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Abstract: With the diversification of terminal equipment and operating systems, higher 
requirements are placed on the rendering performance of maps. The traditional map rendering 
engine relies on the corresponding operating system graphics library, and there are problems such 
as the inability to cross the operating system, low rendering performance, and inconsistent 
rendering style. With the development of hardware, graphics processing unit (GPU) appears in 
various platforms. How to use GPU hardware to improve map rendering performance has become 
a critical challenge. In order to address the above problems, this study proposes a cross-platform 
and high-performance map rendering (Graphics Library engine, GL engine), which uses mask 
drawing technology and texture dictionary text rendering technology. It can be used on different 
hardware platforms and different operating systems based on the OpenGL graphics library. The 
high-performance map rendering engine maintains a consistent map rendering style on different 
platforms. The results of the benchmark experiments show that the performance of GL engine is 
1.75 times and 1.54 times better than the general map rendering engine in the iOS system and in the 
Android system, respectively, and the rendering performance for vector tiles is 11.89 times and 9.52 
times better than rendering in the Mapbox in the iOS system and in the Android system, 
respectively. 

Keywords: Graphics Processing Unit (GPU); Map Rendering Engine; Mapbox; Mobile GIS 
 

1. Introduction 

The wide use of mobile GIS and mobile navigation software has ignited the public's 
understanding of the map, location based services, and also led to the development of the Geographic 
Information System (GIS) [1-3]. The GIS operation equipment has grown from the initial personal 
computer to the servers, mobile phones, professional handsets, and Web terminals. The hardware 
and operating systems are diversified, which requires a mobile map for rendering engines on 
different platforms. 
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Mobile GIS usually adopts plug-in based architecture [4]. The map data parsing engine and map 
rendering engine are designed as plug-in mode. Map rending engine is a critical research topic in 
mobile GIS [5], including spatial data models, GIS algorithms, optimization strategies, and modeling 
[6-8]. Although the technical development can realize the extended development of map rendering 
engine in the mobile GIS applications, researchers and developers need to implement a 
corresponding map rendering engine for different operation systems. A cross-platform map 
rendering engine is needed for mobile GIS. 

The growth of multi-source heterogeneous high-dimensional spatial data and its Web 
applications is increasing [9]. Information technologies (IT) such as location based social networks 
[10-12], Virtual Reality (VR), and Augment Reality (AR) are also actively integrating with mobile GIS. 
The visualization of high-dimensional geospatial data such as oblique photogrammetry, building 
information model (BIM), and laser point cloud is essential to visualize in mobile GIS. High 
performance-based rendering methods are needed for mobile GIS with limited memory capabilities 
and less efficient CPUs. 

The main contribution of this study is to propose a high-performance cross-platform map 
rendering technology as the solution to address the challenges above. Based on OpenGL graphics 
library, a cross-platform and high-performance map rendering engine (GL engine) is developed to 
achieve high performance of vector data and raster data as well as a cross-platform rendering method 
that assures, on different platforms, the consistency of the map rendering style. Map rendering 
algorithms and methods for rendering are developed to develop a high-performance, cross-platform 
map rendering engine. A new masking mechanism is proposed to solve the problem of triangulation. 
The order of magnitude improves the segmentation performance of the polygon and solves the 
problem of triangulation for the self-intersecting polygon and the island polygon. The texture 
dictionary caching technology is used to solve the problem that the font data is exchanged in the 
memory and the cache when the text is drawn, which greatly improves the rendering performance 
of the text and realizes high-performance annotation text along the line. 

2. Related work  

The rendering map features can be decomposed into point features, line features, polygon region 
features, text features, and image features [7,13,14]. These map related elements are provided in the 
graphical interface library of the operating system, but the graphics library algorithms and interfaces 
provided by different operating systems are different, which brings great inconvenience to the 
drawing of the map in mobile GIS. 

There are various geometry-based algorithms for rendering vector data from computer graphics 
and geo-informatics [15-18]. However, most of these geospatial algorithms and spatial models need 
more space to store the pre-processing result and with high computing capabilities, for example, 
spatial index data for pre-processing geospatial data and hierarchical road network topologies for 
route planning. The strategy of map rendering between GIS and mobile GIS is different [19,20], 
because the management of massive geospatial data sets and rendering spatial data on reduced 
hardware configuration requirements of mobile terminal devices are difficult for mobile GIS. 

As the world's leading provider of GIS products, Esri, its product called ArcGIS has been based 
on the Windows operating system for a long time. The map rendering engine in ArcGIS on the GDI 
graphics library is provided by the Windows system, which has caused difficulties for its subsequent 
cross-platform development. With the increasing demand for cross-platform products, the ArcGIS 
Runtime SDK product implements different map rendering engines for different operating systems, 
which is not conducive to the consistency of map rendering effects [21]. 

Li implemented a set of cross-platform graphics library (UGraphics) based on the rendering 
characteristics of the map for related optimization to achieve cross-platform mapping in SuperMap 
mobile GIS [22]. The map rendering engine uses a graphics library provided by the operating system. 
For example, the Windows operating system uses GDI (Graphics Device Interface). The Linux 
operating system uses XLib, GTK, and Qt. The mobile device Android uses Skia, and the iOS uses 
Quartz. With the increasing use of mobile hardware and operating systems, this problem is 
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increasingly hard to solve. Li developed a bitmap map rendering engine, which implements the 
related graphics image algorithm. This map rendering engine solves the reliance on the operating 
system graphics library and solves the cross-operating system problem. It has been used in SuperMap 
GIS platform software products for nearly ten years. However, devices such as iPad have the demand 
for explosive growth of graphics acceleration hardware (GPU) and Web applications. The bitmap 
map rendering engine cannot use the GPU for the acceleration of map rendering and the bitmap 
engine has low performance for large-scale data, and does not support map rendering on a web 
browser. 

Anti-Grain Geometry (AGG) is an open source 2D graphics engine [23]. It provides a set of 
graphics algorithms that combine subpixel accuracy technology with anti-aliasing technology to 
achieve high efficiency and high quality 2D graphics processing [24]. AGG is written in C++ and the 
standard C Runtime Function. This gives AGG good cross-platform capabilities. Another feature of 
AGG is its great flexibility. AGG provides a series of loosely coupled algorithms, and all its classes 
are described by templates. Developers can freely combine, rewrite, and replace some or all of the 
algorithms to meet their specific graphics operations. Wenfeng Lu et al. compared the GDI/GDI+, Qt, 
AGG, and other graphics libraries, and ultimately chose AGG [25], but AGG was difficult to expand 
development by the complexity of using the template techniques [24,26]. The lack of support for 
GPU graphics acceleration, the mobile property, the Web-based applications, and 3D rendering also 
restricted the types of applications in Mobile GIS. 

Qt is a cross-platform C++ graphical user interface software developed by Trolltech [27,28]. Qt 
is designed with object-oriented programming to make the functions better packaged and 
modularized. Qt has good cross-platform features and supports Windows, Linux, Mac, Android, iOS, 
and other operating systems. Qt's Qpainter strategy provides a suite of drawing API functions, such 
as drawArc, drawChord, drawEllipse, drawImage, drawLine, and drawText. It also supports path, 
color gradient, and plane coordinate transformation, which brings a sense of security to the drawing 
of complex graphics. Qt is rendered based on the FrameBuffer. There is a special service to copy the 
frame data to the graphics card. Therefore, the rendering efficiency of Qt is relatively high. In order 
to improve the quality of the drawing characteristics, Qt provides an anti-aliasing strategy to make 
the drawn graphics more comfortable. Qt is implemented based on OpenGL for 3D graphics 
rendering. The combination of Qt and GIS are widely used in GIS, including Quantum GIS (QGIS) 
[29], Merkopolo [30], and GIS related applications [31]. Qt has issues to the map rendering engine for 
mobile GIS, including GPU graphics acceleration, weak support for mobile applications, lack of 
support for 3D rendering, and lack of support for web applications. 

An API is defined as a set of functions that a client program can call. OpenGL (Open Graphics 
Library) is a cross-language and cross-platform application programming interface (API) for drawing 
2D and 3D vector graphics. The API is typically used to interact with a graphics processing unit (GPU) 
for hardware accelerated rendering [32]. The OpenGL specification describes an abstract API for 
drawing 2D and 3D graphics. Although the API can be implemented entirely in software, its design 
is primarily implemented on hardware. Although function definitions are similar in appearance to 
programming language C, they are language independent. Therefore, the OpenGL has many 
language bindings, the most notable of which is JavaScript binding to WebGL (OpenGL ES 2.0 based 
API for 3D rendering in a web browser), C binding (WGL, GLX and CGL) [33,34], C binding provided 
by iOS and Java, and C binding provided by Android. In addition to being independent of the 
language, OpenGL is also cross-platform. The specification does not mention the issue of getting and 
managing OpenGL contexts, but rather a detail of the underlying windowing system. The OpenGL 
is purely focused on rendering and does not provide APIs related to input, audio, or windows. 
OpenGL is characterized with its text rendering, cross-platform graphics rendering, graphics 
hardware acceleration, Web-based graphics rendering (WebGL), mobile graphics rendering 
(OpenGL ES), and the issuance of free commercial licenses. 

3. Methods  
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A high-performance cross-platform map rendering engine (Graphics Library map rendering 
engine, GL map rendering engine) is proposed in this study. The GL map rendering engine is based 
on the OpenGL graphics library, which realizes the rendering of each element of the map. When the 
map is rendered, the layers are rendered first, and then the rendered layer is superimposed and 
rendered, and the complete rendering is completed. The process of map rendering is implemented 
in a visual studio. 

The GL map rendering engine contains a unified map element drawing method and a unified 
map data docking API. The map rendering engine decomposes the map elements into basic graphic 
elements. Under different platforms, only the OpenGL graphics library of different systems needs to 
be called to draw the basic graphic elements (points, lines, polygons, and text), which can form a 
unified style map and reach different platforms. The specific architecture for the unified map 
rendering is shown in Figure 1. 

OpenGL OpenGL ES WebGL

OpenGL Map Rendering Engine

PC Mobile Web

X86 platform Arm platform Web platform

 
Figure 1. The graphics library map rendering engine with cross-platform principle. 

3.1. The Architecture of the Graphics Library Map Rendering Engine  

The modules of the GL engine include a map module, an event processing module, a GL rendering 
module, and a geospatial data processing module (Figure 2). The geospatial data processing module is 
responsible for parsing the map data into OpenGL identifiable format and is mainly responsible for 
triangulating the spatial geometric data, and encoding the position, the color and the similarity in the 
vector map data into OpenGL render objects (RO). The GL rendering module calls the OpenGL graphics 
rendering library to render the data as visual data, including parsing the RO array, and by controlling 
the rendering pipeline to render the map by calling the API to operate the OpenGL state machine. The 
map results are displayed to the screen through the host system form of the interactive module. 

The map interaction module is responsible for rendering the map results to the monitor device or 
simply a display and accepting the user's interaction operation. The map interaction module provides 
an OpenGL display form, supplies various user interactions, including gestures, and handles user 
interaction operations to generate events. There two ways to respond to events. One way is to add data 
processing tasks, usually including events with range scale changes and need to display new data. 
Another way is map redrawing operation. 
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OpenGL Graphics LibraryMap data Processing Module

GLMap Rendering Module

Host Forms

 
Figure 2. GL map rendering engine module. 

3.2. The rendering process for the GL map rendering engine 

When the host environment map window changes the mobile GIS, the rendering operation of the 
map is triggered. The change of the map window mainly includes the initial loading of the map or other 
application windows to cover the map window, and another change is the interactive operation of the 
map, such as zooming the map and roaming the map, editing maps and other operations. 

The rendering process of the map in Mobile GIS is shown in Figure 3. When the local map change 
event is fired, the map enters the rendering process. The map rendering module divides the map into 
nine grid spaces according to the size range of the current window, and then passes the inner map of 
the grid space to the child thread for drawing. 
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Figure 3. GL map rendering engine module. 

The tasks in the child threads pool will be processed in turn. These tasks include reading geospatial 
data from the geospatial data sets, determining whether the data is in the visible range, cropping, and 
organizing the data to form a rendering RO. After the sub-thread processing is completed, the redraw 
operation is called back. The redraw operation is to render the processed RO through the GL function 
to form a pixel matrix and to render it onto the screen. 

3.3. Rendering of map elements 

In the high-performance rendering process of vector map data, the parts that affect the 
performance of the GL engine include the rendering of line geometry objects, the rendering of polygon 
geometry objects, the rendering of text, and the rendering of symbols. This study made special designs 
for these four types of elements, including wide line splitting drawing technology, surface feature mask 
drawing technology, dictionary text rendering technology, and texture symbol rendering technology. 

3.3.1. Line rendering 

Line layers can be divided into three categories: single-line layers, wide-line layers, and symbol-line 
layers. The GL map rendering engine draws single-line features directly using OpenGL-supported 
APIs, but the GL engine first splits the wide-line layer into rectangles for the wide-line layer, then 
splits the rectangle into triangles, and then renders it. The process workflow of triangulation of wide-
line is shown in Figure 4. 
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triangulation

 
Figure 4. The triangulation of wide-line. 

The Delaunay triangulation algorithm was used to split the rectangle into triangles. The algorithm 
for calculating triangulation relies on quickly detecting whether a point is within the circumscribed 
circle of a triangle and has a valid data structure that stores triangles and edges. In a two-dimensional 
scene, a way to detect whether a point D is located at A, B, or C is to evaluate a determinant value, 
sorting A, B, and C clockwise, if and only if D is at A, B. This determinant inequality holds when C is 
in the circumscribed circle (Figure 5). 

 
Figure 5. Delaunay triangulation judgment elements. 

Formulation (1) determines if point D is in the outer circle of A, B, and C. 

 

(1)

Yu et al. summarized three types of methods in the construction of the existing Delaunay 
triangulation: point-by-point insertion method, triangulation method, and the divide and conquer 
method for the algorithm of Delaunay triangulation [35], and proposed the direction of optimization 
as a hybrid construction method. However, the optimal performance can reach O(n*loglogn) in these 
methods. 

This study uses the point-by-point insertion algorithm to perform the wide-line triangulation 
operation that combined with the large volume of GIS data and high-performance requirements. At 
the same time, in order to avoid the complexity of the splitting at the corners of the wire ends, the 
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performance is low. In this study, the triangulation work of the line segment intersection is replaced 
by adding the circle at the intersection of the line segment, which greatly improves the performance 
of drawing the wide line. The symbol line processing is similar to the composite point layer. It is split 
into basic points, lines, faces, and texts, and is processed into multiple RO. 

3.3.2. Polygon rendering 

If the polygon features are drawn by the triangulation method of points and line elements, there 
is a defect operation. If the polygon feature is drawn by triangulation, the process is the geometric 
polygon that expresses the polygon feature is divided into a combination of multiple triangles, and 
the triangle mesh completely covers the polygon and has no intersecting edges, and then renders in 
the video memory. The problem is that the time complexity of the triangulation algorithm is O(n2). 
When the polygon boundary is complicated, especially for the polygon containing the island and the 
hole, the time-consuming exponential growth. Moreover, the triangulation algorithm does not 
support the profiled surface, especially for the self-intersection polygons (Figure 6). The Delaunay 
triangulation is essential for complex polygons, like self-intersection polygons. In our study, multi 
simple polygons are generated from a self-intersection complex polygon and then Delaunay 
triangulation is running. 

            

Figure 6. (a) GL engine drawing result (b) MapBox drawing result. 

Most of the polygons for rendering the real-world geographic information drawing are complex 
self-intersection polygons. The OpenGL does not support direct filling of concave polygons [36]. 
There are still a large number of island polygons. For this case, a mask algorithm is proposed in this 
paper. The drawing mechanism, polygon drawing, replaces the traditional triangulation scheme in 
this way, reducing the complexity of the operation to O(n). A masking technique was used in the GL 
map rendering engine proposes for polygon features, which divides polygon feature rendering into 
two steps. The first step is to engrave the shape of the image in the OpenGL stencil buffer to form a 
mask on the color buffer. The second step is to draw the outer bounding rectangle of the face in the 
color buffer to get the final rendering result. Similar to painting a piece of paper with a hollow shape 
on the canvas, the polygon feature is rendered in the shape of the paper (template buffer), then the 
entire canvas (color buffer) is colored. When the paper takes the back element, the shape is printed 
on the canvas. The OpenGL uses the computing power of the GPU to ensure the efficiency of the 
method. 

The operation of template buffer engraves the shape of the picture. For a screen of length M and 
width N, its corresponding color buffer is described by a matrix of pixels consisting of M*N points. 
The stencil buffer is also a matrix of M*N, which corresponds to each pixel to describe the pass state 
when it is used as a template test. The shape for the engraved picture is required to distinguish the 
area from the uncovered area (the point on the pixel matrix). The specific method is: 

1) Create a stencil buffer with a depth of 1 bit and clear all bits of the stencil buffer matrix, 
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2) Use the vertex array described in 1) to draw a triangle in the stencil buffer in 
GL_TRIANGLE_FAN mode (the first point of the point array is the triangle vertex, and the adjacent 
two points are taken sequentially - the N-th (N>1) points and N +1 point - the line is the bottom edge 
of the triangle, forming a triangle network). The glStencilFun parameter is GL_NEVER, which means 
that the stencil buffer is only manipulated without rendering to the color buffer. The glStencilOp 
parameter is GL_INVERT, which means that the stencil buffer is operated in reverse color mode (the 
stencil buffer point value that is covered by the triangle for a single number of times is 1, and the 
stencil buffer point value that is evenly covered by the triangle is 0, and the stencil buffer operation 
mode is shown in the Figure 7. The part of the stencil buffer that is not 0 is the area covered by the 
face. 

 
Figure 7. The polygon mask drawing process. 

3.3.3. Text rendering 

The way of text rendering in OpenGL is to copy the fonts Buffer produced by FreeType in memory 
to the memory texture before rendering. The problem with this method is that each time a text is 
rendered, the content exchange between memory and video memory is performed, which is 
inefficient and slow to render. If the glyph is managed in units of Point of Interest (POI), a texture 
memory cache is created for all POI data, and the same POI directly multiplexes the cache to render 
text, and there is no need to repeatedly use the FreeType to render text (Figuer 8). It can alleviate the 
problem of low rendering efficiency to a certain extent, but it cannot achieve high-performance 
rendering of massive POI. In addition, this method takes up a lot of memory space due to the large 
amount of texture. 
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Figure 8. Polygon mask drawing process. 

The GL engine proposes a dictionary-based text caching scheme based on the OpenGL. The core 
strategy is to copy the text font image of the same font and font size used for one rendering to each 
group of 16×16 and copy it to the texture page in the video memory. The multiple pages constitute 
the dictionary of the font under the font size. When rendering a single text, the texture is bound to 
the dictionary page corresponding to the text, and the text can be rendered by texture mapping. The 
same dictionary only needs to be updated with local textures to be reused in multiple renderings. 
With this scheme, the full-screen text rendering of the map can be completed in 0.1 seconds. 

4. Experiments and results 

To test the performance of the GL map rendering engine, this study uses the same national map 
data (less than 1:1 million scale using China data and more than 1:1 million scale using Beijing data), 
full-element map data, a total of 268 layers. The total size of spatial data 30.25 GB. In this study, the 
benchmark experiment is running on iOS system using Apple's 12.9-inch iPad Pro (32 GB/WIFI 
version) mobile device, the parameters of the iPad are 2.26 GHz clock speed, 12.9-inch screen, 
2732x2048 pixel screen resolution, 4GB system memory, and 32 GB storage capacity. The benchmark 
experiment is also running on Android system using Xiaomi’s Pad 4. The parameters of the Xiaomi’s 
Pad 4 are 2.2 GHz clock speed, 8-inch screen, 1920x1200 pixel screen resolution, 4 GB system memory, 
and 64 GB storage capacity. The benchmark experiments between GL map rendering engine and the 
general map rendering engine (UGraphics) were compared. The results of the experiments showed 
that the performance of the GL map rendering engine was 1.75 times better than that of UGraphics 
(as shown in Table 1) in the iOS system and the performance of the GL map rendering engine was 
1.54 times better than that of UGraphics (as shown in Table 2) in the Android system. 

Table 1. Performance comparison between UGraphics and the GL rendering engine (iOS). 

Map scale UGraphics rendering time GL map rendering engine Performance ratio 
(UGraphics /GL) 

1：20000000 12″99 17″23 0.75 
1：10000000 14″37 16″65 0.86 
1：5000000 11″74 10″64 1.1 
1：2500000 50″31 27″31 1.84 
1：1000000 27″99 8″99 3.11 
1：500000 12″21 9″96 1.23 
1：250000 12″02 7″58 1.59 
1：100000 15″64 5″96 2.62 
1：50000 14″52 5″05 2.88 
1：250000 13″72 6″88 1.99 
1：10000 11″23 4″12 2.73 
1：5000 4″42 3″89 1.14 
1：2000 3″40 3″95 0.86 
Average   1.75  

Table 2. Performance comparison between UGraphics and the GL rendering engine (Android). 

Map scale UGraphics rendering time GL map rendering engine Performance ratio 
(UGraphics /GL) 

1：20000000 13″34 14″35 0.93 
1：10000000 14″87 17″85 0.83 
1：5000000 11″36 09″74 1.17 
1：2500000 55″45 28″27 1.96 
1：1000000 29″76 7″67 3.88 
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1：500000 14″41 10″02 1.44 
1：250000 11″02 10″64 1.03 
1：100000 15″08 10″08 1.50 
1：50000 21″24 06″53 3.25 

1：250000 13″10 08″93 1.47 
1：10000 05″23 05″97 0.88 
1：5000 04″72 05″48 0.86 
1：2000 04″30 05″20 0.83 
Average   1.54  

In order to test the performance of the GL map rendering engine for rending vector map tiles, 
the benchmark of the experiments between the GL map rendering engine and the MapBox map 
rendering engine were compared (Figure 9). The performance of the GL map rendering engine is 
11.89 times better than that of Mapbox performance rendering in the iOS system (Table 3) and 9.54 
times better than that of Mapbox performance rendering in the Android system (Table 4)  . 

  

Figure 9. (a)Map in GL map rendering engine (b) Map in Mapbox. 

Table 3. Performance comparison between GL map rendering engine and the Mapbox (iOS). 

Map scale Mapbox rendering 
time 

GL map rendering 
engine 

Performance 
ratio(Mapbox/GL) 

1：
20000000 

3″89 0″42 9.26 

1：
10000000 

3″30 0″37 8.92 

1：5000000 23″30 0″43 54.19 
1：2500000 5″43 0″39 13.92 
1：1000000 3″43 0″44 7.80 
1：500000 2″45 0″43 5.70 
1：250000 2″60 0″39 6.67 
1：100000 1″10 0″39 2.82 
1：50000 8″00 0″41 19.51 
1：250000 6″66 0″42 15.86 
1：10000 2″20 0″44 5.00 
1：5000 1″00 0″42 2.38 
1：2000 1″00 0″40 2.50 
Average   11.89  

Table 4. Performance comparison between GL map rendering engine and the Mapbox (Android). 
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Map scale 
Mapbox rendering 

time 
GL map rendering 

engine 
Performance 

ratio(Mapbox/GL) 
1：

20000000 
4″50 0″49 9.18 

1：
10000000 3″82 0″43 8.88 

1：5000000 16″86 0″40 42.15 
1：2500000 5″43 0″46 11.80 
1：1000000 3″63 0″45 8.07 
1：500000 2″60 0″41 6.34 
1：250000 0″94 0″51 1.84 
1：100000 1″03 0″42 2.45 
1：50000 2″96 0″45 6.58 
1：250000 6″87 0″48 14.31 
1：10000 2″36 0″42 5.62 
1：5000 1″03 0″43 2.40 
1：2000 1″72 0″41 4.20 
Average   9.52  

5. Conclusions and Further work 

In this study, the cross-platform high-performance map rendering engine was proposed and the 
GL map rendering engine was developed, which solves the problem that the map cannot be rendered 
across different platform with high efficiency. It uses graphics acceleration hardware and innovative 
graphics rendering algorithms to achieve high-performance rendering of the map. The map 
rendering color correction algorithm realizes the consistency of the map rendering style under 
different platforms. The results of the benchmark experiments show that the performance of GL 
engine is 1.75 times and 1.54 times better than the general map rendering engine in the iOS system 
and in the Android system, respectively, and the rendering performance for vector tiles is 11.89 times 
and 9.52 times better than rendering in the Mapbox in the iOS system and in the Android system, 
respectively. 

Although the GL map rendering engine has high performance for cross-platform map rendering, 
with the development of information technology, high-performance rendering of 3D BIM data and 
real-time rendering of streaming map data are still to be explored in further work. 
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