network of
people who are moving in different places, trajectories, roads, etc. In trajectory-based data, the goal is
to study traffic flow, in order to minimize the congestion and maximize the flow of traffic on the road.
In these cases, analyzing real-time data and computation costs remains a concern.

Most of the works in this field have focused on major places in a city, such as important metro
stations, well-known districts, etc., rather than on the entire city. In general, the challenge to overcome
when managing spatio-temporal mobile data is the difficulty and complexity of analyzing and
predicting future crowd trajectories based on real-time big data at the entire level. Concerning the
methods used, RNNs have been used repeatedly to capture spatial or temporal dependencies. In order
to model both dependencies, convolutional LSTMs have been introduced, but this technique has not
been proven to be efficient for very long ranges of temporal data. The most recent trend in this area is
to explore deep-learning methods to predict the flow of people at the city level.

Finally, at present, social media as a new source of data does not suffer from the limitations of cost
and space (millions of data records can be continuously obtained and/or stored, including different
types of text, photos, voice, and spatial information). In this field, most authors have tried to illustrate
the differences between the human mobility behaviors of specific population groups. For example,
Rizwan et al. [68] showed that in Shanghai, China, females and males do different activities and their
behaviors are different during the day than during the night. The real challenge is the extraction of
significant patterns from these data, to open new avenues for future research. Thus, social media
data are used to analyze travel demand, the purpose of travel, and to determine the influence of
social connections on human mobility or crowd movement. This could be an interesting topic not only
for tourism applications but also for business development, to advertise new products that attract
crowds of people to a specific location. Table 3 indicates a summary of comparison between different
data types.

Table 3. Comparative summary of the different data types in crowd flow analysis.

Data Type Purpose Application Method/Algorithm Advantages Disadvantages

Video
Security interests,

anomalous behavior
recognition

Video
surveillance,

transportation
stations, malls

Graphical
models/optical flow Real-time data High cost,

confidential

Spatio-temporal
data

(GPS/Wi-Fi)

Crowd management,
urban planning

Navigation in
festivals, sports
events, concerts

Machine
learning/recurrent neural

networks (RNNs)

More precise
(~5 m error)—distinguish
between transportation

mode/energy usage
~50% GPS

High energy usage,
signal problem/lack

of large size,
privacy issues

Social media
Activity

participation, travel
demand

Business
strategy,
tourism

Linguistic and text
mining

techniques/LDA1/DBSCAN2

Cheap, easy access,
large size

Challenges in
extracting useful
insights, internet

access
1 Latent Dirichlet Allocation, 2 Density-Based Spatial Clustering of Applications with Noise.
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As with video data, spatio-temporal data and social media data all continue to raise open questions
about designing, implementing, and testing the most adequate algorithms to automatically discover
patterns that will support decision making.

6. Conclusions

This survey offers the fundamentals of crowd analysis and considers three main approaches:
crowd video analysis, crowd spatio-temporal analysis, and crowd social media analysis. For each type
of data, several papers were considered to illustrate the main challenges and most popular solutions
proposed by the authors. The main techniques used were described for each data type, and the best
results were discussed. Crowd flow analysis is evolving towards crowd flow prediction. Several works
are already applying advanced machine learning techniques to detect behavior patterns and predict
the mobility of a crowd in real time. These results will help produce adequate and timely decision
making to protect and save lives in smart cities.
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