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Abstract: Mapping changes in carbon emissions and carbon storage (CECS) with high precision
at a small scale (urban street-block level) can improve governmental policy decisions with respect
to the construction of low-carbon cities. In this study, a methodological framework for assessing
the carbon budget and its spatiotemporal changes from 2015 to 2017 in Wuhan is proposed, which
is able to monitor a large area. To estimate the carbon storage, a comprehensive coefficient model
was adopted with carbon density factors and corresponding land cover types. Details regarding
land cover were extracted from the Geographic National Census Data (GNCD), including forests,
grasslands, croplands, and gardens. For the carbon emissions, an emission-factor model was first
used and a spatialization operation was subsequently performed using the geographic location that
was obtained from the GNCD. The carbon emissions that were identified in the study are from
fossil-fuel consumption, industrial production processes, disposal of urban domestic refuse, and
transportation. The final dynamic changes in the CECS, in addition to the net carbon emissions,
were monitored and analyzed, yielding temporal and spatial maps with a high-precision at a small
scale. The results showed that the carbon storage in Wuhan declined by 2.70% over the three years,
whereas the carbon emissions initially increased by 0.2%, and subsequently decreased by 3.1% over
this period. The trend in the net carbon emission changes was similar to that of the carbon emissions,
demonstrating that the efficiency of carbon reduction was improved during this period. Precise
spatiotemporal results at the street-block level can offer insights to governments that are engaged in
urban carbon cycle decision making processes, improving their capacities to more effectively manage
the spatial distribution of CECS.

Keywords: carbon emissions; carbon storage; spatial-temporal variation analysis; Geographic
National Census Data

1. Introduction

The C40 Large Cities Climate Leadership Group reported that 80% of the global anthropogenic
greenhouse gases, which are mainly composed of carbon dioxide (CO2), are emitted from cities [1].
These cities are often characterized by high concentrations of population, vehicles, energy consumption,
and industries. The coal energy consumption of cities accounts for 76% of the global total coal
consumption, even though their coverage is less than 1% of the total area of the Earth [2]. The reduction
in the CO2 emissions from urban systems is, therefore, essential for the reduction in global greenhouse
gas concentrations. Currently, two major internationally recognized methods for controlling the
continuous increase in atmospheric CO2 concentrations have been proposed [3]. The first is to reduce
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greenhouse gas emissions, and in particular, energy consumption by improving energy efficiency
and developing alternative energy sources [4,5]. The second is to increase greenhouse gas absorption
and fixation through biological measures, such as afforestation and reforestation [6–9]. Therefore,
monitoring the spatial and temporal changes in carbon emissions and carbon storage (CECS) in urban
ecosystems is important for governments that are engaged in decision-making processes for low
carbon cities.

Land cover changes are considered to have the greatest impact on regional carbon storage and
carbon emissions [1]. In 2013, China launched the “Geographical Conditions Monitoring (GCM)”
national project, which involves the dynamic monitoring of the territory of the country [10]. Geographic
National Census Data (GNCD) is the product of the GCM national project, which can be used to map
CECS over wide geographical areas and large time scales, significantly improving the efficiency and
accuracy of the CECS estimation [11,12]. As a reliable, accurate, and authoritative national geographical
data, GNCD has been widely used in China for the monitoring and management of forestry, agriculture,
and city development [13]. Therefore, it is necessary to develop a methodological framework for the
monitoring of urban CECS based on the GNCD.

Exploring the carbon storage capacities of different vegetation types in the urban ecosystem is
important for governments that are involved in the decision-making processes of low-carbon cities.
Carbon storage denotes the cumulative amount of carbon that is produced by plant communities
during their lifetime. The carbon pools of urban ecosystems are generally composed of forests,
grasslands, gardens, and croplands, where forests represent high-quality carbon storage areas that
mitigate climate change by capturing CO2 [14]. Using field surveys, biometric information, and remote
sensing images, McPherson, et al. [15] concluded that their method could improve the accuracy of
carbon storage estimation and increase the mapping resolution of carbon storage across a region.
Wylie, et al. [16] estimated the net carbon storage per unit time of grasslands and croplands based
on regression tree models, using remote sensing and bio-geophysical data, in addition to several flux
towers. Their results revealed that grassland and cropland ecosystems generally performed as weak
net carbon sinks, and more carbon was absorbed from the atmosphere than was released from 2000
to 2008. Zhao, et al. [17] and Golubiewski [18] demonstrated that the management of urban artificial
vegetation could improve carbon sequestration capacity. In addition, the increase in artificial urban
features is inevitably accompanied by a decrease in natural components [19] and the fragmentation
of natural landscapes [20], both of which reduce the carbon absorption capacity and alter the carbon
budget of a city.

When compared with vegetative land cover, artificial objects have higher carbon emissions
and a more significant impact on urban carbon budgets [21]. Carbon emissions are defined as any
processes, activities, or mechanisms that release CO2 into the atmosphere [1]. Moreover, the reduction
of these emission is the main method for the reducing CO2 concentrations in the atmosphere [22].
Several researchers have studied the impacts of urban ecosystem carbon emissions from industry,
transportation, agriculture, and urban domestic regions on urban carbon budgets [23]. In most
cities, industrial energy consumption is the largest contributor of carbon emissions [24,25]. However,
transportation in some cities is the largest contributor of carbon emissions [26,27]. In addition, the
carbon emissions from urban domestic regions sometimes exceed those from transportation and
increase with population growth and urban development [21]. These changes in carbon emissions
and geographic coverage significantly affect the carbon budgets of cities. Therefore, it is necessary to
monitor the changes in carbon sources over time and over a wide region.

Throughout modern history, researchers have developed several algorithms to estimate CECS in
the urban ecosystem. Currently, the internationally recognized emission factor approach, as proposed
by the Intergovernmental Panel on Climate Change (IPCC) [28], is widely used for carbon emission
estimations. Several studies have performed source attribution of carbon emissions and assessed the
contribution of different emission sources [29–31] using the emission factor approach. With respect
to the carbon storage estimation, the coefficient method based on the average carbon content and
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geographic coverage information was proposed by the IPCC and it has been widely recognized
by international scholars [28]. Zhang, Huang, and Luo [1] calculated the carbon storage of forests,
pasturelands, and crop yields in Shenzhen based on the coefficient method. The authors concluded
that urban expansion and forest reduction are the main reasons for the observed reduction in carbon
sinks. To date, the main challenge of this analysis is the lack of accurate, up-to-date, and spatially
explicit carbon estimations for the entire urban landscapes [14]. The method of field observations using
a limited number of plots may result in significant sampling errors and high uncertainties in carbon
estimations [15,32]. Houghton, et al. [33] estimated carbon emissions using land use and land-cover
change data, but the historic land-use data sets were constructed based on aggregated, non-spatial data
reported in national and international statistics. Brovkin, et al. [34] explored differences in climate and
land-atmosphere fluxes between ensemble averages of simulations with and without land-use changes
with a spatial resolution of 0.5◦ × 0.5◦ by the end of the 21st century. In this study, the annually
updated GNCD that was produced by multiple-source remote sensing data with a resolution higher
than 1 m [35] achieved a seamless full-coverage of the national geographic survey data, allowing for
the realization of high-precision space monitoring of CECS. In this study, the spatial distribution and
changes in urban carbon budgets on the level of the 181 administrative divisions based on GNCD was
mapped, and a commonly applied demonstration for long-term dynamic monitoring of the carbon
budget in urban ecosystems was provided. The aim of this study was (1) to estimate the carbon storage
of different vegetation types and evaluate their carbon storage capacities; (2) to estimate the carbon
emissions from industry, agricultural production, urban domestic regions, and transportation using the
emission-factor model; and, (3) to map and analyze the spatiotemporal changes of carbon emissions,
carbon storage, and net carbon emissions based on urban administrative divisions.

2. Materials

2.1. Study Site

The study site (Figure 1), covering an area of 849,441 ha, is located in Hubei Province, in
South-central China (29◦58′–31◦22′N, 113◦41′–115◦05′E, WGS84). The terrain is high in the southeast
and low in the northwest at an altitude of 18–150 m above sea level. The climate of Wuhan belongs to
the subtropical monsoon climate with abundant sunlight and rainfall. There is approximately 1202 mm
of annual average precipitation and the annual duration of sunlight is approximately 1917 h. The main
vegetation cover types in Wuhan are the coniferous forests, broadleaf forests, mixed coniferous and
broadleaf forests, shrubs, bamboo forests, greening woodlands, artificial young forests, grasslands,
croplands, and gardens. Wuhan is a pilot city for the construction of a low-carbon city and it is one of
the largest cities in central China.
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GNCD acquisition work required all levels of census institutions and their staff to submit census 
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Figure 1. Overview of the study site. The left is the true color image of the research area and its
geographic location in Hubei Province and China is shown in the bottom-right and top-right outlined
in red.

2.2. Data Use

China has performed dynamic monitoring of national geographical conditions since 2013,
obtaining full coverage, seamless, and high-precision geographic data. According to the contents and
indicators of the national conditions information, the GNCD was obtained based on a classification
algorithm using multi-source remote sensing imagery at a resolution higher than 1 m [35]. The census
work began in 2013, ended in 2015, and it is updated annually, during which the current status and
spatial distribution of natural and human geographical elements over terrestrial lands in China were
fully investigated [36]. The surface coverage categories of the GNCD are divided into 12 first-level
categories, 58 second-level categories, and 133 third-level categories. The GNCD acquisition work
required all levels of census institutions and their staff to submit census data on time and in strict
accordance with relevant regulations, to ensure that the basic data was complete, accurate, and reliable.
Therefore, the GNCD lays the foundation for long-term dynamic monitoring and regional analysis
of CECS. In this study, the GNCD obtained in 2015, 2016, and 2017 were used to estimate the carbon
budget in Wuhan.

In addition, herein the forest inventory data are used to estimate carbon factors of different
forest types that are based on the allometric model, representing a survey of forest resources
containing several parameters, including the stand mean height, diameter at breast height (DBH), and
dominant tree species. Socioeconomic data regarding industry, agricultural production, and urban
domestic regions from 2015 to 2017 were obtained from the Wuhan Statistical Yearbook [37–39]. The
transportation data from Wuhan in the years of 2015 to 2017 were obtained based on the CO2 emissions
from various vehicles over a 100-km journey, as published by the Transport Bureau, in addition to
statistical information from the Transport Department Blue Book and Statistical Yearbook [37–39].

3. Methods

The proposed methodological framework, as shown in Figure 2, encompasses three key
components; carbon emission estimations (Section 3.1), carbon storage estimations (Section 3.2),
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and net carbon emission estimations (Section 3.3). The carbon storages in Wuhan include the forests,
grasslands, croplands, and gardens. The forests in this region include coniferous forests, broadleaf
forests, mixed coniferous/broadleaf forests, shrubs, bamboo forests, greening woodlands, and artificial
young forests. Moreover, the carbon emission sources were industry, agricultural production, urban
domestic sources, and transportation. The carbon storage factors of the different forest types based
on the allometric model were estimated. The coefficient approach was then combined to obtain the
carbon emissions, carbon storages, and net carbon emissions of Wuhan.
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3.1. Carbon Storage Estimate

In this study, the carbon storages were estimated using a coefficient method based on factors,
including land cover geo-information obtained from the GNCD and carbon storage factor estimated
from forest inventory data as well as other auxiliary information [1]. The formula of the coefficient
method can be expressed, as follows:

Carbon_Storagei = Di ∗ Ai (1)

where Carbon_Storagei is the carbon storage of carbon pool i; Di is the carbon storage factor of the
carbon pool i, namely, its carbon density; and, Ai is the area of carbon pool i (km2). The area of
the different carbon pools can be obtained from the GNCD. The main carbon pools in Wuhan are
forests, grasslands, croplands, and gardens; of which the forests include coniferous forests, broadleaf
forests, mixed coniferous/broadleaf forests, shrubs, bamboo forests, greening woodlands, and artificial
young forests.
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3.1.1. Forest Carbon Storage Estimate

Forests are the main bodies of terrestrial ecosystems and they significantly influence the global
carbon budget by dominating the dynamics of the terrestrial carbon cycle [11]. Forest carbon storage
can be estimated by the areas of different forest types and corresponding carbon storage factors (carbon
density). The areas and carbon storage factors of different forest types were obtained from the GNCD
and forest inventory data, respectively. To calculate the different forest carbon storage factors, the
allometric growth model [40] was used. For an individual tree, the biomass was calculated based
on a species-specific allometric growth model. Nondestructive allometric equations can be used to
measure tree biomass in the field [41]. The tree biomass was estimated based on allometric equations
using diameter at breast height (DBH) and height measurements that can be easily measured in field
plots [42]. The final carbon storage factor of each forest type is given by the following equation:

D f orrest,i = 0.5·(Wi·Ni
Si

) (2)

where D f orest,i, Wi, Ni, and Si are the carbon storage factor, a single tree biomass, number of trees, and
area of the i-th forest type, respectively. More particularly, the value of 0.5 is commonly used as a scale
factor of the biomass [43–45]. The carbon factors of seven forest types were calculated based on the
above method using forest inventory data from Wuhan. Table 1 displays the carbon factors of different
forest types in Wuhan.

Table 1. The carbon factors of different forest types in Wuhan (t/ha).

Forest Types Carbon Factor (t/ha) SD

CF 18.63 4.53
BF 27.00 4.12

MCB 21.75 4.97
SF 10.57 1.28

BAF 91.05 5.91
GW 40.44 5.62
AYF 9.98 1.13

Note: SD (Standard deviation), CF (coniferous forests), BF (broadleaf forests), MCB (mixed coniferous and broadleaf
forests), SF (shrub forests), BAF (bamboo forests), GW (greening woodlands), AYF (artificial young forests).

3.1.2. Grassland Carbon Storage Estimate

The carbon stock of a grassland can be estimated using its area and the corresponding carbon
storage factor. Herein, the carbon storage factor of grasslands was set to 3.46 tons C/ha according to
the data reported in previous studies and regional geographic characteristics [46]. The uncertainty
of the grass carbon factor that is used in the study mainly originates from the grassland resource
inventory and carbon storage estimation using remote sensing data [46]. The error related to the
grassland resource inventory data is less than 10% [47]. The error for grass carbon storage estimation
based on remote sensing data is approximately 35.9% [48].

3.1.3. Cropland Carbon Storage Estimates

The carbon storage of a cropland can be estimated using the cropland area obtained from
the GNCD and corresponding carbon storage factor. From a previous study [49] regarding the
current natural geographical condition of Wuhan, the carbon storage factor of croplands was set to
3.37 tons C/ha. Gardens are generated by the farming of tea plants and fruits, which are classified as
a distinct type of cropland. Similarly, the carbon storage factor of gardens was also taken from the
literature, i.e., 11.85 tons C/ha. Uncertainty estimates are not available from ref. [49] and very little
measurement data on the carbon storage of croplands and gardens have been published. Therefore, it
is difficult to accurately assess the uncertainty of the respective carbon factors.
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3.2. Carbon Emissions Estimate

The carbon emissions were estimated based on the emission-factor approach that was proposed
by the IPCC [28] using the GNCD, traffic data, and Statistical Yearbooks in Wuhan. The basic principle
is to construct activity data and emission factors for each source according to the carbon inventory
list, and then to use the product of the activity data and emission factors, like the carbon emissions
estimate, for the emission item. According to the estimated carbon emissions, the spatiotemporal
pattern analysis was performed based on the GNCD, which provided detailed geographic information.
The main carbon emissions that are discussed herein originate from industry, agricultural production,
urban domestic regions, and transportation. In this study, the carbon emissions from industry consist
mainly of energy consumption, industrial production, and industrial waste. The carbon emissions
from urban domestic production consist of domestic waste, domestic electricity, and domestic gas
use. Therefore, the calculation of carbon emissions is presented with respect to energy consumption,
industrial production process, disposal of urban domestic refuse and industrial waste, agriculture,
and transportation.

3.2.1. Energy Consumption

Energy consumption refers to the energy consumed during production and living, which
comprises the energy consumption of industry, urban life, agricultural production, and transportation.
The carbon emissions of energy consumption were estimated by integrating various energy
consumption data obtained from the Statistical Yearbook and the corresponding carbon emission
factors that are based on ref. [28]. The formula can be expressed, as follows:

CEE = ∑(QEi × γi × αi) (3)

where CEE, QEi, γi, and αi are the carbon emissions, quantity, energy coefficient of standard coal in the
Statistical Yearbook, and the carbon emission factor per unit of standard coal, respectively.

According to the IPCC guidelines for national greenhouse gas inventories published in 2006 and
the actual situation in Wuhan, 14 energy-related carbon emission items were summarized. The carbon
emission factors in this study were calculated based on the default values of carbon contents and
default net calorific values that were obtained from the IPCC guidelines for national greenhouse gas
inventories. Table 2 shows the calculated carbon emission factors for each type of fuel.

Table 2. Carbon emission factors for each fuel type.

Fuel Type Description Carbon Emission Factor (t/t) Lower Upper

Crude Oil 0.85 0.78 0.92
Coke 0.82 0.66 0.98

Liquefied Petroleum Gases 0.81 0.75 0.93
Anthracite 0.72 0.56 0.89

Coking Coal 0.73 0.57 0.86
Coal Tar 0.62 0.26 1.43

Natural Gas 0.73 0.69 0.80
Gas Works Gas 0.47 0.20 1.16
Coke Oven Gas 0.47 0.20 1.16

Blast Furnace Gas 0.17 0.07 0.42
Oxygen Steel Furnace Gas 0.35 0.15 0.83

Gasoline 0.84 0.78 0.89
Diesel Oil 0.87 0.82 0.88

3.2.2. Industrial Production Process

In this study, the carbon emissions of industrial production processes were estimated by
calculating the carbon dioxide emissions during the production of cement, steel, and other materials.
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Similarly, the carbon emission factor of cement and steel were obtained from the Guidelines for
National Greenhouse Gas Inventories [28]. The formula can be expressed, as follows:

CEj = Qj × αj (4)

where CEj, Qj, and αj represent the carbon emissions, production quantity, and carbon emission factor
of cement or steel, respectively.

For the industrial production process, 5 carbon emission items were considered based on the
IPCC guidelines and the actual conditions in Wuhan. The corresponding carbon emission factors from
the IPCC guidelines for national greenhouse gas inventories are shown in Table 3.

Table 3. Carbon content for each industrial product type.

Industrial Product Type Description Carbon Emission Factors (t/t) Uncertainty

Cement 0.52 4.50%
Lime 0.75 2.00%
Glass 0.20 2.00%
Iron 1.35 5.00%
Steel 1.46 5.00%

3.2.3. Disposal of Urban Domestic Refuse and Industrial Waste

Urban domestic refuse and industrial waste consist of both solids and liquids, such as industrial
solid waste, clinical waste, domestic garbage, and domestic sewage. In this study, carbon emissions
from domestic refuse and industrial waste were estimated based on the following formula:

CED = Qk × αk (5)

where CED, Qk, and αk are the carbon emissions, quantity, and carbon emission factor from urban
domestic refuse or industrial waste [28].

We considered 13 waste types based on the actual conditions in Wuhan and Table 4 lists the total
carbon content for each waste type.

Table 4. Carbon content for each waste type.

Waste Type Description Total Carbon Content (%) Uncertainty/Range

Industrial waste 50 40%
Clinical waste 60 40%

Domestic Sewage 45 40%
Fossil liquid waste 80 40%

Domestic solid waste

Paper/cardboard 46 42–50
Textiles 50 25–50

Food waste 38 20–50
Wood 50 46–54

Garden and park waste 49 45–55
Nappies 70 54–90

Rubber and leather 67 67
Plastics 75 67–85

Other, inert waste 3 0–5

3.2.4. Transportation

The carbon emissions from transportation are a major source of urban greenhouse gas emissions
and it is produced by the burning of diesel oil and gasoline by vehicles. The carbon emissions
from traffic are affected by many factors, such as the carbon content of fuels, energy efficiency, and
vehicle-kilometers traveled. A previous study explored how urban form—for example, sprawl or infill
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development—impacts daily travel patterns and annual vehicle-kilometers traveled and their results
on the carbon emissions of traffic [50]. Herein, we estimated carbon emissions of transportation based
on vehicle-kilometers traveled, information on the carbon dioxide emissions generated by various
vehicles for a 100-kilometer journey, the Blue Book of the Transportation Department, and the Statistical
Yearbook. The formula is expressed, as follows:

CT =
12
44
×∑

n
(Nn × αn × Ln) (6)

where CT represents the quantity of CO2 emissions from transportation; and, αn, Nn, and Ln represent
the quantity of CO2 emissions per 100 km, number of vehicles, and mileage per year from the i-th
type, respectively.

Gasoline and diesel vehicles were considered for transportation carbon emissions. The quantity of
CO2 emissions per 100 km was calculated using the carbon emission factors of gasoline and diesel oil
that were obtained from the IPCC guidelines for national greenhouse gas inventories. Table 5 shows
the CO2 emission factors of different vehicle types.

Table 5. Carbon emission factors for each vehicle type.

Vehicle Type Description CO2 Emission Factor (kg/100 km) Lower Upper

Large gasoline vehicle 29.03 26.96 30.76
medium gasoline vehicle 20.10 18.66 21.29

small gasoline vehicle 16.75 15.55 17.74
Large diesel vehicle 23.40 22.05 23.66

medium diesel vehicle 17.75 16.73 17.95
small diesel vehicle 14.25 13.43 14.42

3.3. Net Carbon Emissions Estimate

The estimated carbon emissions represent the emissions of CO2 and the obtained carbon storages
represent the absorption of CO2. However, the net carbon emissions estimate more directly represents
the amount of CO2 emission [1]. The net carbon emissions refer to the net CO2 emissions, which were
estimated based on the following formula:

NC = CEmission −CStorage (7)

where NC, CEmission, and CStorage are the net carbon emissions, total carbon emissions, and total carbon
sink, respectively. The unit of these variables is tons.

4. Results

4.1. Carbon Storage

The CO2 storage capacities of different vegetation types vary significantly. The carbon density
and carbon storage factor were used to assess the carbon storage capacities of different land covers
and was represented as the carbon storage per unit area in Figure 3 for various land covers.
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Table 5 shows the CO2 emission factors of different vehicle types. 
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3.3. Net Carbon Emissions Estimate 

The estimated carbon emissions represent the emissions of CO2 and the obtained carbon 
storages represent the absorption of CO2. However, the net carbon emissions estimate more directly 
represents the amount of CO2 emission [1]. The net carbon emissions refer to the net CO2 emissions, 
which were estimated based on the following formula: NC = C C          (5) 

where NC, C  , and C  are the net carbon emissions, total carbon emissions, and 
total carbon sink, respectively. The unit of these variables is tons. 

4. Results 

4.1. Carbon Storage 

The CO2 storage capacities of different vegetation types vary significantly. The carbon density 
and carbon storage factor were used to assess the carbon storage capacities of different land covers 
and was represented as the carbon storage per unit area in Figure 3 for various land covers. 
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Figure 3. Carbon storage capacities of different vegetation types in Wuhan. Where the Coniferous Forest
(CF), Broadleaf Forest (BF), Mixed Coniferous and Broadleaf Forest (MCB), Shrub Forest (SF), Bamboo
Forest (BAF), Greening Woodland (GW), Artificial Young Forest (AYF), Grassland (GL), Cropland (CL),
and Garden Land (GAL). SUM represents the total carbon storage of Wuhan in different years.

Figure 3 presents the carbon storage capacities of different types of land cover in Wuhan. Among
all types of vegetation covers, the carbon storage capacity of forests was the largest, followed by
croplands, gardens, and grasslands in order. In terms of the carbon pools of different forest types,
bamboo showed the largest carbon storage capacity (approximately 91.05 tons/ha), whereas the shrub
cover exhibited the smallest carbon storage capacity (9.98 tons/ha).

Capitalizing on a coefficient approach based on factors such as land cover geo-information and
carbon storage factors, carbon storage was successfully estimated, as presented in Table 6.

Table 6. The carbon storage of different vegetation types in Wuhan from 2015 to 2017. (×106 t).

Vegetation Types 2015 2016 2017

CF 1.3292 1.2981 1.2897
BF 0.1388 0.1473 0.1371

MCB 1.16 1.1411 1.1804
SF 1.0883 1.0283 0.9842

BAF 0.2148 0.2114 0.2108
GW 0.4111 0.3977 0.3837
AYF 0.0742 0.0729 0.0723
GL 0.4297 0.4413 0.453
CL 0.0193 0.0226 0.0293

GAL 0.304 0.2965 0.2896
SUM 5.1694 5.0573 5.0301

Note: CF (coniferous forests), BF (broadleaf forests), MCB (mixed coniferous and broadleaf forests), SF (shrub
forests), BAF (bamboo forests), GW (greening woodlands), AYF (artificial young forests), GL (grasslands), CL
(croplands), GAL (gardens).

Table 6 lists the calculated carbon storage of different carbon pools, including coniferous
forests, broadleaf forests, mixed coniferous/broadleaf forests, shrub forests, bamboo forests, greening
woodlands, artificial young forests, grasslands, croplands, and gardens. The total carbon storage
decreased from 5,169,400 t in 2015 to 5,030,100 t in 2017. The reduction in forests was shown to be the
most significant contributor to the decrease in carbon storage, and carbon storage of shrubs underwent
the most significant decrease of 104,100 tons during this period, followed by a decrease of 39,500 tons in
coniferous forests. In addition, the carbon storage of gardens decreased by 14,400 tons. In contrast, the
carbon storage of grasslands and croplands increased by 23,300 and 10,000 tons, respectively. However,
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the contribution of grasslands and croplands to carbon storage is minimal when compared to those of
forests and gardens.

To provide a basis for decision-making and management for governments engaged in the
construction of low-carbon cities, the carbon storage was spatialized by streets (181) and districts
(16) in the study area. To map the changes in carbon storage in the urban ecosystems of Wuhan, we
produced an annual difference map of carbon storage from 2015 to 2017 and current carbon storage
map in 2017, as presented in Figure 4.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  11 of 20 
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Figure 4a–c show the spatial distribution of carbon storage changes from 2015 to 2017 at the
street-block level. As can been in Figure 4a, most of the carbon storage in Wuhan decreased from 2015
to 2016. The changes vary between −16,200 tons and 2600 tons, depending on the street block. Though
the total carbon storage still showed a downward trend from 2016 to 2017, some blocks showed a
significant increase in the carbon stock, as shown in Figure 4b, especially in the downtown area and
outer ring of the city. The carbon storage changes of the street-blocks varied between −12,200 tons
and 10,500 tons in the past three years, and the overall trend is still declining (Figure 4c). The results
in Figure 4d show the spatial distribution of carbon storage of Wuhan in 2017. The differences in the
carbon storage grades in Wuhan are circularly distributed from the center to the epitaxial radiation.
The closer to the city center, the smaller the carbon storage (the lighter the color); and, vice versa. The
largest carbon stores are located in the mountainous areas of northwestern Wuhan, which mainly
consist of forests with less interference when compared to those of other areas. The lowest carbon
storage areas are mainly found in the central urban area, which may be due to severe disturbances by
human activities.

4.2. Carbon Emissions

The carbon emissions of Wuhan were estimated based on an emission-factor approach using the
GNCD, traffic data, and Statistical Yearbooks. Similarly, carbon emissions were obtained and summed
from all the different carbon sources, as presented in Table 7.

Table 7. The carbon emissions from different carbon sources in Wuhan from 2015 to 2017.

Year
Carbon Emissions (×106 t)

Industry Urban Domestic Transportation Agriculture SUM

2015 61.4716 38.1546 3.1734 0.1900 102.9896
2016 58.5147 41.1192 3.3931 0.1742 103.2012
2017 54.0093 42.1717 3.6643 0.1676 100.0129

Table 7 shows the carbon emissions from different carbon sources, including industry, agricultural
production, urban domestic regions, and transportation. The total carbon emissions of Wuhan
increased by 211,600 tons from 2015 to 2016, and subsequently decreased by 3,188,300 tons from
2016 to 2017. The main reason for the initial increase was the rise in carbon emissions from urban life
and transportation, whereas the decrease was mainly due to reduced carbon emissions from industry
and agriculture. In addition, the carbon emissions from industry and agriculture decreased during the
three-year period. In contrast, the carbon emissions from urban domestic regions and transportation
increased, which is likely due to the continuous expansion of the city and population growth.

The spatialization of carbon emission changes based on administrative divisions is significant for
clarifying responsibilities in terms of direct emissions. In this study, a spatial statistical analysis based
on the counted carbon emission changes and GNCD was conducted. The final spatial distribution of
carbon emission changes is presented in Figure 5.
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Figure 5a–c display the spatial distribution of the carbon emission changes from 2015 to 2017 at
the street-block level. During this period, the total carbon emissions first increased and subsequently
decreased. The number of blocks with increased carbon emissions is greater than the number of blocks
with reduced carbon emissions from 2015 to 2016, as shown in Figure 5a. The changes vary between
−1,861,000 and 1,130,600 tons. It is clear from Figure 5b, though the total carbon emissions showed
a downward trend from 2016 to 2017, the carbon emissions increased significantly in central and
Northern Wuhan. Carbon emissions in the central urban areas declined from 2015 to 2017, and the
spatial distribution of the carbon emission changes is similar to the changes from 2016 to 2017. The
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results in Figure 5d show the spatial distribution of the carbon emissions of Wuhan in 2017. According
to the spatialization results, the carbon emissions from urban centers are small, and they gradually
increase going outward.

4.3. Net Carbon Emissions

To directly evaluate the amount of CO2 emissions, the net carbon emissions of Wuhan from 2015
to 2017 were estimated using Equation (7), and the details are illustrated in Figure 6.
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Figure 6. Total net carbon emissions for Wuhan from 2015 to 2017.

As can be seen from Figure 6, the net carbon emissions increased by 323,700 tons from 2014 to
2015 and they were reduced by 3,161,100 tons from 2015 to 2016. The net carbon emissions decreased
sharply in 2017, due to the reduction in carbon emissions from industry and agriculture. This also
indicates that the energy conservation and emission reduction strategies in Wuhan were properly
implemented. The final net carbon emission change maps are presented in Figure 7.
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Figure 7 shows the spatial distribution of the net carbon emission changes from 2015 to 2017
at the street-block level of Wuhan. As can be seen from Figure 7a, the net carbon emissions in most
areas increased from 2015 to 2016, especially in the south-central part of the city. The difference in
the changes between different regions is significant from 2016 to 2017 (Figure 7b). The net carbon
emissions in the central urban area decreased most drastically, and the net carbon emissions in the
outer ring increased most extensively, especially in the north of the city. The net carbon emission
changes from 2015 to 2017 were similar to those from 2016 to 2017 (Figure 7c). The results in Figure 7d
show the spatial distribution of net carbon emission in 2017. The net carbon emissions of the central
and outer ring of the city are the lowest and the net carbon emissions of the outer ring near the central
city are the largest.

4.4. Uncertainties

Carbon emissions and carbon storage were estimated using GNCD in Wuhan, China and
they included some uncertainties. The uncertainty for all CECS were estimated by combining the
uncertainties in activity data, carbon factor, or the CECS estimate for a specific category [28]. However,
uncertainties regarding the quantity of activity data in this study are not available. Therefore, it is
difficult to estimate the uncertainty of the entire CECS measurement and were estimated based on
previous studies.

The uncertainty in the total carbon storage arose mainly from the uncertainties in carbon storage
estimates of the forest, grassland, cropland, and gardens. The uncertainty in the forest carbon storage
estimates originated from the uncertainties in forest inventory and the use of carbon factors to estimate
the regional carbon pool. In general, the uncertainty of the forest inventory data is small, <5%
in China [51] and the uncertainty for carbon storage estimated using the carbon factor method is
<3% [52]. The uncertainties from different sources are complex and it is difficult to provide an accurate
estimate [53]. The uncertainty of the grass carbon storage estimate mainly arises from the uncertainties
of the grass inventory and grass biomass estimated based on remote sensing data [46]. The uncertainty
for the grass inventory data is <10% [47] and the uncertainty of the grass biomass that is estimated
by remote sensing data is approximately 35.6% [48]. For the carbon storage estimate uncertainties
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of cropland and garden, very little measurement data is available, making it difficult to perform an
accurate assessment of carbon storages.

Few studies have addressed the inherent uncertainty of estimating carbon emissions [33,54,55].
The uncertainty of carbon emission estimation arises from the uncertainties in the carbon emission
activity data, emission factors, and carbon emissions for each category. However, the uncertainty of the
carbon emission factor is considered to be the main source of the entire carbon emissions measurement
uncertainty, as no available uncertainty of the activity data is available. The contributions of different
factors to the uncertainty of the carbon emission factors are summarized in Section 3.

5. Discussion

5.1. Decrease in Carbon Storage and Possible Causes

The carbon storage estimations indicate that the carbon pools in Wuhan have decreased due to
the reduction in forests, grasslands, croplands, and gardens. Moreover, the carbon storage that was
provided by forests and gardens played a significant role in the reduction of carbon storage. The forest
carbon decreased for all forest types with the exception of mixed forests. The reduced carbon storage
of forests and gardens can be attributed to the rapid growth of the economy and population, resulting
in the expansion of urban construction and continuous reduction in other types of land cover. This
is consistent with the report of Zhang, et al. [56], which demonstrated that most of the large carbon
sequestration patches disappeared as a result of urban expansion. In addition, the carbon storage of
grasslands and croplands increased from 2015 to 2017, which provided a small contribution to the
total carbon storage of Wuhan. Moreover, the carbon pools from forests, grasslands, croplands, and
gardens play an important role in the urban ecosystem, because they beautify the urban environment,
absorb CO2, and purify the air. However, the total carbon storage of these carbon pools is significantly
smaller than the amount of carbon emissions in Wuhan. Therefore, specific urban planning should be
performed to enhance the CO2 fixation capacities of urban green areas, which is an effective method
for reducing the amount of CO2 [17,18].

5.2. Differences in Carbon Storage per Vegetation Cover Type

For improved urban planning, the carbon storage capacity of each urban vegetation type was
also evaluated for the improvement of CO2 fixation in urban ecosystems. Moreover, the evaluation
of the carbon storage capacities of different vegetation covers is important for urban ecosystems, to
select appropriate urban greening vegetation types in urban planning. For example, increasing the
number and/or size of forests in high-carbon emissions areas is an important carbon sequestration
strategy, and several scholars have developed methods to increase the forest area or species selection,
increasing the overall carbon storage [57].

5.3. Changes in Carbon Emissions and Possible Causes

According to the carbon estimations (Table 7), the total carbon emissions initially increased and
subsequently decreased from 2015 to 2017. The carbon emissions from industry and agriculture
decreased during this period, which can be attributed to a reduction in energy consumption intensity
and optimization of the energy infrastructure [58]. In addition, the rapid expansion of urban regions
has resulted in the disappearance of croplands, which caused a decrease in agricultural-related carbon
emissions. In contrast, the carbon emissions that were generated by urban domestic regions and
transportation increased from 2015 to 2017, mainly due to economic development and population
growth. For total carbon emissions (Table 2), industrial carbon emissions are the largest contributors,
accounting for 54–60%, followed by urban living carbon emissions, which account for 37–42% of
the total. Agricultural carbon emissions are the smallest, accounting for only 0.17–0.19% of the total
in Wuhan. In addition, the remainder consisted of traffic carbon emissions, which accounted for
approximately 3.1–3.7% of the total carbon emissions. Moreover, population expansion and urban
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sprawl are inevitable trends in the development of Wuhan, which indicate that the proportion of
carbon emissions from urban domestic and transportation will likely continue to increase. Therefore,
these data should be part of any potential urban planning improvements or greenhouse gas mitigation
strategies—for example, reducing the intensity of energy consumption, addressing cases of extreme
congestion, and optimizing the energy structure [4,5].

5.4. Changes in Net Carbon Emissions and Possible Causes

The trend of the changes in the net carbon emissions is similar to that of the carbon sources from
2015 to 2017, both of which initially increased and subsequently decreased. As can be seen from the net
carbon sources results (Figure 7), the carbon emissions greatly exceed carbon storage, which indicates
a significant imbalance in the carbon budget of the urban ecosystem. This is consistent with the study
of Zhang, Linlin, and Weining [56], who investigated the spatial patterns of urban carbon metabolism
in Beijing, showing that the carbon emissions were larger than the corresponding carbon storage by
a factor of 48.6. When compared to other carbon sources, industrial energy consumption emitted
the most CO2, followed by that of urban domestic regions. This can be attributed to the growth of
the economy and population of Wuhan [58]. Although the total carbon storage of Wuhan increased
from 2015 to 2017, its contribution to net urban carbon emissions was negligible. Moreover, forests,
grasslands, croplands, and gardens play an important role in the urban ecosystem [1], as they absorb
CO2 from the atmosphere and afforested environment. According to the net carbon emissions in
Wuhan and the possible causes, it can be concluded that the reasonable control of urban population
growth, gradual optimization of the energy infrastructure, and rational planting of urban vegetation
can effectively reduce net carbon emissions.

6. Conclusions

In this study, a framework was developed to estimate carbon emissions, carbon storage, and
associate spatiotemporal changes in the urban ecosystem. The GNCD combined with factors affecting
carbon emissions and carbon storage was successfully used to obtain the temporal and spatial carbon
budget changes in an urban setting. The methods for estimating carbon storage and inventorial carbon
emission factors provided by the IPCC guidelines for national greenhouse gas inventories in 2006 can
be easily applied to other cities. Urban land use changes and carbon dynamics are important for the
global carbon cycle [59]. The land use change data can be obtained from the annually updated GNCD
and it offers a possibility for estimation of a carbon budget at the national or large region scale.

Studies regarding the carbon budget of urban regions can offer significant insights for
governments that are engaged in decision-making processes with respect to the urban carbon cycle,
given that the growth of the population and economy in urban ecosystems has a significant effect on
the CECS. Understanding the balance between carbon sources and carbon pools in urban ecosystems
can offer insights into mitigation of the impact of CO2 in the atmosphere. The urban carbon cycle, the
carbon storage abilities of different vegetation, and changes in land use are complicated. A significant
amount of future studies will be required to improve the estimation results. In this study, the carbon
budget monitoring-time was short, given that the newly created GNCD was completed in 2015. With
the accumulated GNCD for each year, the annual CECS in cities or blocks can be monitored with
high-precision and at a small-scale. In addition, only the main carbon sources and carbon pools of
Wuhan were considered in this study, and the contribution of other carbon sources and storages, such
as human respiration, soil, and water, were not investigated. By considering carbon budgets more
comprehensively, a more accurate estimation can be mapped.
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