

ISPRS Int. J. Geo-Inf. 2019, 8, 427; doi:10.3390/ijgi8100427 www.mdpi.com/journal/ijgi

Article

A High-performance Cross-platform Map Rendering
Engine for Mobile Geographic Information
System (GIS)
Shaojie Li 1,2, Shaohua Wang 3,4,*, Yong Guan 5, Zhiyan Xie 2, Kejia Huang 2, Ming Wen 2
and Lixin Zhou 1

1 School of Software and Microelectronics, Peking University, Beijing 102600, China;
lishaojie@pku.edu.cn (S.L.); lxzhou@ss.pku.edu.cn (L.Z.)

2 SuperMap Software Co. Ltd., Beijing 100015, China; xiezhiyan@supermap.com (Z.X.);
huangkejia@supermap.com (K.H.); wenming@supermap.com (M.W)

3 Department of Geography, University of California, Santa Barbara, CA 93117, USA;
shaohua@geog.ucsb.edu (S.W.)

4 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science,
Beijing 100101, China; wangshaohua@lreis.ac.cn

5 Claremont Graduate University, Claremont, CA 91711 USA; yong.guan@cgu.edu
* Correspondence: wangshaohua@lreis.ac.cn; Tel.: +86-101-5989-6521 (S.W.)

Received: 22 July 2019; Accepted: 18 September 2019; Published: 20 September 2019

Abstract: With the diversification of terminal equipment and operating systems, higher
requirements are placed on the rendering performance of maps. The traditional map rendering
engine relies on the corresponding operating system graphics library, and there are problems such
as the inability to cross the operating system, low rendering performance, and inconsistent
rendering style. With the development of hardware, graphics processing unit (GPU) appears in
various platforms. How to use GPU hardware to improve map rendering performance has become
a critical challenge. In order to address the above problems, this study proposes a cross-platform
and high-performance map rendering (Graphics Library engine, GL engine), which uses mask
drawing technology and texture dictionary text rendering technology. It can be used on different
hardware platforms and different operating systems based on the OpenGL graphics library. The
high-performance map rendering engine maintains a consistent map rendering style on different
platforms. The results of the benchmark experiments show that the performance of GL engine is
1.75 times and 1.54 times better than the general map rendering engine in the iOS system and in the
Android system, respectively, and the rendering performance for vector tiles is 11.89 times and 9.52
times better than rendering in the Mapbox in the iOS system and in the Android system,
respectively.

Keywords: Graphics Processing Unit (GPU); Map Rendering Engine; Mapbox; Mobile GIS

1. Introduction

The wide use of mobile GIS and mobile navigation software has ignited the public's
understanding of the map, location based services, and also led to the development of the Geographic
Information System (GIS) [1-3]. The GIS operation equipment has grown from the initial personal
computer to the servers, mobile phones, professional handsets, and Web terminals. The hardware
and operating systems are diversified, which requires a mobile map for rendering engines on
different platforms.

ISPRS Int. J. Geo-Inf. 2019, 8, 427 2 of 14

Mobile GIS usually adopts plug-in based architecture [4]. The map data parsing engine and map
rendering engine are designed as plug-in mode. Map rending engine is a critical research topic in
mobile GIS [5], including spatial data models, GIS algorithms, optimization strategies, and modeling
[6-8]. Although the technical development can realize the extended development of map rendering
engine in the mobile GIS applications, researchers and developers need to implement a
corresponding map rendering engine for different operation systems. A cross-platform map
rendering engine is needed for mobile GIS.

The growth of multi-source heterogeneous high-dimensional spatial data and its Web
applications is increasing [9]. Information technologies (IT) such as location based social networks
[10-12], Virtual Reality (VR), and Augment Reality (AR) are also actively integrating with mobile GIS.
The visualization of high-dimensional geospatial data such as oblique photogrammetry, building
information model (BIM), and laser point cloud is essential to visualize in mobile GIS. High
performance-based rendering methods are needed for mobile GIS with limited memory capabilities
and less efficient CPUs.

The main contribution of this study is to propose a high-performance cross-platform map
rendering technology as the solution to address the challenges above. Based on OpenGL graphics
library, a cross-platform and high-performance map rendering engine (GL engine) is developed to
achieve high performance of vector data and raster data as well as a cross-platform rendering method
that assures, on different platforms, the consistency of the map rendering style. Map rendering
algorithms and methods for rendering are developed to develop a high-performance, cross-platform
map rendering engine. A new masking mechanism is proposed to solve the problem of triangulation.
The order of magnitude improves the segmentation performance of the polygon and solves the
problem of triangulation for the self-intersecting polygon and the island polygon. The texture
dictionary caching technology is used to solve the problem that the font data is exchanged in the
memory and the cache when the text is drawn, which greatly improves the rendering performance
of the text and realizes high-performance annotation text along the line.

2. Related work

The rendering map features can be decomposed into point features, line features, polygon region
features, text features, and image features [7,13,14]. These map related elements are provided in the
graphical interface library of the operating system, but the graphics library algorithms and interfaces
provided by different operating systems are different, which brings great inconvenience to the
drawing of the map in mobile GIS.

There are various geometry-based algorithms for rendering vector data from computer graphics
and geo-informatics [15-18]. However, most of these geospatial algorithms and spatial models need
more space to store the pre-processing result and with high computing capabilities, for example,
spatial index data for pre-processing geospatial data and hierarchical road network topologies for
route planning. The strategy of map rendering between GIS and mobile GIS is different [19,20],
because the management of massive geospatial data sets and rendering spatial data on reduced
hardware configuration requirements of mobile terminal devices are difficult for mobile GIS.

As the world's leading provider of GIS products, Esri, its product called ArcGIS has been based
on the Windows operating system for a long time. The map rendering engine in ArcGIS on the GDI
graphics library is provided by the Windows system, which has caused difficulties for its subsequent
cross-platform development. With the increasing demand for cross-platform products, the ArcGIS
Runtime SDK product implements different map rendering engines for different operating systems,
which is not conducive to the consistency of map rendering effects [21].

Li implemented a set of cross-platform graphics library (UGraphics) based on the rendering
characteristics of the map for related optimization to achieve cross-platform mapping in SuperMap
mobile GIS [22]. The map rendering engine uses a graphics library provided by the operating system.
For example, the Windows operating system uses GDI (Graphics Device Interface). The Linux
operating system uses XLib, GTK, and Qt. The mobile device Android uses Skia, and the iOS uses
Quartz. With the increasing use of mobile hardware and operating systems, this problem is

ISPRS Int. J. Geo-Inf. 2019, 8, 427 3 of 14

increasingly hard to solve. Li developed a bitmap map rendering engine, which implements the
related graphics image algorithm. This map rendering engine solves the reliance on the operating
system graphics library and solves the cross-operating system problem. It has been used in SuperMap
GIS platform software products for nearly ten years. However, devices such as iPad have the demand
for explosive growth of graphics acceleration hardware (GPU) and Web applications. The bitmap
map rendering engine cannot use the GPU for the acceleration of map rendering and the bitmap
engine has low performance for large-scale data, and does not support map rendering on a web
browser.

Anti-Grain Geometry (AGG) is an open source 2D graphics engine [23]. It provides a set of
graphics algorithms that combine subpixel accuracy technology with anti-aliasing technology to
achieve high efficiency and high quality 2D graphics processing [24]. AGG is written in C++ and the
standard C Runtime Function. This gives AGG good cross-platform capabilities. Another feature of
AGG is its great flexibility. AGG provides a series of loosely coupled algorithms, and all its classes
are described by templates. Developers can freely combine, rewrite, and replace some or all of the
algorithms to meet their specific graphics operations. Wenfeng Lu et al. compared the GDI/GDI+, Qt,
AGG, and other graphics libraries, and ultimately chose AGG [25], but AGG was difficult to expand
development by the complexity of using the template techniques [24,26]. The lack of support for
GPU graphics acceleration, the mobile property, the Web-based applications, and 3D rendering also
restricted the types of applications in Mobile GIS.

Qt is a cross-platform C++ graphical user interface software developed by Trolltech [27,28]. Qt
is designed with object-oriented programming to make the functions better packaged and
modularized. Qt has good cross-platform features and supports Windows, Linux, Mac, Android, iOS,
and other operating systems. Qt's Qpainter strategy provides a suite of drawing API functions, such
as drawArc, drawChord, drawEllipse, drawImage, drawLine, and drawText. It also supports path,
color gradient, and plane coordinate transformation, which brings a sense of security to the drawing
of complex graphics. Qt is rendered based on the FrameBuffer. There is a special service to copy the
frame data to the graphics card. Therefore, the rendering efficiency of Qt is relatively high. In order
to improve the quality of the drawing characteristics, Qt provides an anti-aliasing strategy to make
the drawn graphics more comfortable. Qt is implemented based on OpenGL for 3D graphics
rendering. The combination of Qt and GIS are widely used in GIS, including Quantum GIS (QGIS)
[29], Merkopolo [30], and GIS related applications [31]. Qt has issues to the map rendering engine for
mobile GIS, including GPU graphics acceleration, weak support for mobile applications, lack of
support for 3D rendering, and lack of support for web applications.

An API is defined as a set of functions that a client program can call. OpenGL (Open Graphics
Library) is a cross-language and cross-platform application programming interface (API) for drawing
2D and 3D vector graphics. The API is typically used to interact with a graphics processing unit (GPU)
for hardware accelerated rendering [32]. The OpenGL specification describes an abstract API for
drawing 2D and 3D graphics. Although the API can be implemented entirely in software, its design
is primarily implemented on hardware. Although function definitions are similar in appearance to
programming language C, they are language independent. Therefore, the OpenGL has many
language bindings, the most notable of which is JavaScript binding to WebGL (OpenGL ES 2.0 based
API for 3D rendering in a web browser), C binding (WGL, GLX and CGL) [33,34], C binding provided
by iOS and Java, and C binding provided by Android. In addition to being independent of the
language, OpenGL is also cross-platform. The specification does not mention the issue of getting and
managing OpenGL contexts, but rather a detail of the underlying windowing system. The OpenGL
is purely focused on rendering and does not provide APIs related to input, audio, or windows.
OpenGL is characterized with its text rendering, cross-platform graphics rendering, graphics
hardware acceleration, Web-based graphics rendering (WebGL), mobile graphics rendering
(OpenGL ES), and the issuance of free commercial licenses.

3. Methods

ISPRS Int. J. Geo-Inf. 2019, 8, 427 4 of 14

A high-performance cross-platform map rendering engine (Graphics Library map rendering
engine, GL map rendering engine) is proposed in this study. The GL map rendering engine is based
on the OpenGL graphics library, which realizes the rendering of each element of the map. When the
map is rendered, the layers are rendered first, and then the rendered layer is superimposed and
rendered, and the complete rendering is completed. The process of map rendering is implemented
in a visual studio.

The GL map rendering engine contains a unified map element drawing method and a unified
map data docking API. The map rendering engine decomposes the map elements into basic graphic
elements. Under different platforms, only the OpenGL graphics library of different systems needs to
be called to draw the basic graphic elements (points, lines, polygons, and text), which can form a
unified style map and reach different platforms. The specific architecture for the unified map
rendering is shown in Figure 1.

OpenGL OpenGL ES WebGL

OpenGL Map Rendering Engine

PC Mobile Web

X86 platform Arm platform Web platform

Figure 1. The graphics library map rendering engine with cross-platform principle.

3.1. The Architecture of the Graphics Library Map Rendering Engine

The modules of the GL engine include a map module, an event processing module, a GL rendering
module, and a geospatial data processing module (Figure 2). The geospatial data processing module is
responsible for parsing the map data into OpenGL identifiable format and is mainly responsible for
triangulating the spatial geometric data, and encoding the position, the color and the similarity in the
vector map data into OpenGL render objects (RO). The GL rendering module calls the OpenGL graphics
rendering library to render the data as visual data, including parsing the RO array, and by controlling
the rendering pipeline to render the map by calling the API to operate the OpenGL state machine. The
map results are displayed to the screen through the host system form of the interactive module.

The map interaction module is responsible for rendering the map results to the monitor device or
simply a display and accepting the user's interaction operation. The map interaction module provides
an OpenGL display form, supplies various user interactions, including gestures, and handles user
interaction operations to generate events. There two ways to respond to events. One way is to add data
processing tasks, usually including events with range scale changes and need to display new data.
Another way is map redrawing operation.

ISPRS Int. J. Geo-Inf. 2019, 8, 427 5 of 14

Map Interaction Module

OpenGL Graphics LibraryMap data Processing Module

GLMap Rendering Module

Host Forms

Figure 2. GL map rendering engine module.

3.2. The rendering process for the GL map rendering engine

When the host environment map window changes the mobile GIS, the rendering operation of the
map is triggered. The change of the map window mainly includes the initial loading of the map or other
application windows to cover the map window, and another change is the interactive operation of the
map, such as zooming the map and roaming the map, editing maps and other operations.

The rendering process of the map in Mobile GIS is shown in Figure 3. When the local map change
event is fired, the map enters the rendering process. The map rendering module divides the map into
nine grid spaces according to the size range of the current window, and then passes the inner map of
the grid space to the child thread for drawing.

ISPRS Int. J. Geo-Inf. 2019, 8, 427 6 of 14

Map Rendering

Pool of
sub

threads

Sub thread：map render is RO

OpenGL Rendering

Render to
text

ROArray

Base map
rendering

Text
rendering

Temp
layer

rendering

Grid joint

Layer overlay

Render to
base map

Render to
temp
layer

ROArray ROArray

Swap context buffer to screenHost windows

Map Events

Start sub thread

Adding sub task

Figure 3. GL map rendering engine module.

The tasks in the child threads pool will be processed in turn. These tasks include reading geospatial
data from the geospatial data sets, determining whether the data is in the visible range, cropping, and
organizing the data to form a rendering RO. After the sub-thread processing is completed, the redraw
operation is called back. The redraw operation is to render the processed RO through the GL function
to form a pixel matrix and to render it onto the screen.

3.3. Rendering of map elements

In the high-performance rendering process of vector map data, the parts that affect the
performance of the GL engine include the rendering of line geometry objects, the rendering of polygon
geometry objects, the rendering of text, and the rendering of symbols. This study made special designs
for these four types of elements, including wide line splitting drawing technology, surface feature mask
drawing technology, dictionary text rendering technology, and texture symbol rendering technology.

3.3.1. Line rendering

Line layers can be divided into three categories: single-line layers, wide-line layers, and symbol-line
layers. The GL map rendering engine draws single-line features directly using OpenGL-supported
APIs, but the GL engine first splits the wide-line layer into rectangles for the wide-line layer, then
splits the rectangle into triangles, and then renders it. The process workflow of triangulation of wide-
line is shown in Figure 4.

ISPRS Int. J. Geo-Inf. 2019, 8, 427 7 of 14

triangulation

Figure 4. The triangulation of wide-line.

The Delaunay triangulation algorithm was used to split the rectangle into triangles. The algorithm
for calculating triangulation relies on quickly detecting whether a point is within the circumscribed
circle of a triangle and has a valid data structure that stores triangles and edges. In a two-dimensional
scene, a way to detect whether a point D is located at A, B, or C is to evaluate a determinant value,
sorting A, B, and C clockwise, if and only if D is at A, B. This determinant inequality holds when C is
in the circumscribed circle (Figure 5).

Figure 5. Delaunay triangulation judgment elements.

Formulation (1) determines if point D is in the outer circle of A, B, and C.

(1)

Yu et al. summarized three types of methods in the construction of the existing Delaunay
triangulation: point-by-point insertion method, triangulation method, and the divide and conquer
method for the algorithm of Delaunay triangulation [35], and proposed the direction of optimization
as a hybrid construction method. However, the optimal performance can reach O(n*loglogn) in these
methods.

This study uses the point-by-point insertion algorithm to perform the wide-line triangulation
operation that combined with the large volume of GIS data and high-performance requirements. At
the same time, in order to avoid the complexity of the splitting at the corners of the wire ends, the

ISPRS Int. J. Geo-Inf. 2019, 8, 427 8 of 14

performance is low. In this study, the triangulation work of the line segment intersection is replaced
by adding the circle at the intersection of the line segment, which greatly improves the performance
of drawing the wide line. The symbol line processing is similar to the composite point layer. It is split
into basic points, lines, faces, and texts, and is processed into multiple RO.

3.3.2. Polygon rendering

If the polygon features are drawn by the triangulation method of points and line elements, there
is a defect operation. If the polygon feature is drawn by triangulation, the process is the geometric
polygon that expresses the polygon feature is divided into a combination of multiple triangles, and
the triangle mesh completely covers the polygon and has no intersecting edges, and then renders in
the video memory. The problem is that the time complexity of the triangulation algorithm is O(n2).
When the polygon boundary is complicated, especially for the polygon containing the island and the
hole, the time-consuming exponential growth. Moreover, the triangulation algorithm does not
support the profiled surface, especially for the self-intersection polygons (Figure 6). The Delaunay
triangulation is essential for complex polygons, like self-intersection polygons. In our study, multi
simple polygons are generated from a self-intersection complex polygon and then Delaunay
triangulation is running.

Figure 6. (a) GL engine drawing result (b) MapBox drawing result.

Most of the polygons for rendering the real-world geographic information drawing are complex
self-intersection polygons. The OpenGL does not support direct filling of concave polygons [36].
There are still a large number of island polygons. For this case, a mask algorithm is proposed in this
paper. The drawing mechanism, polygon drawing, replaces the traditional triangulation scheme in
this way, reducing the complexity of the operation to O(n). A masking technique was used in the GL
map rendering engine proposes for polygon features, which divides polygon feature rendering into
two steps. The first step is to engrave the shape of the image in the OpenGL stencil buffer to form a
mask on the color buffer. The second step is to draw the outer bounding rectangle of the face in the
color buffer to get the final rendering result. Similar to painting a piece of paper with a hollow shape
on the canvas, the polygon feature is rendered in the shape of the paper (template buffer), then the
entire canvas (color buffer) is colored. When the paper takes the back element, the shape is printed
on the canvas. The OpenGL uses the computing power of the GPU to ensure the efficiency of the
method.

The operation of template buffer engraves the shape of the picture. For a screen of length M and
width N, its corresponding color buffer is described by a matrix of pixels consisting of M*N points.
The stencil buffer is also a matrix of M*N, which corresponds to each pixel to describe the pass state
when it is used as a template test. The shape for the engraved picture is required to distinguish the
area from the uncovered area (the point on the pixel matrix). The specific method is:

1) Create a stencil buffer with a depth of 1 bit and clear all bits of the stencil buffer matrix,

ISPRS Int. J. Geo-Inf. 2019, 8, 427 9 of 14

2) Use the vertex array described in 1) to draw a triangle in the stencil buffer in
GL_TRIANGLE_FAN mode (the first point of the point array is the triangle vertex, and the adjacent
two points are taken sequentially - the N-th (N>1) points and N +1 point - the line is the bottom edge
of the triangle, forming a triangle network). The glStencilFun parameter is GL_NEVER, which means
that the stencil buffer is only manipulated without rendering to the color buffer. The glStencilOp
parameter is GL_INVERT, which means that the stencil buffer is operated in reverse color mode (the
stencil buffer point value that is covered by the triangle for a single number of times is 1, and the
stencil buffer point value that is evenly covered by the triangle is 0, and the stencil buffer operation
mode is shown in the Figure 7. The part of the stencil buffer that is not 0 is the area covered by the
face.

Figure 7. The polygon mask drawing process.

3.3.3. Text rendering

The way of text rendering in OpenGL is to copy the fonts Buffer produced by FreeType in memory
to the memory texture before rendering. The problem with this method is that each time a text is
rendered, the content exchange between memory and video memory is performed, which is
inefficient and slow to render. If the glyph is managed in units of Point of Interest (POI), a texture
memory cache is created for all POI data, and the same POI directly multiplexes the cache to render
text, and there is no need to repeatedly use the FreeType to render text (Figuer 8). It can alleviate the
problem of low rendering efficiency to a certain extent, but it cannot achieve high-performance
rendering of massive POI. In addition, this method takes up a lot of memory space due to the large
amount of texture.

ISPRS Int. J. Geo-Inf. 2019, 8, 427 10 of 14

Figure 8. Polygon mask drawing process.

The GL engine proposes a dictionary-based text caching scheme based on the OpenGL. The core
strategy is to copy the text font image of the same font and font size used for one rendering to each
group of 16×16 and copy it to the texture page in the video memory. The multiple pages constitute
the dictionary of the font under the font size. When rendering a single text, the texture is bound to
the dictionary page corresponding to the text, and the text can be rendered by texture mapping. The
same dictionary only needs to be updated with local textures to be reused in multiple renderings.
With this scheme, the full-screen text rendering of the map can be completed in 0.1 seconds.

4. Experiments and results

To test the performance of the GL map rendering engine, this study uses the same national map
data (less than 1:1 million scale using China data and more than 1:1 million scale using Beijing data),
full-element map data, a total of 268 layers. The total size of spatial data 30.25 GB. In this study, the
benchmark experiment is running on iOS system using Apple's 12.9-inch iPad Pro (32 GB/WIFI
version) mobile device, the parameters of the iPad are 2.26 GHz clock speed, 12.9-inch screen,
2732x2048 pixel screen resolution, 4GB system memory, and 32 GB storage capacity. The benchmark
experiment is also running on Android system using Xiaomi’s Pad 4. The parameters of the Xiaomi’s
Pad 4 are 2.2 GHz clock speed, 8-inch screen, 1920x1200 pixel screen resolution, 4 GB system memory,
and 64 GB storage capacity. The benchmark experiments between GL map rendering engine and the
general map rendering engine (UGraphics) were compared. The results of the experiments showed
that the performance of the GL map rendering engine was 1.75 times better than that of UGraphics
(as shown in Table 1) in the iOS system and the performance of the GL map rendering engine was
1.54 times better than that of UGraphics (as shown in Table 2) in the Android system.

Table 1. Performance comparison between UGraphics and the GL rendering engine (iOS).

Map scale UGraphics rendering time GL map rendering engine Performance ratio
(UGraphics /GL)

1：20000000 12″99 17″23 0.75
1：10000000 14″37 16″65 0.86
1：5000000 11″74 10″64 1.1
1：2500000 50″31 27″31 1.84
1：1000000 27″99 8″99 3.11
1：500000 12″21 9″96 1.23
1：250000 12″02 7″58 1.59
1：100000 15″64 5″96 2.62
1：50000 14″52 5″05 2.88
1：250000 13″72 6″88 1.99
1：10000 11″23 4″12 2.73
1：5000 4″42 3″89 1.14
1：2000 3″40 3″95 0.86
Average 1.75

Table 2. Performance comparison between UGraphics and the GL rendering engine (Android).

Map scale UGraphics rendering time GL map rendering engine Performance ratio
(UGraphics /GL)

1：20000000 13″34 14″35 0.93
1：10000000 14″87 17″85 0.83
1：5000000 11″36 09″74 1.17
1：2500000 55″45 28″27 1.96
1：1000000 29″76 7″67 3.88

ISPRS Int. J. Geo-Inf. 2019, 8, 427 11 of 14

1：500000 14″41 10″02 1.44
1：250000 11″02 10″64 1.03
1：100000 15″08 10″08 1.50
1：50000 21″24 06″53 3.25

1：250000 13″10 08″93 1.47
1：10000 05″23 05″97 0.88
1：5000 04″72 05″48 0.86
1：2000 04″30 05″20 0.83
Average 1.54

In order to test the performance of the GL map rendering engine for rending vector map tiles,
the benchmark of the experiments between the GL map rendering engine and the MapBox map
rendering engine were compared (Figure 9). The performance of the GL map rendering engine is
11.89 times better than that of Mapbox performance rendering in the iOS system (Table 3) and 9.54
times better than that of Mapbox performance rendering in the Android system (Table 4) .

Figure 9. (a)Map in GL map rendering engine (b) Map in Mapbox.

Table 3. Performance comparison between GL map rendering engine and the Mapbox (iOS).

Map scale Mapbox rendering
time

GL map rendering
engine

Performance
ratio(Mapbox/GL)

1：
20000000

3″89 0″42 9.26

1：
10000000

3″30 0″37 8.92

1：5000000 23″30 0″43 54.19
1：2500000 5″43 0″39 13.92
1：1000000 3″43 0″44 7.80
1：500000 2″45 0″43 5.70
1：250000 2″60 0″39 6.67
1：100000 1″10 0″39 2.82
1：50000 8″00 0″41 19.51
1：250000 6″66 0″42 15.86
1：10000 2″20 0″44 5.00
1：5000 1″00 0″42 2.38
1：2000 1″00 0″40 2.50
Average 11.89

Table 4. Performance comparison between GL map rendering engine and the Mapbox (Android).

ISPRS Int. J. Geo-Inf. 2019, 8, 427 12 of 14

Map scale
Mapbox rendering

time
GL map rendering

engine
Performance

ratio(Mapbox/GL)
1：

20000000
4″50 0″49 9.18

1：
10000000 3″82 0″43 8.88

1：5000000 16″86 0″40 42.15
1：2500000 5″43 0″46 11.80
1：1000000 3″63 0″45 8.07
1：500000 2″60 0″41 6.34
1：250000 0″94 0″51 1.84
1：100000 1″03 0″42 2.45
1：50000 2″96 0″45 6.58
1：250000 6″87 0″48 14.31
1：10000 2″36 0″42 5.62
1：5000 1″03 0″43 2.40
1：2000 1″72 0″41 4.20
Average 9.52

5. Conclusions and Further work

In this study, the cross-platform high-performance map rendering engine was proposed and the
GL map rendering engine was developed, which solves the problem that the map cannot be rendered
across different platform with high efficiency. It uses graphics acceleration hardware and innovative
graphics rendering algorithms to achieve high-performance rendering of the map. The map
rendering color correction algorithm realizes the consistency of the map rendering style under
different platforms. The results of the benchmark experiments show that the performance of GL
engine is 1.75 times and 1.54 times better than the general map rendering engine in the iOS system
and in the Android system, respectively, and the rendering performance for vector tiles is 11.89 times
and 9.52 times better than rendering in the Mapbox in the iOS system and in the Android system,
respectively.

Although the GL map rendering engine has high performance for cross-platform map rendering,
with the development of information technology, high-performance rendering of 3D BIM data and
real-time rendering of streaming map data are still to be explored in further work.

Author Contributions: Conceptualization, Shaojie Li, and Shaohua Wang; methodology, Shaojie Li, Shaohua
Wang, Yong Guan, Kejia Huang; software, Shaojie Li, Zhiyan Xie, Ming Wen, Kejia Huang, and Lixin Zhou;
writing—original draft preparation, Shaojie Li, Shaohua Wang,Yong Guan, and Kejia Huang; visualization,
Shaojie Li and Shaohua Wang; supervision, Shaojie Li; project administration, Shaojie Li.

Funding: Our work was supported by the National Key R&D Plan (2016YFB0502000), independent Research
Project of State Key Laboratory of Resources and Environmental Information Systems, Chinese Academy of
Sciences (088RAC00YA), Project of Beijing Excellent Talents (201500002685XG242), National Postdoctoral
International Exchange Program (Grant No. 20150081).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Noguera, J.M.; Barranco, M.J.; Segura, R.J.; MartíNez, L. A mobile 3d-gis hybrid recommender system for
tourism. Inf. Sci. 2012, 215, 37–52.

2. Frank, C.; Caduff, D.; Wuersch, M. From gis to lbs–an intelligent mobile gis. IFGI Prints 2004, 22, 261–274.
3. Tripcevich, N. Flexibility by design: How mobile gis meets the needs of archaeological survey. Cartogr.

Geogr. Inf. Sci. 2004, 31, 137–151.
4. Peng, Z.-R.; Tsou, M.-H. Internet gis: Distributed Geographic Information Services for the Internet and Wireless

Networks; John Wiley & Sons: Hoboken, NJ, USA, 2003.

ISPRS Int. J. Geo-Inf. 2019, 8, 427 13 of 14

5. Tao, C.V.; Li, J. Advances in Mobile Mapping Technology; CRC Press: Boca Raton, FL, USA, 2007; Volume 4.
6. Reichenbacher, T. Adaptive concepts for a mobile cartography. J. Geogr. Sci. 2001, 11, 43–53.
7. Rakkolainen, I.; Vainio, T. A 3d city info for mobile users. Comput. Graph. 2001, 25, 619–625.
8. Shi, W.; Kwan, K.; Shea, G.; Cao, J. A dynamic data model for mobile gis. Comput. Geosci. 2009, 35, 2210–

2221.
9. Wang, S.; Zhong, Y.; Wang, E. An integrated gis platform architecture for spatiotemporal big data. Future

Gener. Comput. Syst. 2019, 94, 160–172.
10. Rosser, J.; Morley, J.; Smith, G. Modelling of building interiors with mobile phone sensor data. ISPRS Int.

J. Geo. Inf. 2015, 4, 989–1012.
11. Yang, X.; Fang, Z.; Xu, Y.; Shaw, S.-L.; Zhao, Z.; Yin, L.; Zhang, T.; Lin, Y. Understanding spatiotemporal

patterns of human convergence and divergence using mobile phone location data. ISPRS Int. J. Geo. Inf.
2016, 5, 177.

12. Li, M.; Sun, Y.; Fan, H. Contextualized relevance evaluation of geographic information for mobile users in
location-based social networks. ISPRS Int. J. Geo. Inf. 2015, 4, 799–814.

13. Oulasvirta, A.; Estlander, S.; Nurminen, A. Embodied interaction with a 3d versus 2d mobile map. Pers.
Ubiquitous Comput. 2009, 13, 303–320.

14. Meng, L.; Reichenbacher, T. Map-based mobile services. In Map-Based Mobile Services; Springer:
Berlin/Heidelberg, Germany, 2005; pp 1–10.

15. Vaaraniemi, M.; Freidank, M.; Westermann, R. Enhancing the visibility of labels in 3d navigation maps. In
Progress and New Trends in 3D Geoinformation Sciences; Springer: Berlin/Heidelberg, Germany, 2013; pp 23–
40.

16. Agrawal, A.; Radhakrishna, M.; Joshi, R. Geometry-Based Mapping and Rendering of Vector Data Over Lod
Phototextured 3D Terrain Models; Vaclav Skala Union Agency: Plzen, Czech Republic, 2006.

17. Wartell, Z.J.; Kang, E.; Wasilewski, A.A.; Ribarsky, W.; Faust, N.L. Rendering Vector Data Over Global, Multi-
Resolution 3D Terrain; Georgia Institute of Technology: Atlanta, GA, USA, 2003.

18. Schneider, M.; Klein, R. Efficient and Accurate Rendering of Vector Data on Virtual Landscapes; Vaclav Skala
Union Agency: Plzen, Czech Republic, 2007.

19. Li, Q. Opportunities in mobile gis. In Dynamic and Mobile Gis; CRC Press: Boca Raton, FL, USA, 2006; pp
47–62.

20. Eleiche, M.A. Network Analysis Methods for Mobile Gis; NYME: New York, NY, USA, 2011.
21. Shichao, G.X.S.Z.Y. On rendering inconsistency of c/s structural multi-client in arcgis. Comput. Appl. Softw.

2011, 2, 32.
22. Li, S. A cross-platform graphics library for mobile gis. In SuperMap Conference; Geomatics and Spatial

Information Technology,2011; pp 43–45.
23. Geometry, A.-G. Adaptive Subdivision of Bezier Curves: An Attempt to Achieve Perfect Result in Bezier Curve

Approximation. July: Singapore, 2005.
24. Lu, L.; Liu, X. Agg (anti-grain geometry) based platform-independent graphics interface design.

Microcomput. Inf. 2009, 25(6),266-267.
25. Lu, W.; Wang, K.; Wu, Y.; Dou, C. Research on efficiency and cross-platform of graphics rendering engine.

Comput. Eng. Des. 2016, 37, 1400–1404.
26. Yue, S.; Yang, J.; Chen, M.; Lu, G.; Zhu, A.-x.; Wen, Y. A function-based linear map symbol building and

rendering method using shader language. Int. J. Geogr. Inf. Sci. 2016, 30, 143–167.
27. Blanchette, J.; Summerfield, M. C++ Gui Programming With Qt 4; Prentice Hall Professional: Upper Saddle

River, NJ, USA, 2006.
28. Thelin, J. Foundations of Qt Development; Apress: New York, NY, USA, 2007.
29. Hugentobler, M. Quantum gis. Encycl. GIS 2008, 935–939, doi:10.1016/j.ecoinf.2009.07.004
30. Merkopolo. Merkopolo Project. Available online: https://gitorious.org/merkopolo/merkopolo (accessed on

12, 07, 2019).
31. Teodoro, A.C.; Duarte, L. Forest fire risk maps: A gis open source application–a case study in norwest of

portugal. Int. J. Geogr. Inf. Sci. 2013, 27, 699–720.
32. Nurminen, A.; Helin, V. Technical Challenges in Mobile Real-Time 3D City Maps With Dynamic Content.

In IAESTED Software Engineering; Citeseer: Pennsylvania State University University Park, PA, USA, 2005.
33. Angel, E.; Shreiner, D. Interactive Computer Graphics with Webgl; Addison-Wesley Professional: Boston, MA,

USA, 2014.

ISPRS Int. J. Geo-Inf. 2019, 8, 427 14 of 14

34. Congote, J.; Segura, A.; Kabongo, L.; Moreno, A.; Posada, J.; Ruiz, O. Interactive visualization of volumetric
data with webgl in real-time. In Proceedings of the 16th International Conference on 3D Web Technology,
New York, NY, USA, 20–22 June 2011; pp. 137–146.

35. Jie, Y.; Pin, L.; Changwen, Z. A comparative research on methods of delaunay triangulation. J. Image Graph.
2010, 15, 1158–1167.

36. Chen, X.; McMains, S. Polygon Offsetting by Computing Winding Numbers, ASME 2005. In Proceedings
of the international design engineering technical conferences and computers and information in
engineering conference, Long Beach, CA, USA, 24–28 September 2005.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

